1
|
Wang W, Ru S, Wang L, Wei S, Zhang J, Qin J, Liu R, Zhang X. Bisphenol S exposure alters behavioral parameters in adult zebrafish and offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140448. [PMID: 32610242 DOI: 10.1016/j.scitotenv.2020.140448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The environmental emission of bisphenol S (BPS), which is globally utilized in the manufacturing of polycarbonates, epoxy resin and thermal paper, has affected the aquatic ecosystem. Thus, effects of BPS exposure on the fitness of aquatic animals have been noted. Here, adult male and female zebrafish were used as aquatic model organisms and separately exposed to environmentally relevant doses of BPS (0, 1, 10 and 100 μg/L) for 14 days. The results showed that BPS changed the body pigment of zebrafish and slowed the maturation of oocytes in the ovary, resulting in a significant decrease in the shoaling behavior of adult zebrafish and the attraction of BPS-treated females during the mating process. Furthermore, in the subgeneration of adult zebrafish exposed to BPS for 7 days, survival behaviors, such as locomotor, phototaxis and feeding behaviors, deviated from normal behaviors. After exposing the adult zebrafish to BPS for an additional 7 days, the above described survival behaviors and light adaptation were disrupted in offspring. Our data, based on intergenerational behavioral studies, demonstrate that BPS affects the behaviors of aquatic animals and the ability of offspring to feed and avoid predators, possibly jeopardizing the survival of aquatic animals.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liangliang Wang
- Institute of Biomedical Research (YC), Yunnan University, Kunming 650091, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Kim JH, Cho YH, Hong YC. MicroRNA expression in response to bisphenol A is associated with high blood pressure. ENVIRONMENT INTERNATIONAL 2020; 141:105791. [PMID: 32438192 DOI: 10.1016/j.envint.2020.105791] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental contaminant that is known to be associated with the risk of arterial hypertension. However, the underlying mechanisms describing how BPA exposure leads to high blood pressure (BP) and the role of epigenetics are still unclear. Therefore, we evaluated associations among BPA exposure, microRNA (miRNA) expression, and BP in a randomized crossover trial with 45 non-smoking females over 60 years of age. The participants visited the study site 3 times and were dose-dependently exposed to BPA. Two hours after exposure to BPA, urine and whole blood were collected for BPA measurement and miRNA profiling, and BP was measured. Relationships among urinary BPA level, miRNA expression, and BP were estimated using the mixed effect model. Decreases in miR-30a-5p, miR-580-3p, miR-627-5p, and miR-671-3p and increases in miR-636 and miR-1224-3p attributable to BPA exposure were associated with high BP. The core functional network from BPA exposure to increased BP was found to be on the pathway through these six miRNAs and their predicted BP-related target genes. Our results suggest that epigenetic biomarkers for BPA exposure and hypertension provide mechanistic data to explain hypertension exacerbation as well as key information for predicting the health effects of BPA exposure.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| | - Yoon Hee Cho
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Montana 59812-1552, USA.
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| |
Collapse
|
3
|
Song D, Chen Y, Wang B, Li D, Xu C, Huang H, Huang S, Liu R. Bisphenol A inhibits autophagosome-lysosome fusion and lipid droplet degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109492. [PMID: 31421534 DOI: 10.1016/j.ecoenv.2019.109492] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/06/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is an artificial xenoestrogen widely used in consumer products containing polycarbonate plastics and epoxy resins. Exposure to BPA occurs through various channels, including ingestion of contaminated food and water. Autophagy is an important catabolic pathway that plays an important role in liver lipid metabolism. Evidence suggests that BPA exposure causes abnormal lipid droplet accumulation in liver, but the mechanism remains unknown. Here, we investigate the function of BPA in lipid metabolism and autophagy. BPA exposure increases lipid droplet and ROS accumulation which is accompanied by a defect in the fusion of the autophagosome to the lysosome. BPA exposure decreases the translocation of Stx17 to lysosome resulting in the autophagogome-lysosome fusion defect. There is no defect in the formation of the autophagosome indicated by increased LC3-II, p62 level, GFP/mRFP-LC3 ratios and decreased colocalization between LAMP2 with LC3. Mechanistically, BPA exposure reduces autophagy SNARE complex formation. Promoting autophagy by autophagy inducer (Torin2) partially reverses lipid droplet accumulation caused by BPA exposure. In summary, our results demonstrate BPA exposure inhibits autophagy resulting in decreased lipid droplet degradation and increased ROS levels. These results also provide a novel implication between autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Dan Song
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Chen
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Binran Wang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Diana Li
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Chao Xu
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Huang
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Saifei Huang
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Liu
- Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing, 210095, China.
