1
|
Marton Menendez A, Nesbitt DJ. Thermodynamic compensation to temperature extremes in B. subtilis vs T. maritima lysine riboswitches. Biophys J 2024; 123:3331-3345. [PMID: 39091026 PMCID: PMC11480769 DOI: 10.1016/j.bpj.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
T. maritima and B. subtilis are bacteria that inhabit significantly different thermal environments, ∼80 vs. ∼40°C, yet employ similar lysine riboswitches to aid in the transcriptional regulation of the genes involved in the synthesis and transport of amino acids. Despite notable differences in G-C basepair frequency and primary sequence, the aptamer moieties of each riboswitch have striking similarities in tertiary structure, with several conserved motifs and long-range interactions. To explore genetic adaptation in extreme thermal environments, we compare the kinetic and thermodynamic behaviors in T. maritima and B. subtilis lysine riboswitches via single-molecule fluorescence resonance energy transfer analysis. Kinetic studies reveal that riboswitch folding rates increase with lysine concentration while the unfolding rates are independent of lysine. This indicates that both riboswitches bind lysine through an induced-fit ("bind-then-fold") mechanism, with lysine binding necessarily preceding conformational changes. Temperature-dependent van't Hoff studies reveal qualitative similarities in the thermodynamic landscapes for both riboswitches in which progression from the open, lysine-unbound state to both transition states (‡) and closed, lysine-bound conformations is enthalpically favored yet entropically penalized, with comparisons of enthalpic and entropic contributions extrapolated to a common [K+] = 100 mM in quantitative agreement. Finally, temperature-dependent Eyring analysis reveals the TMA and BSU riboswitches to have remarkably similar folding/unfolding rate constants when extrapolated to their respective (40 and 80°C) environmental temperatures. Such behavior suggests a shared strategy for ligand binding and aptamer conformational change in the two riboswitches, based on thermodynamic adaptations in number of G-C basepairs and/or modifications in tertiary structure that stabilize the ligand-unbound conformation to achieve biocompetence under both hyperthermophilic and mesothermophilic conditions.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado; Department of Chemistry, University of Colorado Boulder, Boulder, Colorado.
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado; Department of Chemistry, University of Colorado Boulder, Boulder, Colorado; Department of Physics, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
2
|
Rissone P, Severino A, Pastor I, Ritort F. Universal cold RNA phase transitions. Proc Natl Acad Sci U S A 2024; 121:e2408313121. [PMID: 39150781 PMCID: PMC11348302 DOI: 10.1073/pnas.2408313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.
Collapse
Affiliation(s)
- Paolo Rissone
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Aurélien Severino
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Isabel Pastor
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
3
|
Zheng L, Zhou B, Yang Y, Zan B, Zhong B, Wu B, Feng Y, Liu Q, Hong L. Mn 2+-induced structural flexibility enhances the entire catalytic cycle and the cleavage of mismatches in prokaryotic argonaute proteins. Chem Sci 2024; 15:5612-5626. [PMID: 38638240 PMCID: PMC11023060 DOI: 10.1039/d3sc06221j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Prokaryotic Argonaute (pAgo) proteins, a class of DNA/RNA-guided programmable endonucleases, have been extensively utilized in nucleic acid-based biosensors. The specific binding and cleavage of nucleic acids by pAgo proteins, which are crucial processes for their applications, are dependent on the presence of Mn2+ bound in the pockets, as verified through X-ray crystallography. However, a comprehensive understanding of how dissociated Mn2+ in the solvent affects the catalytic cycle, and its underlying regulatory role in this structure-function relationship, remains underdetermined. By combining experimental and computational methods, this study reveals that unbound Mn2+ in solution enhances the flexibility of diverse pAgo proteins. This increase in flexibility through decreasing the number of hydrogen bonds, induced by Mn2+, leads to higher affinity for substrates, thus facilitating cleavage. More importantly, Mn2+-induced structural flexibility increases the mismatch tolerance between guide-target pairs by increasing the conformational states, thereby enhancing the cleavage of mismatches. Further simulations indicate that the enhanced flexibility in linkers triggers conformational changes in the PAZ domain for recognizing various lengths of nucleic acids. Additionally, Mn2+-induced dynamic alterations of the protein cause a conformational shift in the N domain and catalytic sites towards their functional form, resulting in a decreased energy penalty for target release and cleavage. These findings demonstrate that the dynamic conformations of pAgo proteins, resulting from the presence of the unbound Mn2+ in solution, significantly promote the catalytic cycle of endonucleases and the tolerance of cleavage to mismatches. This flexibility enhancement mechanism serves as a general strategy employed by Ago proteins from diverse prokaryotes to accomplish their catalytic functions and provide useful information for Ago-based precise molecular diagnostics.
Collapse
Affiliation(s)
- Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- Department of Cell and Developmental Biology & Michigan Neuroscience Institute, University of Michigan Medical School 48105 Ann Arbor MI USA
| | - Bingxin Zhou
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong University Shanghai 200240 China
| | - Yu Yang
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bing Zan
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bozitao Zhong
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Banghao Wu
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Feng
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qian Liu
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong University Shanghai 200240 China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
4
|
Templeton C, Hamilton I, Russell R, Elber R. Impact of Ion-Mixing Entropy on Orientational Preferences of DNA Helices: FRET Measurements and Computer Simulations. J Phys Chem B 2023; 127:8796-8808. [PMID: 37815452 PMCID: PMC11341850 DOI: 10.1021/acs.jpcb.3c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Biological processes require DNA and RNA helices to pack together in specific interhelical orientations. While electrostatic repulsion between backbone charges is expected to be maximized when helices are in parallel alignment, such orientations are commonplace in nature. To better understand how the repulsion is overcome, we used experimental and computational approaches to investigate how the orientational preferences of DNA helices depend on the concentration and valence of mobile cations. We used Förster resonance energy transfer (FRET) to probe the relative orientations of two 24-bp helices held together via a freely rotating PEG linker. At low cation concentrations, the helices preferred more "cross"-like orientations over those closer to parallel, and this preference was reduced with increasing salt concentrations. The results were in good quantitative agreement with Poisson-Boltzmann (PB) calculations for monovalent salt (Na+). However, PB underestimated the ability of mixtures of monovalent and divalent ions (Mg2+) to reduce the conformational preference. As a complementary approach, we performed all-atom molecular dynamics (MD) simulations and found better agreement with the experimental results. While MD and PB predict similar electrostatic forces, MD predicts a greater accumulation of Mg2+ in the ion atmosphere surrounding the DNA. Mg2+ occupancy is predicted to be greater in conformations close to the parallel orientation than in conformations close to the crossed orientation, enabling a greater release of Na+ ions and providing an entropic gain (one bound ion for two released). MD predicts an entropy gain larger than that of PB because of the increased Mg2+ occupancy. The entropy changes have a negligible effect at low Mg2+ concentrations because the free energies are dominated by electrostatic repulsion. However, as the Mg2+ concentration increases, charge screening is more effective and the mixing entropy produces readily detectable changes in packing preferences. Our results underline the importance of mixing entropy of counterions in nucleic acid interactions and provide a new understanding on the impact of a mixed ion atmosphere on the packing of DNA helices.