| |
Collapse
|
4
|
Mi P, Zhang QP, Zhang SH, Wang C, Zhang SZ, Fang YC, Gao JZ, Feng DF, Chen DY, Feng XZ. The effects of fluorene-9-bisphenol on female zebrafish (Danio rerio) reproductive and exploratory behaviors. CHEMOSPHERE 2019; 228:398-411. [PMID: 31048237 DOI: 10.1016/j.chemosphere.2019.04.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disruptor chemicals induce adverse effects to animals' development, reproduction and behavior in environment. We investigated the effects of fluorene-9-bisphenol (BHPF), one substitute of bisphenol A, on courtship behavior and exploratory behavior of adult zebrafish. Customized apparatus was used to evaluate courtship behavior. The result showed that the male spent less time with BHPF and anti-oestrogenic fulvestrant (FULV) treated female in region of approaching (ROA). Courtship index between BHPF-exposed female and male decreased. The body orientation of BHPF- and FULV-exposed female to male decreased. Furthermore, BHPF exposure downregulated the expression of genes related to estrogen receptor, steroidogenesis and upregulated oxidative stress related genes. It indicated that BHPF exposure interfered the preference of male and female in courtship, and induced detrimental effects on reproduction. BHPF treatment decreased locomotor activity and time spent in top, increased freezing bouts, and induced anxiety/depression-like behavior. The tyrosine hydroxylase in brain decreased under BHPF exposure. Here we showed the potential adverse effects of BHPF on reproduction and exploratory behaviors.
Collapse
Affiliation(s)
- Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qiu-Ping Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shu-Hui Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chao Wang
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Shao-Zhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yong-Chun Fang
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Jian-Zhao Gao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Dao-Fu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Gupta S, Guha P, Majumder S, Pal P, Sen K, Chowdhury P, Chakraborty A, Panigrahi AK, Mukherjee D. Effects of bisphenol A (BPA) on brain-specific expression of cyp19a1b gene in swim-up fry of Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209:63-71. [PMID: 29654925 DOI: 10.1016/j.cbpc.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Estrogen regulates numerous developmental and physiological processes and effects are mediated mainly by estrogenic receptors (ERs), which function as ligand-regulated transcription factor. ERs can be activated by many different types endocrine disrupting chemicals (EDCs) and interfere with behaviour and reproductive potential of living organism. Estrogenic regulation of membrane associated G protein-coupled estrogen receptor, GPER activity has also been reported. Bisphenol A (BPA), a ubiquitous endocrine disruptor is present in many household products, has been linked to many adverse effect on sexual development and reproductive potential of wild life species. The present work is aimed to elucidate how an environmentally pervasive chemical BPA affects in vivo expression of a known estrogen target gene, cyp19a1b in the brain, and a known estrogenic biomarker, vitellogenin (Vg) in the whole body homogenate of 30 days post fertilization (dpf) swim-up fry of Labeo rohita. We confirm that, like estrogen, the xenoestrogen BPA exposure for 5-15 days induces strong overexpression of cyp19a1b, but not cyp19a1a mRNA in the brain and increase concentration of vitellogenin in swim-up fry. BPA also induces strong overexpression of aromatase B protein and aromatase activity in brain. Experiments using selective modulators of classical ERs and GPER argue that this induction is largely through nuclear ERs, not through GPER. Thus, BPA has the potential to elevate the levels of aromatase and thereby, levels of endogenous estrogen in developing brain. These results indicate that L. rohita swim-up fry can be used to detect environmental endocrine disruptors either using cyp19a1b gene expression or vitellogenin induction.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Payel Guha
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Suravi Majumder
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Puja Pal
- Department of Zoology, Taki Government College, Taki, Hasnabad, West Bengal 743429, India
| | - Koushik Sen
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Piyali Chowdhury
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Arindam Chakraborty
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Ashis Kumar Panigrahi
- Ecotoxicology and Aquaculture Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
6
|
Cano-Nicolau J, Vaillant C, Pellegrini E, Charlier TD, Kah O, Coumailleau P. Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain. Front Neurosci 2016; 10:112. [PMID: 27047331 PMCID: PMC4805609 DOI: 10.3389/fnins.2016.00112] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022] Open
Abstract
Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model.
Collapse
Affiliation(s)
- Joel Cano-Nicolau
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Colette Vaillant
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Elisabeth Pellegrini
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Thierry D Charlier
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Olivier Kah
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Pascal Coumailleau
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| |
Collapse
|
7
|
Weber DN, Hoffmann RG, Hoke ES, Tanguay RL. Bisphenol A exposure during early development induces sex-specific changes in adult zebrafish social interactions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:50-66. [PMID: 25424546 PMCID: PMC4246420 DOI: 10.1080/15287394.2015.958419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1, or 1 μM) or one of two control compounds (0.1 μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into three computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1-3 (= AM) and 5-8 (= PM) h postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, percent of time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced nonmonotonic effects (response curve changes direction within range of concentrations examined) on male percent of time at mirror only in AM. All treatments produced increased percent of time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions, and time of day of observation affected results.