Collapse
Affiliation(s)
- Clark Templeton
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Physics, FU Berlin, 14195 Berlin, Germany
| | - Ian Hamilton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ron Elber
- Institute for Computational Engineering and Science, Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Marton Menendez A, Nesbitt DJ. Ionic Cooperativity between Lysine and Potassium in the Lysine Riboswitch: Single-Molecule Kinetic and Thermodynamic Studies. J Phys Chem B 2023; 127:2430-2440. [PMID: 36916791 DOI: 10.1021/acs.jpcb.3c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Functionality in many biological systems, including proteins and nucleic acid structures, including protein and nucleic acid riboswitch structures, can depend on cooperative kinetic behavior between multiple small molecule ligands. In this work, single-molecule FRET data on the Bacillus subtilis lysine riboswitch reveals that affinity for the cognate lysine ligand increases significantly with K+, providing evidence for synergism between lysine/K+ binding to the aptamer and successful folding of the riboswitch. To describe/interpret this more complex kinetic scenario, we explore the conventional 4-state ("square") model for aptamer binding as a function of K+. Extension into this additional dimension generates a novel "cube" model for riboswitch folding dynamics with respect to lysine/K+ binding, revealing that riboswitch folding (kfold) and unfolding (kunfold) rate constants increase and decrease dramatically with K+, respectively. Furthermore, temperature-dependent single-molecule kinetic studies indicate that the presence of K+ entropically enhances the transition state barrier to folding but partially compensates for this by increasing the overall exothermicity for lysine binding. We rationalize this behavior as evidence that K+ facilitates hydrogen bonding between the negatively charged carboxyl group of lysine and the RNA, increasing structural rigidity and lowering entropy in the binding pocket. Finally, we explore the effects of cation size with Na+ and Cs+ studies to demonstrate that K+ is optimally suited for bridging interactions between lysine and the riboswitch aptamer domain. Regulation of lysine production and transport, dictated by the riboswitch's ability to recognize and bind lysine, is therefore intimately tied to the presence of K+ in the binding pocket and is strongly modulated by local cation conditions. The results suggest an increase in lysine riboswitch functionality by sensitivity to additional species in the cellular riboswitch environment.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Li J, Zhang X, Hong L, Liu Y. Entropy Driving the Mg 2+-Induced Folding of TPP Riboswitch RNA. J Phys Chem B 2022; 126:9457-9464. [PMID: 36379020 DOI: 10.1021/acs.jpcb.2c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mg2+ is well known to facilitate the structural folding of RNA. However, the thermodynamic and dynamic roles of Mg2+ in RNA folding remain elusive. Here, we exploit single-molecule fluorescence resonance energy transfer (smFRET) and isothermal titration calorimetry (ITC) to study the mechanism of Mg2+ in facilitating the folding of thiamine pyrophosphate (TPP) riboswitch RNA. The results of smFRET identify that the presence of Mg2+ compacts the RNA and enlarges the conformational dispersity among individual RNA molecules, resulting in a large gain of entropy. The compact yet flexible conformations triggered by Mg2+ may help the riboswitch recognize its specific ligand and further fold. This is supported by the ITC experiments, in which the Mg2+-induced RNA folding is driven by entropy (ΔS) instead of enthalpy (ΔH). Our results complement the understanding of the Mg2+-induced RNA folding. The strategy developed in this work can be used to model other RNAs' folding under different conditions.
Collapse
Affiliation(s)
- Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Sung HL, Nesbitt DJ. Synergism in the Molecular Crowding of Ligand-Induced Riboswitch Folding: Kinetic/Thermodynamic Insights from Single-Molecule Spectroscopy. J Phys Chem B 2022; 126:6419-6427. [PMID: 35981263 DOI: 10.1021/acs.jpcb.2c03507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conformational dynamics in riboswitches involves ligand binding and folding of RNA, each of which can be influenced by excluded volume effects under "crowded" in vivo cellular conditions and thus incompletely characterized by in vitro studies under dilute buffer conditions. In this work, temperature-dependent single-molecule fluorescence resonance energy transfer (FRET) spectroscopy is used to characterize the thermodynamics of (i) cognate ligand and (ii) molecular crowders (PEG, polyethylene glycol) on folding of the B. subtilis LysC lysine riboswitch. With the help of detailed kinetic analysis, we isolate and study the effects of PEG on lysine binding and riboswitch folding steps individually, from which we find that PEG crowding facilitates riboswitch folding primarily via a surprising increase in affinity for the cognate ligand. This is furthermore confirmed by temperature-dependent studies, which reveal that PEG crowding is not purely entropic and instead significantly impacts both enthalpic and entropic contributions to the free energy landscape for folding. The results indicate that PEG molecular crowding/stabilization of the lysine riboswitch is more mechanistically complex and requires extension beyond the conventional picture of purely repulsive solvent-solute steric interactions arising from excluded volume and entropy. Instead, the current experimental FRET data support an alternative multistep mechanism, whereby PEG first entropically crowds the unfolded riboswitch into a "pre-folded" conformation, which in turn greatly increases the ligand binding affinity and thereby enhances the overall equilibrium for riboswitch folding.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Martinez-Monge A, Pastor I, Bustamante C, Manosas M, Ritort F. Measurement of the specific and non-specific binding energies of Mg 2+ to RNA. Biophys J 2022; 121:3010-3022. [PMID: 35864738 PMCID: PMC9463699 DOI: 10.1016/j.bpj.2022.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Determining the non-specific and specific electrostatic contributions of magnesium binding to RNA is a challenging problem. We introduce a single-molecule method based on measuring the folding energy of a native RNA in magnesium and at its equivalent sodium concentration. The latter is defined so that the folding energy in sodium equals the non-specific electrostatic contribution in magnesium. The sodium equivalent can be estimated according to the empirical 100/1 rule (1 M NaCl is equivalent to 10 mM MgCl2), which is a good approximation for most RNAs. The method is applied to an RNA three-way junction (3WJ) that contains specific Mg2+ binding sites and misfolds into a double hairpin structure without binding sites. We mechanically pull the RNA with optical tweezers and use fluctuation theorems to determine the folding energies of the native and misfolded structures in magnesium (10 mM MgCl2) and at the equivalent sodium condition (1 M NaCl). While the free energies of the misfolded structure are equal in magnesium and sodium, they are not for the native structure, the difference being due to the specific binding energy of magnesium to the 3WJ, which equals ΔG≃ 10 kcal/mol. Besides stabilizing the 3WJ, Mg2+ also kinetically rescues it from the misfolded structure over timescales of tens of seconds in a force-dependent manner. The method should generally be applicable to determine the specific binding energies of divalent cations to other tertiary RNAs.
Collapse
Affiliation(s)
- A Martinez-Monge
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Isabel Pastor
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carlos Bustamante
- Departments of Chemistry, Physics and Molecular and Cell Biology, University of California Berkeley, Berkeley, California; Howard Hughes Medical Institute University of California Berkeley, Berkeley, California; Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California
| | - Maria Manosas
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Felix Ritort
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Oborská-Oplová M, Gerhardy S, Panse VG. Orchestrating ribosomal RNA folding during ribosome assembly. Bioessays 2022; 44:e2200066. [PMID: 35751450 DOI: 10.1002/bies.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three-dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error-prone RNA folding process. Following these dynamic events, long-range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how a nascent rRNA is transformed into a functional ribosome with high precision. With this essay, we aim to draw attention to the poorly understood process of establishing correct RNA tertiary contacts during ribosome formation.