Collapse
Affiliation(s)
- Daniel N. Weber
- Children’s Environmental Health Sciences Core Center, University of Wisconsin-Milwaukee
- To Whom Correspondence Should Be Addressed: , 600 E. Greenfield Ave, Milwaukee, WI 53204, (414) 382-1726
| | | | | | - Robert L. Tanguay
- College of Agricultural Sciences, Department of Environmental & Molecular Toxicology, Oregon State University
| |
Collapse
|
8
|
Zhao M, Zhang Y, Zhuang S, Zhang Q, Lu C, Liu W. Disruption of the hormonal network and the enantioselectivity of bifenthrin in trophoblast: maternal-fetal health risk of chiral pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8109-8116. [PMID: 24938463 DOI: 10.1021/es501903b] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can interfere with normal hormone signaling to increase health risks to the maternal-fetal system, yet few studies have been conducted on the currently used chiral EDCs. This work tested the hypothesis that pyrethroids could enantioselectively interfere with trophoblast cells. Cell viability, hormone secretion, and steroidogenesis gene expression of a widely used pyrethroid, bifenthrin (BF), were evaluated in vitro, and the interactions of BF enantiomers with estrogen receptor (ER) were predicted. At low or noncytotoxic concentrations, both progesterone and human chorionic gonadotropin secretion were induced. The expression levels of progesterone receptor and human leukocyte antigen G genes were significantly stimulated. The key regulators of the hormonal cascade, GnRH type-I and its receptor, were both upregulated. The expression levels of selected steroidogenic genes were also significantly altered. Moreover, a consistent enantioselective interference of hormone signaling was observed, and S-BF had greater effects than R-BF. Using molecular docking, the enantioselective endocrine disruption of BF was predicted to be partially due to enantiospecific ER binding affinity. Thus, BF could act through ER to enantioselectively disturb the hormonal network in trophoblast cells. These converging results suggest that the currently used chiral pesticides are of significant concern with respect to maternal-fetal health.
Collapse
Affiliation(s)
- Meirong Zhao
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou 310032, China
| | | | | | | | | | | |
Collapse
|
9
|
Determination of Bisphenol A and Alkylphenols in Soft Drinks by High-Performance Liquid Chromatography with Fluorescence Detection. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9541-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Kass L, Altamirano GA, Bosquiazzo VL, Luque EH, Muñoz-de-Toro M. Perinatal exposure to xenoestrogens impairs mammary gland differentiation and modifies milk composition in Wistar rats. Reprod Toxicol 2012; 33:390-400. [DOI: 10.1016/j.reprotox.2012.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 01/19/2012] [Accepted: 02/02/2012] [Indexed: 12/11/2022]
|
11
|
Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos. Proc Natl Acad Sci U S A 2011; 108:17732-7. [PMID: 22006313 DOI: 10.1073/pnas.1115187108] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen regulates numerous developmental and physiological processes. Most effects are mediated by estrogen receptors (ERs), which function as ligand-regulated transcription factors. Estrogen also regulates the activity of GPR30, a membrane-associated G protein-coupled receptor. Many different types of environmental contaminants can activate ERs; some can bind GPR30 as well. There is growing concern that exposure to some of these compounds, termed xenoestrogens, is interfering with the behavior and reproductive potential of numerous wildlife species, as well as affecting human health. Here, we investigated how two common, environmentally pervasive chemicals affect the in vivo expression of a known estrogen target gene in the brain of developing zebrafish embryos, aromatase AroB, which converts androgens to estrogens. We confirm that, like estrogen, the well-studied xenoestrogen bisphenol A (BPA, a plastics monomer), induces strong brain-specific overexpression of aromatase. Experiments using ER- and GPR30-selective modulators argue that this induction is largely through nuclear ERs. BPA induces dramatic overexpression of AroB RNA in the same subregions of the developing brain as estrogen. The antibacterial triclocarban (TCC) by itself stimulates AroB expression only slightly, but TCC strongly enhances the overexpression of AroB that is induced by exogenous estrogen. Thus, both BPA and TCC have the potential to elevate levels of aromatase and, thereby, levels of endogenous estrogens in the developing brain. In contrast to estrogen, BPA-induced AroB overexpression was suppressed by TCC. These results indicate that exposures to combinations of certain hormonally active pollutants can have outcomes that are not easily predicted from their individual effects.
Collapse
|