Collapse
Affiliation(s)
| | - Stefan Gerhardy
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Sung HL, Nesbitt DJ. Effects of Molecular Crowders on Single-Molecule Nucleic Acid Folding: Temperature-Dependent Studies Reveal True Crowding vs Enthalpic Interactions. J Phys Chem B 2021; 125:13147-13157. [PMID: 34813337 DOI: 10.1021/acs.jpcb.1c07852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biomolecular folding in cells can be strongly influenced by spatial overlap/excluded volume interactions (i.e., "crowding") with intracellular solutes. As a result, traditional in vitro experiments with dilute buffers may not accurately recapitulate biomolecule folding behavior in vivo. In order to account for such ubiquitous excluded volume effects, biologically inert polyethylene glycol (PEG) and polysaccharides (dextran and Ficoll) are often used as in vitro crowding agents to mimic in vivo crowding conditions, with a common observation that high concentrations of these polymers stabilize the more compact biomolecule conformation. However, such an analysis can be distorted by differences in polymer interactions with the folded vs unfolded conformers, requiring temperature-dependent analysis of the thermodynamics to reliably assess competing enthalpic vs entropic contributions and thus the explicit role of excluded volume. In this work, temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) is used to characterize the thermodynamic interaction between nucleic acids and common polymer crowders PEG, dextran, and Ficoll. The results reveal that PEG promotes secondary and tertiary nucleic acid folding by simultaneously increasing the folding rate while decreasing the unfolding rate, with temperature-dependent studies confirming that the source of PEG stabilization is predominantly entropic and consistent with a true excluded volume crowding mechanism. By way of contrast, neither dextran nor Ficoll induces any significant concentration-dependent change in nucleic acid folding stability at room temperature, but instead, stabilization effects gradually appear with a temperature increase. Such a thermal response indicates that both folding enthalpies and entropies are impacted by dextran and Ficoll. A detailed thermodynamic analysis of the kinetics suggests that, instead of true entropic molecular crowding, dextran and Ficoll associate preferentially with the unfolded vs folded nucleic acid conformer as a result of larger solvent accessible surface area, thereby skewing the free energy landscapes through both significant entropic/enthalpic contributions that compete and fortuitously cancel near room temperature.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
11
|
Gunawardhana SM, Holmstrom ED. Apolar chemical environments compact unfolded RNAs and can promote folding. BIOPHYSICAL REPORTS 2021; 1. [PMID: 35382036 PMCID: PMC8978554 DOI: 10.1016/j.bpr.2021.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well documented that the structure, and thus function, of nucleic acids depends on the chemical environment surrounding them, which often includes potential proteinaceous binding partners. The nonpolar amino acid side chains of these proteins will invariably alter the polarity of the local chemical environment around the nucleic acid. However, we are only beginning to understand how environmental polarity generally influences the structural and energetic properties of RNA folding. Here, we use a series of aqueous-organic cosolvent mixtures to systematically modulate the solvent polarity around two different RNA folding constructs that can form either secondary or tertiary structural elements. Using single-molecule Förster resonance energy transfer spectroscopy to simultaneously monitor the structural and energetic properties of these RNAs, we show that the unfolded conformations of both model RNAs become more compact in apolar environments characterized by dielectric constants less than that of pure water. In the case of tertiary structure formation, this compaction also gives rise to more energetically favorable folding. We propose that these physical changes arise from an enhanced accumulation of counterions in the low dielectric environment surrounding the unfolded RNA.
Collapse
Affiliation(s)
| | - Erik D Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas.,Department of Chemistry, University of Kansas, Lawrence, Kansas
| |
Collapse
|
12
|
Gupta S, Pal D. Clusters of hairpins induce intrinsic transcription termination in bacteria. Sci Rep 2021; 11:16194. [PMID: 34376740 PMCID: PMC8355165 DOI: 10.1038/s41598-021-95435-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 07/20/2021] [Indexed: 01/13/2023] Open
Abstract
Intrinsic transcription termination (ITT) sites are currently identified by locating single and double-adjacent RNA hairpins downstream of the stop codon. ITTs for a limited number of genes/operons in only a few bacterial genomes are currently known. This lack of coverage is a lacuna in the existing ITT inference methods. We have studied the inter-operon regions of 13 genomes covering all major phyla in bacteria, for which good quality public RNA-seq data exist. We identify ITT sites in 87% of cases by predicting hairpin(s) and validate against 81% of cases for which the RNA-seq derived sites could be calculated. We identify 72% of these sites correctly, with 98% of them located ≤ 80 bases downstream of the stop codon. The predicted hairpins form a cluster (when present < 15 bases) in two-thirds of the cases, the remaining being single hairpins. The largest number of clusters is formed by two hairpins, and the occurrence decreases exponentially with an increasing number of hairpins in the cluster. Our study reveals that hairpins form an effective ITT unit when they act in concert in a cluster. Their pervasiveness along with single hairpin terminators corroborates a wider utilization of ITT mechanisms for transcription control across bacteria.
Collapse
Affiliation(s)
- Swati Gupta
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
13
|
Puf6 primes 60S pre-ribosome nuclear export at low temperature. Nat Commun 2021; 12:4696. [PMID: 34349113 PMCID: PMC8338941 DOI: 10.1038/s41467-021-24964-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.
Collapse
|
14
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Sung HL, Sengupta A, Nesbitt D. Smaller molecules crowd better: Crowder size dependence revealed by single-molecule FRET studies and depletion force modeling analysis. J Chem Phys 2021; 154:155101. [PMID: 33887926 DOI: 10.1063/5.0045492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cell is an extremely crowded environment, which is known to have a profound impact on the thermodynamics, functionality, and conformational stability of biomolecules. Speculations from recent theoretical molecular dynamics studies suggest an intriguing size dependence to such purely entropic crowding effects, whereby small molecular weight crowders under constant enthalpy conditions are more effective than larger crowders on a per volume basis. If experimentally confirmed, this would be profoundly significant, as the cellular cytoplasm is also quite concentrated in smaller molecular weight solutes such as inorganic ions, amino acids, and various metabolites. The challenge is to perform such studies isolating entropic effects under isoenthalpic conditions. In this work, we first present results from single-molecule FRET spectroscopy (smFRET) on the molecular size-dependent crowding stabilization of a simple RNA tertiary motif (the GAAA tetraloop-tetraloop receptor), indeed providing evidence in support of the surprising notion in the crowding literature that "smaller is better." Specifically, systematic smFRET studies as a function of crowder solute size reveal that smaller molecules both significantly increase the RNA tertiary folding rate and, yet, simultaneously decrease the unfolding rate, predicting strongly size-dependent stabilization of RNA tertiary structures under crowded cellular conditions. The size dependence of these effects has been explored via systematic variation of crowder size over a broad range of molecular weights (90-3000 amu). Furthermore, corresponding temperature dependent studies indicate the systematic changes in the folding equilibrium to be predominantly entropic in origin, i.e., consistent with a fundamental picture of entropic molecular crowding without additional enthalpic interactions. Most importantly, all trends in the single-molecule crowding data can be quantitatively recapitulated by a simple analytic depletion force model, whereby excluded volume interactions represent the major thermodynamic driving force toward folding. Our study, thus, not only provides experimental evidence and theoretical support for small molecule crowding but also predicts further enhancement of crowding effects for even smaller molecules on a per volume basis.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - Abhigyan Sengupta
- Biophysics Department, Technical University of Munich, Garching, Germany
| | - David Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
16
|
Sung HL, Nesbitt DJ. Sequential Folding of the Nickel/Cobalt Riboswitch Is Facilitated by a Conformational Intermediate: Insights from Single-Molecule Kinetics and Thermodynamics. J Phys Chem B 2020; 124:7348-7360. [DOI: 10.1021/acs.jpcb.0c05625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States,
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J. Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States,
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
17
|
Templeton C, Elber R. Simple and Analytical Model of RNA Collapse. J Phys Chem B 2020; 124:5149-5155. [PMID: 32459501 DOI: 10.1021/acs.jpcb.0c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An analytical model for the free energy change during collapse of an RNA molecule from an extended to a compact conformation is proposed. It considers explicit binding of water and ion molecules to the RNA and the exchange of these molecules with the aqueous solution. Microscopic states of the system are captured on a two-dimensional square lattice and evaluated using contact energies. We compute the free energy as a function of a collapse variable and the number of ions bound to the RNA. The major driving force to the collapse of the RNA chain is the gain in water entropy once expelled from the surface of the RNA molecule illustrated by decomposing the free energy into species contributions and their energy and entropy components. The sensitivity of the conclusions of the model to variations in parameters is computed and appears to be weak.
Collapse
Affiliation(s)
- Clark Templeton
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Frańska M, Michalak A, Ławniczak Ł. Gas-phase hydration of Mg 2+ complexes with deprotonated uracil, thymine, uridine, and thymidine. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4504. [PMID: 31970857 DOI: 10.1002/jms.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The gas-phase hydration of Mg2+ complexes with deprotonated uracil (U), thymine (T), uridine (Ur , uracil riboside), and thymidine (Tdr , thymine deoxyriboside) was studied. The aim of the work was to analyze the hydration of product ions (eg, [2U-H+Mg]+ ) formed as a result of the collision induced dissociation of the respective parent ion (eg, [3Ur -H+Mg]+ ). The efficiency of gas-phase hydration of the ions [2U-H+Mg]+ and [2T-H+Mg]+ was similar. However, the efficiency of gas-phase hydration of the ion [U+Ur -H+Mg]+ was much higher than that of gas-phase hydration of the ion [T+Tdr -H+Mg]+ . On the basis of the mass spectra obtained and the performed molecular modelling, it was concluded that in the ion [T+Tdr -H+Mg]+ , we deal with a steric hindrance due to the presence of a sugar moiety, which affects water attachment. In the ion [U+Ur -H+Mg]+ , the position of the sugar moiety does not affect water attachment.
Collapse
Affiliation(s)
- Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Anna Michalak
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|
19
|
Steffen FD, Khier M, Kowerko D, Cunha RA, Börner R, Sigel RKO. Metal ions and sugar puckering balance single-molecule kinetic heterogeneity in RNA and DNA tertiary contacts. Nat Commun 2020; 11:104. [PMID: 31913262 PMCID: PMC6949254 DOI: 10.1038/s41467-019-13683-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/15/2019] [Indexed: 11/13/2022] Open
Abstract
The fidelity of group II intron self-splicing and retrohoming relies on long-range tertiary interactions between the intron and its flanking exons. By single-molecule FRET, we explore the binding kinetics of the most important, structurally conserved contact, the exon and intron binding site 1 (EBS1/IBS1). A comparison of RNA-RNA and RNA-DNA hybrid contacts identifies transient metal ion binding as a major source of kinetic heterogeneity which typically appears in the form of degenerate FRET states. Molecular dynamics simulations suggest a structural link between heterogeneity and the sugar conformation at the exon-intron binding interface. While Mg2+ ions lock the exon in place and give rise to long dwell times in the exon bound FRET state, sugar puckering alleviates this structural rigidity and likely promotes exon release. The interplay of sugar puckering and metal ion coordination may be an important mechanism to balance binding affinities of RNA and DNA interactions in general.
Collapse
Affiliation(s)
- Fabio D Steffen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mokrane Khier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Danny Kowerko
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Informatics, Technical University Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| | - Richard A Cunha
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Richard Börner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Technikumplatz 17, 09648, Mittweida, Germany.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
20
|
Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting. Biophys J 2019; 117:1116-1124. [PMID: 31466697 DOI: 10.1016/j.bpj.2019.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
RNAs are one of the most charged polyelectrolytes in nature, and understanding their electrostatics is fundamental to their structure and biological functions. An effective way to characterize the electrostatic field generated by nucleic acids is to quantify interactions between nucleic acids and ions that surround the molecules. These ions form a loosely associated cloud referred to as an ion atmosphere. Although theoretical and computational studies can describe the ion atmosphere around RNAs, benchmarks are needed to guide the development of these approaches, and experiments to date that read out RNA-ion interactions are limited. Here, we present ion counting studies to quantify the number of ions surrounding well-defined model systems of RNA and DNA duplexes. We observe that the RNA duplex attracts more cations and expels fewer anions compared to the DNA duplex, and the RNA duplex interacts significantly stronger with the divalent cation Mg2+, despite their identical total charge. These experimental results suggest that the RNA duplex generates a stronger electrostatic field than DNA, as is predicted based on the structural differences between their helices. Theoretical calculations using a nonlinear Poisson-Boltzmann equation give excellent agreement with experiments for monovalent ions but underestimate Mg2+-DNA and Mg2+-RNA interactions by 20%. These studies provide needed stringent benchmarks to use against other all-atom theoretical models of RNA-ion interactions, interactions that likely must be accurately accounted for in structural, dynamic, and energetic terms to confidently model RNA structure, interactions, and function.
Collapse
|
21
|
Sung HL, Nesbitt DJ. Novel Heat-Promoted Folding Dynamics of the yybP-ykoY Manganese Riboswitch: Kinetic and Thermodynamic Studies at the Single-Molecule Level. J Phys Chem B 2019; 123:5412-5422. [DOI: 10.1021/acs.jpcb.9b02852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - David J. Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Nicholson DA, Sengupta A, Sung HL, Nesbitt DJ. Amino Acid Stabilization of Nucleic Acid Secondary Structure: Kinetic Insights from Single-Molecule Studies. J Phys Chem B 2018; 122:9869-9876. [PMID: 30289262 DOI: 10.1021/acs.jpcb.8b06872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amino acid and nucleic acid interactions are central in biology and may have played a role in the evolutionary development of protein-based life from an early "RNA Universe." To explore the possible role of single amino acids in promoting nucleic acid folding, single-molecule Förster resonance energy transfer experiments have been implemented with a DNA hairpin construct (7 nucleotide double strand with a 40A loop) as a simple model for secondary structure formation. Exposure to positively charged amino acids (arginine and lysine) is found to clearly stabilize the secondary structure. Kinetically, each amino acid promotes folding by generating a large increase in the folding rate with little change in the unfolding rate. From analysis as a function of temperature, arginine and lysine are found to significantly increase the overall exothermicity of folding while imposing only a small entropic penalty on the folding process. Detailed investigations into the kinetics and thermodynamics of this amino acid-induced folding stability reveal arginine and lysine to interact with nucleic acids in a manner reminiscent of monovalent cations. Specifically, these observations are interpreted in the context of an ion atmosphere surrounding the nucleic acid, in which amino acid salts stabilize folding qualitatively like small monovalent cations but also exhibit differences because of the composition of their side chains.
Collapse
Affiliation(s)
- David A Nicholson
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
| | - Abhigyan Sengupta
- Department of Bioengineering , University of California at Merced , Merced , California 95340 , United States
| | - Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
23
|
Abstract
The past decades have witnessed tremendous developments in our understanding of RNA biology. At the core of these advances have been studies aimed at discerning RNA structure and at understanding the forces that influence the RNA folding process. It is easy to take the present state of understanding for granted, but there is much to be learned by considering the path to our current understanding, which has been tortuous, with the birth and death of models, the adaptation of experimental tools originally developed for characterization of protein structure and catalysis, and the development of novel tools for probing RNA. In this review we tour the stages of RNA folding studies, considering them as "epochs" that can be generalized across scientific disciplines. These epochs span from the discovery of catalytic RNA, through biophysical insights into the putative primordial RNA World, to characterization of structured RNAs, the building and testing of models, and, finally, to the development of models with the potential to yield generalizable predictive and quantitative models for RNA conformational, thermodynamic, and kinetic behavior. We hope that this accounting will aid others as they navigate the many fascinating questions about RNA and its roles in biology, in the past, present, and future.
Collapse
Affiliation(s)
- Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford, California 94305
| | - Steve Bonilla
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Namita Bisaria
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| |
Collapse
|
24
|
Dupuis NF, Holmstrom ED, Nesbitt DJ. Tests of Kramers’ Theory at the Single-Molecule Level: Evidence for Folding of an Isolated RNA Tertiary Interaction at the Viscous Speed Limit. J Phys Chem B 2018; 122:8796-8804. [DOI: 10.1021/acs.jpcb.8b04014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas F. Dupuis
- JILA, University of Colorado and National Institute of Standards and Technology, Department of Chemistry and Biochemistry, and Department of Physics, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Erik D. Holmstrom
- JILA, University of Colorado and National Institute of Standards and Technology, Department of Chemistry and Biochemistry, and Department of Physics, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - David J. Nesbitt
- JILA, University of Colorado and National Institute of Standards and Technology, Department of Chemistry and Biochemistry, and Department of Physics, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
25
|
Vieweger M, Nesbitt DJ. Synergistic SHAPE/Single-Molecule Deconvolution of RNA Conformation under Physiological Conditions. Biophys J 2018; 114:1762-1775. [PMID: 29694857 PMCID: PMC5937115 DOI: 10.1016/j.bpj.2018.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 11/24/2022] Open
Abstract
Structural RNA domains are widely involved in the regulation of biological functions, such as gene expression, gene modification, and gene repair. Activity of these dynamic regions depends sensitively on the global fold of the RNA, in particular, on the binding affinity of individual conformations to effector molecules in solution. Consequently, both the 1) structure and 2) conformational dynamics of noncoding RNAs prove to be essential in understanding the coupling that results in biological function. Toward this end, we recently reported observation of three conformational states in the metal-induced folding pathway of the tRNA-like structure domain of Brome Mosaic Virus, via single-molecule fluorescence resonance energy transfer studies. We report herein selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE)-directed structure predictions as a function of metal ion concentrations ([Mn+]) to confirm the three-state folding model, as well as test 2° structure models from the literature. Specifically, SHAPE reactivity data mapped onto literature models agrees well with the secondary structures observed at 0-10 mM [Mg2+], with only minor discrepancies in the E hairpin domain at low [Mg2+]. SHAPE probing and SHAPE-directed structure predictions further confirm the stepwise unfolding pathway previously observed in our single-molecule studies. Of special relevance, this means that reduction in the metal-ion concentration unfolds the 3' pseudoknot interaction before unfolding the long-range stem interaction. This work highlights the synergistic power of combining 1) single-molecule Förster resonance energy transfer and 2) SHAPE-directed structure-probing studies for detailed analysis of multiple RNA conformational states. In particular, single-molecule guided deconvolution of the SHAPE reactivities permits 2° structure predictions of isolated RNA conformations, thereby substantially improving on traditional limitations associated with current structure prediction algorithms.
Collapse
Affiliation(s)
- Mario Vieweger
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - David J Nesbitt
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; Department of Physics, University of Colorado, Boulder, Colorado.
| |
Collapse
|
26
|
Hartmann A, Berndt F, Ollmann S, Krainer G, Schlierf M. In situ temperature monitoring in single-molecule FRET experiments. J Chem Phys 2018; 148:123330. [DOI: 10.1063/1.5008966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Andreas Hartmann
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Frederic Berndt
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Simon Ollmann
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Georg Krainer
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Michael Schlierf
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| |
Collapse
|
27
|
Bonilla S, Limouse C, Bisaria N, Gebala M, Mabuchi H, Herschlag D. Single-Molecule Fluorescence Reveals Commonalities and Distinctions among Natural and in Vitro-Selected RNA Tertiary Motifs in a Multistep Folding Pathway. J Am Chem Soc 2017; 139:18576-18589. [PMID: 29185740 PMCID: PMC5748328 DOI: 10.1021/jacs.7b08870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Decades
of study of the RNA folding problem have revealed that
diverse and complex structured RNAs are built from a common set of
recurring structural motifs, leading to the perspective that a generalizable
model of RNA folding may be developed from understanding of the folding
properties of individual structural motifs. We used single-molecule
fluorescence to dissect the kinetic and thermodynamic properties of
a set of variants of a common tertiary structural motif, the tetraloop/tetraloop-receptor
(TL/TLR). Our results revealed a multistep TL/TLR folding pathway
in which preorganization of the ubiquitous AA-platform submotif precedes
the formation of the docking transition state and tertiary A-minor
hydrogen bond interactions form after the docking transition state.
Differences in ion dependences between TL/TLR variants indicated the
occurrence of sequence-dependent conformational rearrangements prior
to and after the formation of the docking transition state. Nevertheless,
varying the junction connecting the TL/TLR produced a common kinetic
and ionic effect for all variants, suggesting that the global conformational
search and compaction electrostatics are energetically independent
from the formation of the tertiary motif contacts. We also found that in vitro-selected variants, despite their similar stability
at high Mg2+ concentrations, are considerably less stable
than natural variants under near-physiological ionic conditions, and
the occurrence of the TL/TLR sequence variants in Nature correlates
with their thermodynamic stability in isolation. Overall, our findings
are consistent with modular but complex energetic properties of RNA
structural motifs and will aid in the eventual quantitative description
of RNA folding from its secondary and tertiary structural elements.
Collapse
Affiliation(s)
- Steve Bonilla
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Charles Limouse
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Namita Bisaria
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Magdalena Gebala
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Hideo Mabuchi
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Daniel Herschlag
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
28
|
Holmstrom ED, Nesbitt DJ. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer. Annu Rev Phys Chem 2017; 67:441-65. [PMID: 27215819 DOI: 10.1146/annurev-physchem-040215-112544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.
Collapse
Affiliation(s)
- Erik D Holmstrom
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| |
Collapse
|
29
|
White NA, Hoogstraten CG. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme. Biophys Chem 2017; 228:62-68. [PMID: 28710920 PMCID: PMC5572644 DOI: 10.1016/j.bpc.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 11/15/2022]
Abstract
The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
30
|
Cunha RA, Bussi G. Unraveling Mg 2+-RNA binding with atomistic molecular dynamics. RNA (NEW YORK, N.Y.) 2017; 23:628-638. [PMID: 28148825 PMCID: PMC5393174 DOI: 10.1261/rna.060079.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/26/2016] [Indexed: 05/09/2023]
Abstract
Interaction with divalent cations is of paramount importance for RNA structural stability and function. We report here a detailed molecular dynamics study of all the possible binding sites for Mg2+ on an RNA duplex, including both direct (inner sphere) and indirect (outer sphere) binding. In order to tackle sampling issues, we develop a modified version of bias-exchange metadynamics, which allows us to simultaneously compute affinities with previously unreported statistical accuracy. Results correctly reproduce trends observed in crystallographic databases. Based on this, we simulate a carefully chosen set of models that allows us to quantify the effects of competition with monovalent cations, RNA flexibility, and RNA hybridization. Our simulations reproduce the decrease and increase of Mg2+ affinity due to ion competition and hybridization, respectively, and predict that RNA flexibility has a site-dependent effect. This suggests a nontrivial interplay between RNA conformational entropy and divalent cation binding.
Collapse
Affiliation(s)
- Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati-SISSA, 34136, Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati-SISSA, 34136, Trieste, Italy
| |
Collapse
|
31
|
Sengupta A, Sung HL, Nesbitt DJ. Amino Acid Specific Effects on RNA Tertiary Interactions: Single-Molecule Kinetic and Thermodynamic Studies. J Phys Chem B 2016; 120:10615-10627. [PMID: 27718572 DOI: 10.1021/acs.jpcb.6b05840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In light of the current models for an early RNA-based universe, the potential influence of simple amino acids on tertiary folding of ribozymal RNA into biochemically competent structures is speculated to be of significant evolutionary importance. In the present work, the folding-unfolding kinetics of a ubiquitous tertiary interaction motif, the GAAA tetraloop-tetraloop receptor (TL-TLR), is investigated by single-molecule fluorescence resonance energy transfer spectroscopy in the presence of natural amino acids both with (e.g., lysine, arginine) and without (e.g., glycine) protonated side chain residues. By way of control, we also investigate the effects of a special amino acid (e.g., proline) and amino acid mimetic (e.g., betaine) that contain secondary or quaternary amine groups rather than a primary amine group. This combination permits systematic study of amino acid induced (or amino acid like) RNA folding dynamics as a function of side chain complexity, pKa, charge state, and amine group content. Most importantly, each of the naturally occurring amino acids is found to destabilize the TL-TLR tertiary folding equilibrium, the kinetic origin of which is dominated by a decrease in the folding rate constant (kdock), also affected by a strongly amino acid selective increase in the unfolding rate constant (kundock). To further elucidate the underlying thermodynamics, single-molecule equilibrium constants (Keq) for TL-TLR folding have been probed as a function of temperature, which reveal an amino acid dependent decrease in both overall exothermicity (ΔΔH° > 0) and entropic cost (-TΔΔS° < 0) for the overall folding process. Temperature-dependent studies on the folding/unfolding kinetic rate constants reveal analogous amino acid specific changes in both enthalpy (ΔΔH⧧) and entropy (ΔΔS⧧) for accessing the transition state barrier. The maximum destabilization of the TL-TLR tertiary interaction is observed for arginine, which is consistent with early studies of arginine and guanidine ion-inhibited self-splicing kinetics for the full Tetrahymena ribozyme [ Yarus , M. ; Christian , E. L. Nature 1989 , 342 , 349 - 350 ; Yarus , M. Science 1988 , 240 , 1751 - 1758 ].
Collapse
Affiliation(s)
- Abhigyan Sengupta
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway. Proc Natl Acad Sci U S A 2016; 113:E4956-65. [PMID: 27493222 DOI: 10.1073/pnas.1525082113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations.
Collapse
|
33
|
Vieweger M, Holmstrom ED, Nesbitt DJ. Single-Molecule FRET Reveals Three Conformations for the TLS Domain of Brome Mosaic Virus Genome. Biophys J 2015; 109:2625-2636. [PMID: 26682819 PMCID: PMC4699858 DOI: 10.1016/j.bpj.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
Metabolite-dependent conformational switching in RNA riboswitches is now widely accepted as a critical regulatory mechanism for gene expression in bacterial systems. More recently, similar gene regulation mechanisms have been found to be important for viral systems as well. One of the most abundant and best-studied systems is the tRNA-like structure (TLS) domain, which has been found to occur in many plant viruses spread across numerous genera. In this work, folding dynamics for the TLS domain of Brome Mosaic Virus have been investigated using single-molecule fluorescence resonance energy transfer techniques. In particular, burst fluorescence methods are exploited to observe metal-ion ([M(n+)])-induced folding in freely diffusing RNA constructs resembling the minimal TLS element of brome mosaic virus RNA3. The results of these experiments reveal a complex equilibrium of at least three distinct populations. A stepwise, or consecutive, thermodynamic model for TLS folding is developed, which is in good agreement with the [M(n+)]-dependent evolution of conformational populations and existing structural information in the literature. Specifically, this folding pathway explains the metal-ion dependent formation of a functional TLS domain from unfolded RNAs via two consecutive steps: 1) hybridization of a long-range stem interaction, followed by 2) formation of a 3'-terminal pseudoknot. These two conformational transitions are well described by stepwise dissociation constants for [Mg(2+)] (K1 = 328 ± 30 μM and K2 = 1092 ± 183 μM) and [Na(+)] (K1 = 74 ± 6 mM and K2 = 243 ± 52 mM)-induced folding. The proposed thermodynamic model is further supported by inhibition studies of the long-range stem interaction using a complementary DNA oligomer, which effectively shifts the dynamic equilibrium toward the unfolded conformation. Implications of this multistep conformational folding mechanism are discussed with regard to regulation of virus replication.
Collapse
Affiliation(s)
- Mario Vieweger
- Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Erik D Holmstrom
- Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - David J Nesbitt
- Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
34
|
Mustoe AM, Al-Hashimi HM, Brooks CL. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme. Nucleic Acids Res 2015; 44:402-12. [PMID: 26481360 PMCID: PMC4705646 DOI: 10.1093/nar/gkv1055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/03/2015] [Indexed: 12/20/2022] Open
Abstract
A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles L Brooks
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Herschlag D, Allred BE, Gowrishankar S. From static to dynamic: the need for structural ensembles and a predictive model of RNA folding and function. Curr Opin Struct Biol 2015; 30:125-133. [PMID: 25744941 DOI: 10.1016/j.sbi.2015.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
To understand RNA, it is necessary to move beyond a descriptive categorization towards quantitative predictions of its molecular conformations and functional behavior. An incisive approach to understanding the function and folding of biological RNA systems involves characterizing small, simple components that are largely responsible for the behavior of complex systems including helix-junction-helix elements and tertiary motifs. State-of-the-art methods have permitted unprecedented insight into the conformational ensembles of these elements revealing, for example, that conformations of helix-junction-helix elements are confined to a small region of the ensemble, that this region is highly dependent on the junction's topology, and that the correct alignment of tertiary motifs may be a rare conformation on the overall folding landscape. Further characterization of RNA components and continued development of experimental and computational methods with the goal of quantitatively predicting RNA folding and functional behavior will be critical to understanding biological RNA systems.
Collapse
Affiliation(s)
- Daniel Herschlag
- Department of Biochemistry, Beckman Center, B400, 279 W. Campus Dr. MC: 5307, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, 333 Campus Drive, Mudd Building, Room 121, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, 443 Via Ortega, Room 129, Stanford University, Stanford, CA 94305, USA.
| | - Benjamin E Allred
- Department of Biochemistry, Beckman Center, B400, 279 W. Campus Dr. MC: 5307, Stanford University, Stanford, CA 94305, USA
| | - Seshadri Gowrishankar
- Department of Chemical Engineering, 443 Via Ortega, Room 129, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Holmstrom ED, Dupuis NF, Nesbitt DJ. Kinetic and thermodynamic origins of osmolyte-influenced nucleic acid folding. J Phys Chem B 2015; 119:3687-96. [PMID: 25621404 DOI: 10.1021/jp512491n] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The influential role of monovalent and divalent metal cations in facilitating conformational transitions in both RNA and DNA has been a target of intense biophysical research efforts. However, organic neutrally charged cosolutes can also significantly alter nucleic acid conformational transitions. For example, highly soluble small molecules such as trimethylamine N-oxide (TMAO) and urea are occasionally utilized by organisms to regulate cellular osmotic pressure. Ensemble studies have revealed that these so-called osmolytes can substantially influence the thermodynamics of nucleic acid conformational transitions. In the present work, we exploit single-molecule FRET (smFRET) techniques to measure, for first time, the kinetic origins of these osmolyte-induced changes to the folding free energy. In particular, we focus on smFRET RNA and DNA constructs designed as model systems for secondary and tertiary structure formation. These findings reveal that TMAO preferentially stabilizes both secondary and tertiary interactions by increasing kfold and decreasing kunfold, whereas urea destabilizes both conformational transitions, resulting in the exact opposite shift in kinetic rate constants (i.e., decreasing kfold and increasing kunfold). Complementary temperature-dependent smFRET experiments highlight a thermodynamic distinction between the two different mechanisms responsible for TMAO-facilitated conformational transitions, while only a single mechanism is seen for the destabilizing osmolyte urea. Finally, these results are interpreted in the context of preferential interactions between osmolytes, and the solvent accessible surface area (SASA) associated with the (i) nucleobase, (ii) sugar, and (iii) phosphate groups of nucleic acids in order to map out structural changes that occur during the conformational transitions.
Collapse
Affiliation(s)
- Erik D Holmstrom
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0440, United States
| | | | | |
Collapse
|
37
|
Sloane JL, Greenberg MM. Interstrand cross-link and bioconjugate formation in RNA from a modified nucleotide. J Org Chem 2014; 79:9792-8. [PMID: 25295850 PMCID: PMC4201359 DOI: 10.1021/jo501982r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
RNA
oligonucleotides containing a phenyl selenide derivative of
5-methyluridine were chemically synthesized by solid-phase synthesis.
The phenyl selenide is rapidly converted to an electrophilic, allylic
phenyl seleneate under mild oxidative conditions. The phenyl seleneate
yields interstrand cross-links when part of a duplex and is useful
for synthesizing oligonucleotide conjugates. Formation of the latter
is illustrated by reaction of an oligonucleotide containing the phenyl
selenide with amino acids in the presence of mild oxidant. The products
formed are analogous to those observed in tRNA that are believed to
be formed posttranslationally via a biosynthetic intermediate that
is chemically homologous to the phenyl seleneate.
Collapse
Affiliation(s)
- Jack L Sloane
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
38
|
Pulsed IR heating studies of single-molecule DNA duplex dissociation kinetics and thermodynamics. Biophys J 2014; 106:220-31. [PMID: 24411254 DOI: 10.1016/j.bpj.2013.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/19/2013] [Accepted: 11/04/2013] [Indexed: 01/10/2023] Open
Abstract
Single-molecule fluorescence spectroscopy is a powerful technique that makes it possible to observe the conformational dynamics associated with biomolecular processes. The addition of precise temperature control to these experiments can yield valuable thermodynamic information about equilibrium and kinetic rate constants. To accomplish this, we have developed a microscopy technique based on infrared laser overtone/combination band absorption to heat small (≈10(-11) liter) volumes of water. Detailed experimental characterization of this technique reveals three major advantages over conventional stage heating methods: 1), a larger range of steady-state temperatures (20-100°C); 2), substantially superior spatial (≤20 μm) control; and 3), substantially superior temporal (≈1 ms) control. The flexibility and breadth of this spatial and temporally resolved laser-heating approach is demonstrated in single-molecule fluorescence assays designed to probe the dissociation of a 21 bp DNA duplex. These studies are used to support a kinetic model based on nucleic acid end fraying that describes dissociation for both short (<10 bp) and long (>10 bp) DNA duplexes. These measurements have been extended to explore temperature-dependent kinetics for the 21 bp construct, which permit determination of single-molecule activation enthalpies and entropies for DNA duplex dissociation.
Collapse
|
39
|
Sengupta A, Gavvala K, Koninti RK, Hazra P. Role of Mg²⁺ ions in flavin recognition by RNA aptamer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:240-8. [PMID: 25173759 DOI: 10.1016/j.jphotobiol.2014.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/24/2014] [Accepted: 08/10/2014] [Indexed: 11/17/2022]
Abstract
The role of Mg(2+) ion in flavin (flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)) recognition by RNA aptamer has been explored through steady state and time-resolved fluorescence, circular dichroism (CD), thermal melting (TM) and isothermal titration calorimetry (ITC) studies. A strong quenching of flavin emission is detected due to stacking interaction with the nucleobases in the mismatched region of aptamer, and it enhances manifold with increasing Mg(2+) concentrations. A comparatively lower binding affinity toward FAD compared to FMN is attributed to the presence of intramolecular 'stack' conformer of FAD, which cannot participate in the intermolecular stacking interactions with the nucleobases. CD and TM studies predict that flavin detection causes structural reformation of RNA aptamer. ITC results indicate that flavin detection is thermodynamically feasible and highly enthalpy driven.
Collapse
Affiliation(s)
- Abhigyan Sengupta
- Department of Chemistry, Mendeleev Block, Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, Maharashtra, India
| | - Krishna Gavvala
- Department of Chemistry, Mendeleev Block, Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, Maharashtra, India
| | - Raj Kumar Koninti
- Department of Chemistry, Mendeleev Block, Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, Maharashtra, India
| | - Partha Hazra
- Department of Chemistry, Mendeleev Block, Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, Maharashtra, India.
| |
Collapse
|
40
|
Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proc Natl Acad Sci U S A 2014; 111:8464-9. [PMID: 24850865 DOI: 10.1073/pnas.1316039111] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of "molecular crowding" on elementary biochemical processes due to high solute concentrations are poorly understood and yet clearly essential to the folding of nucleic acids and proteins into correct, native structures. The present work presents, to our knowledge, first results on the single-molecule kinetics of solute molecular crowding, specifically focusing on GAAA tetraloop-receptor folding to isolate a single RNA tertiary interaction using time-correlated single-photon counting and confocal single-molecule FRET microscopy. The impact of crowding by high-molecular-weight polyethylene glycol on the RNA folding thermodynamics is dramatic, with up to ΔΔG° ∼ -2.5 kcal/mol changes in free energy and thus >60-fold increase in the folding equilibrium constant (Keq) for excluded volume fractions of 15%. Most importantly, time-correlated single-molecule methods permit crowding effects on the kinetics of RNA folding/unfolding to be explored for the first time (to our knowledge), which reveal that this large jump in Keq is dominated by a 35-fold increase in tetraloop-receptor folding rate, with only a modest decrease in the corresponding unfolding rate. This is further explored with temperature-dependent single-molecule RNA folding measurements, which identify that crowding effects are dominated by entropic rather than enthalpic contributions to the overall free energy change. Finally, a simple "hard-sphere" treatment of the solute excluded volume is invoked to model the observed kinetic trends, and which predict ΔΔG° ∼ -5 kcal/mol free-energy stabilization at excluded volume fractions of 30%.
Collapse
|
41
|
Holmstrom ED, Nesbitt DJ. Single-molecule fluorescence resonance energy transfer studies of the human telomerase RNA pseudoknot: temperature-/urea-dependent folding kinetics and thermodynamics. J Phys Chem B 2014; 118:3853-63. [PMID: 24617561 PMCID: PMC4030807 DOI: 10.1021/jp501893c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Indexed: 02/06/2023]
Abstract
The ribonucleoprotein telomerase is an RNA-dependent DNA polymerase that catalyzes the repetitive addition of a short, species-specific, DNA sequence to the ends of linear eukaryotic chromosomes. The single RNA component of telomerase contains both the template sequence for DNA synthesis and a functionally critical pseudoknot motif, which can also exist as a less stable hairpin. Here we use a minimal version of the human telomerase RNA pseudoknot to study this hairpin-pseudoknot structural equilibrium using temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) experiments. The urea dependence of these experiments aids in determination of the folding kinetics and thermodynamics. The wild-type pseudoknot behavior is compared and contrasted to a mutant pseudoknot sequence implicated in a genetic disorder-dyskeratosis congenita. These findings clearly identify that this 2nt noncomplementary mutation destabilizes the folding of the wild-type pseudoknot by substantially reducing the folding rate constant (≈ 400-fold) while only nominally increasing the unfolding rate constant (≈ 5-fold). Furthermore, the urea dependence of the equilibrium and rate constants is used to develop a free energy landscape for this unimolecular equilibrium and propose details about the structure of the transition state. Finally, the urea-dependent folding experiments provide valuable physical insights into the mechanism for destabilization of RNA pseudoknots by such chemical denaturants.
Collapse
Affiliation(s)
- Erik D. Holmstrom
- JILA, University of Colorado and National
Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - David J. Nesbitt
- JILA, University of Colorado and National
Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
42
|
Dupuis NF, Holmstrom ED, Nesbitt DJ. Single-molecule kinetics reveal cation-promoted DNA duplex formation through ordering of single-stranded helices. Biophys J 2014; 105:756-66. [PMID: 23931323 DOI: 10.1016/j.bpj.2013.05.061] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023] Open
Abstract
In this work, the kinetics of short, fully complementary oligonucleotides are investigated at the single-molecule level. Constructs 6-9 bp in length exhibit single exponential kinetics over 2 orders of magnitude time for both forward (kon, association) and reverse (koff, dissociation) processes. Bimolecular rate constants for association are weakly sensitive to the number of basepairs in the duplex, with a 2.5-fold increase between 9 bp (k'on = 2.1(1) × 10(6) M(-1) s(-1)) and 6 bp (k'on = 5.0(1) × 10(6) M(-1) s(-1)) sequences. In sharp contrast, however, dissociation rate constants prove to be exponentially sensitive to sequence length, varying by nearly 600-fold over the same 9 bp (koff = 0.024 s(-1)) to 6 bp (koff = 14 s(-1)) range. The 8 bp sequence is explored in more detail, and the NaCl dependence of kon and koff is measured. Interestingly, kon increases by >40-fold (kon = 0.10(1) s(-1) to 4.0(4) s(-1) between [NaCl] = 25 mM and 1 M), whereas in contrast, koff decreases by fourfold (0.72(3) s(-1) to 0.17(7) s(-1)) over the same range of conditions. Thus, the equilibrium constant (Keq) increases by ≈160, largely due to changes in the association rate, kon. Finally, temperature-dependent measurements reveal that increased [NaCl] reduces the overall exothermicity (ΔΔH° > 0) of duplex formation, albeit by an amount smaller than the reduction in entropic penalty (-TΔΔS° < 0). This reduced entropic cost is attributed to a cation-facilitated preordering of the two single-stranded species, which lowers the association free-energy barrier and in turn accelerates the rate of duplex formation.
Collapse
|
43
|
He Z, Zhu Y, Chen SJ. Exploring the electrostatic energy landscape for tetraloop-receptor docking. Phys Chem Chem Phys 2013; 16:6367-75. [PMID: 24322001 DOI: 10.1039/c3cp53655f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has long been appreciated that Mg(2+) is essential for the stabilization of RNA tertiary structure. However, the problem of quantitative prediction for the ion effect in tertiary structure folding remains. By using the virtual bond RNA folding model (Vfold) to generate RNA conformations and the newly improved tightly bound ion model (TBI) to treat ion-RNA interactions, we investigate Mg(2+)-facilitated tetraloop-receptor docking. For the specific construct of the tetraloop-receptor system, the theoretical analysis shows that the Mg(2+)-induced stabilizing force for the docked state is predominantly entropic and the major contribution comes from the entropy of the diffusive ions. Furthermore, our results show that Mg(2+) ions promote tetraloop-receptor docking mainly through the entropy of the diffusive ions. The theoretical prediction agrees with experimental analysis. The method developed in this paper, which combines the theory for the (Mg(2+)) ion effects in RNA folding and RNA conformational sampling, may provide a useful framework for studying the ion effect in the folding of more complex RNA structures.
Collapse
Affiliation(s)
- Zhaojian He
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
44
|
Espah Borujeni A, Channarasappa AS, Salis HM. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 2013; 42:2646-59. [PMID: 24234441 PMCID: PMC3936740 DOI: 10.1093/nar/gkt1139] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ribosome's interactions with mRNA govern its translation rate and the effects of post-transcriptional regulation. Long, structured 5' untranslated regions (5' UTRs) are commonly found in bacterial mRNAs, though the physical mechanisms that determine how the ribosome binds these upstream regions remain poorly defined. Here, we systematically investigate the ribosome's interactions with structured standby sites, upstream of Shine-Dalgarno sequences, and show that these interactions can modulate translation initiation rates by over 100-fold. We find that an mRNA's translation initiation rate is controlled by the amount of single-stranded surface area, the partial unfolding of RNA structures to minimize the ribosome's binding free energy penalty, the absence of cooperative binding and the potential for ribosomal sliding. We develop a biophysical model employing thermodynamic first principles and a four-parameter free energy model to accurately predict the ribosome's translation initiation rates for 136 synthetic 5' UTRs with large structures, diverse shapes and multiple standby site modules. The model predicts and experiments confirm that the ribosome can readily bind distant standby site modules that support high translation rates, providing a physical mechanism for observed context effects and long-range post-transcriptional regulation.
Collapse
Affiliation(s)
- Amin Espah Borujeni
- Department of Chemical Engineering, Penn State University, University Park, PA 16802, USA and Department of Agricultural and Biological Engineering, Penn State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
45
|
Abstract
Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops (N=any nucleotide, R=purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding.
Collapse
|
46
|
Ilgu M, Wang T, Lamm MH, Nilsen-Hamilton M. Investigating the malleability of RNA aptamers. Methods 2013; 63:178-87. [PMID: 23535583 DOI: 10.1016/j.ymeth.2013.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022] Open
Abstract
Aptamers are short, single-stranded nucleic acids with structures that frequently change upon ligand binding and are sensitive to the ionic environment. To achieve facile application of aptamers in controlling cellular activities, a better understanding is needed of aptamer ligand binding parameters, structures, intramolecular mobilities and how these structures adapt to different ionic environments with consequent effects on their ligand binding characteristics. Here we discuss the integration of biochemical analysis with NMR spectroscopy and computational modeling to explore the relation between ligand binding and structural malleability of some well-studied aptamers. Several methods for determining aptamer binding affinity and specificity are discussed, including isothermal titration calorimetry, steady state fluorescence of 2-aminopurine substituted aptamers, and dye displacement assays. Also considered are aspects of molecular dynamics simulations specific to aptamers including adding ions and simulating aptamer structure in the absence of ligand when NMR spectroscopy or X-ray crystallography structures of the unoccupied aptamer are not available. We focus specifically on RNA aptamers that bind small molecule ligands as would be applied in sensors or integrated into riboswitches such as to measure the products of metabolic activity.
Collapse
Affiliation(s)
- Muslum Ilgu
- Ames Laboratory, US DOE, Ames, IA, USA; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Ames, IA, USA
| | | | | | | |
Collapse
|
47
|
Gu X, Nguyen MT, Overacre A, Seaton S, Schroeder SJ. Effects of salt, polyethylene glycol, and locked nucleic acids on the thermodynamic stabilities of consecutive terminal adenosine mismatches in RNA duplexes. J Phys Chem B 2013; 117:3531-40. [PMID: 23480443 DOI: 10.1021/jp312154d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Consecutive terminal mismatches add thermodynamic stability to RNA duplexes and occur frequently in microRNA-mRNA interactions. Accurate thermodynamic stabilities of consecutive terminal mismatches contribute to the development of specific, high-affinity siRNA therapeutics. Consecutive terminal adenosine mismatches (TAMS) are studied at different salt concentrations, with polyethylene glycol cosolutes, and with locked nucleic acid (LNA) substitutions. These measurements provide benchmarks for the application of thermodynamic predictions to different physiological or therapeutic conditions. The salt dependence for RNA duplex stability is similar for TAMS, internal loops, and Watson-Crick duplexes. A unified model for predicting the free energy of an RNA duplex with or without loops and mismatches at lower sodium concentrations is presented. The destabilizing effects of PEG 200 are larger for TAMS than internal loops or Watson-Crick duplexes, which may result from different base stacking conformations, dynamics, and water hydration. In contrast, LNA substitutions stabilize internal loops much more than TAMS. Surprisingly, the average per adenosine increase in stability for LNA substitutions in internal loops is -1.82 kcal/mol and only -0.20 kcal/mol for TAMS. The stabilities of TAMS and internal loops with LNA substitutions have similar favorable free energies. Thus, the unfavorable free energy of adenosine internal loops is largely an entropic effect. The favorable stabilities of TAMS result mainly from base stacking. The ability of RNA duplexes to form extended terminal mismatches in the absence of proteins such as argonaute and identifying the enthalpic contributions to terminal mismatch stabilities provide insight into the physical basis of microRNA-mRNA molecular recognition and specificity.
Collapse
Affiliation(s)
- Xiaobo Gu
- Department of Chemistry and Biochemistry, Department of Microbiology and Plant Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, USA
| | | | | | | | | |
Collapse
|
48
|
Pabit SA, Sutton JL, Chen H, Pollack L. Role of ion valence in the submillisecond collapse and folding of a small RNA domain. Biochemistry 2013; 52:1539-46. [PMID: 23398396 DOI: 10.1021/bi3016636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Following the addition of ions to trigger folding, RNA molecules undergo a transition from rigid, extended states to a compact ensemble. Determining the time scale for this collapse provides important insights into electrostatic contributions to RNA folding; however, it can be challenging to isolate the effects of purely nonspecific collapse, e.g., relaxation due to backbone charge compensation, from the concurrent formation of some tertiary contacts. To solve this problem, we decoupled nonspecific collapse from tertiary folding using a single-point mutation to eliminate tertiary contacts in the small RNA subdomain known as tP5abc. Microfluidic mixing with microsecond time resolution and Förster resonance energy transfer detection provides insight into the ionic strength-dependent transition from extended to compact ensembles. Differences in reaction rates are detected when folding is initiated by monovalent or divalent ions, consistent with equilibrium measurements illustrating the enhanced screening of divalent ions relative to monovalent ions at the same ionic strength. Ion-driven collapse is fast, and a comparison of the collapse time of the wild-type and mutant tP5abc suggests that site binding of Mg(2+) occurs on submillisecond time scales.
Collapse
Affiliation(s)
- Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
49
|
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics. J Mol Biol 2012; 423:198-216. [PMID: 22796627 DOI: 10.1016/j.jmb.2012.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 01/29/2023]
Abstract
For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (k(dock)) and undocking (k(undock)) are obtained as a function of cation concentration, size, and valence, specifically for the series Na(+), K(+), Mg(2+), Ca(2+), Co(NH(3))(6)(3+), and spermidine(3+). Increasing cation concentration acceleratesk(dock)dramatically but achieves only a slight decrease in k(undock). These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine(3+), whose weaker influence on the docking equilibria with respect to Co(NH(3))(6)(3+) can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups.
Collapse
|
50
|
Bowman JC, Lenz TK, Hud NV, Williams LD. Cations in charge: magnesium ions in RNA folding and catalysis. Curr Opin Struct Biol 2012; 22:262-72. [PMID: 22595008 DOI: 10.1016/j.sbi.2012.04.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Jessica C Bowman
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Center for Ribosomal Origins and Evolution, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
| | | | | | | |
Collapse
|