1
|
Sugawara N, Towne MJ, Lovett ST, Haber JE. Spontaneous and double-strand break repair-associated quasipalindrome and frameshift mutagenesis in budding yeast: role of mismatch repair. Genetics 2024; 227:iyae068. [PMID: 38691577 DOI: 10.1093/genetics/iyae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/09/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Although gene conversion (GC) in Saccharomyces cerevisiae is the most error-free way to repair double-strand breaks (DSBs), the mutation rate during homologous recombination is 1,000 times greater than during replication. Many mutations involve dissociating a partially copied strand from its repair template and re-aligning with the same or another template, leading to -1 frameshifts in homonucleotide runs, quasipalindrome (QP)-associated mutations and microhomology-mediated interchromosomal template switches. We studied GC induced by HO endonuclease cleavage at MATα, repaired by an HMR::KI-URA3 donor. We inserted into HMR::KI-URA3 an 18-bp inverted repeat where one arm had a 4-bp insertion. Most GCs yield MAT::KI-ura3::QP + 4 (Ura-) outcomes, but template-switching produces Ura+ colonies, losing the 4-bp insertion. If the QP arm without the insertion is first encountered by repair DNA polymerase and is then (mis)used as a template, the palindrome is perfected. When the QP + 4 arm is encountered first, Ura+ derivatives only occur after second-end capture and second-strand synthesis. QP + 4 mutations are suppressed by mismatch repair (MMR) proteins Msh2, Msh3, and Mlh1, but not Msh6. Deleting Rdh54 significantly reduces QP mutations only when events creating Ura+ occur in the context of a D-loop but not during second-strand synthesis. A similar bias is found with a proofreading-defective DNA polymerase mutation (poI3-01). DSB-induced mutations differed in several genetic requirements from spontaneous events. We also created a + 1 frameshift in the donor, expanding a run of 4 Cs to 5 Cs. Again, Ura+ recombinants markedly increased by disabling MMR, suggesting that MMR acts during GC but favors the unbroken, template strand.
Collapse
Affiliation(s)
- Neal Sugawara
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA 02454-9110, USA
| | - Mason J Towne
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA 02454-9110, USA
| | - Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA 02454-9110, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
2
|
Terefe EM, Ghosh A. Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Phytochemicals Isolated From Croton dichogamus Against the HIV-1 Reverse Transcriptase. Bioinform Biol Insights 2022; 16:11779322221125605. [PMID: 36185760 PMCID: PMC9516429 DOI: 10.1177/11779322221125605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The human immunodeficiency virus (HIV) infection and the associated acquired immune deficiency syndrome (AIDS) remain global challenges even after decades of successful treatment, with eastern and southern Africa still bearing the highest burden of disease. Following a thorough computational study, we report top 10 phytochemicals isolated from Croton dichogamus as potent reverse transcriptase inhibitors. The pentacyclic triterpenoid, aleuritolic acid (L12) has displayed best docking pose with binding energy of -8.48 kcal/mol and Ki of 0.61 μM making it superior in binding efficiency when compared to all docked compounds including the FDA-approved drugs. Other phytochemicals such as crotoxide A, crothalimene A, crotodichogamoin B and crotonolide E have also displayed strong binding energies. These compounds could further be investigated as potential antiretroviral medication.
Collapse
Affiliation(s)
- Ermias Mergia Terefe
- Department of Pharmacology and Pharmacognosy, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| |
Collapse
|
3
|
Yaramada L, Singh S, Ge Z, Shin J, Mashiach D, Miller JH. The antiretroviral agents azidothymidine, stavudine, and didanosine have the identical mutational fingerprint in the rpoB region of Escherichia coli. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:329-335. [PMID: 36066544 DOI: 10.1002/em.22507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
We looked at the mutational fingerprints of three antiretroviral (anti-HIV) agents, azidothymidine (AZT), stavudine (STAV), and didanosine (DIDA) in the rpoB system of Escherichia coli and compared them with each other and with the fingerprints of trimethoprim and of spontaneous mutations in a wild-type and a mutT background. All three agents gave virtually identical fingerprints in the wild-type background, causing only A:T→C:G changes at 3 of the 12 A:T→C:G possible sites among the total of 92 possible base substitution mutations, even though AZT and STAV are thymidine analogs but DIDA is an adenosine analog. As all three agents are reverse transcriptase inhibitors, and act as chain blockers, the common fingerprint may be a property of chain blocking agents.
Collapse
Affiliation(s)
- Lekha Yaramada
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Sunjum Singh
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Zoe Ge
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Jeana Shin
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Daniel Mashiach
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
4
|
Hadj Hassine I, Ben M’hadheb M, Menéndez-Arias L. Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses 2022; 14:841. [PMID: 35458571 PMCID: PMC9024455 DOI: 10.3390/v14040841] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
In RNA viruses, a small increase in their mutation rates can be sufficient to exceed their threshold of viability. Lethal mutagenesis is a therapeutic strategy based on the use of mutagens, driving viral populations to extinction. Extinction catastrophe can be experimentally induced by promutagenic nucleosides in cell culture models. The loss of HIV infectivity has been observed after passage in 5-hydroxydeoxycytidine or 5,6-dihydro-5-aza-2'-deoxycytidine while producing a two-fold increase in the viral mutation frequency. Among approved nucleoside analogs, experiments with polioviruses and other RNA viruses suggested that ribavirin can be mutagenic, although its mechanism of action is not clear. Favipiravir and molnupiravir exert an antiviral effect through lethal mutagenesis. Both drugs are broad-spectrum antiviral agents active against RNA viruses. Favipiravir incorporates into viral RNA, affecting the G→A and C→U transition rates. Molnupiravir (a prodrug of β-d-N4-hydroxycytidine) has been recently approved for the treatment of SARS-CoV-2 infection. Its triphosphate derivative can be incorporated into viral RNA and extended by the coronavirus RNA polymerase. Incorrect base pairing and inefficient extension by the polymerase promote mutagenesis by increasing the G→A and C→U transition frequencies. Despite having remarkable antiviral action and resilience to drug resistance, carcinogenic risks and genotoxicity are important concerns limiting their extended use in antiviral therapy.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
5
|
Mashiach D, Bacasen EM, Singh S, Kao T, Yaramada L, Mishail D, Singh S, Miller JH. Enhanced characterization of the thyA system for mutational analysis in Escherichia coli: Defining mutationally "hot" regions of the gene. Mutat Res 2021; 823:111754. [PMID: 34091127 DOI: 10.1016/j.mrfmmm.2021.111754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022]
Abstract
We have extensively characterized base substitution mutations in the 795 base pair (bp) long E. coli thyA gene to define as many of the base substitution mutational sites that inactivate the gene as possible. The resulting catalog of mutational sites constitutes a system with up to 5 times as many sites for monitoring each of the six base substitution mutations as the widely used rpoB/Rifr system. We have defined 75 sites for the G:C -> A:T transition, 68 sites for the G:C -> T:A transversion, 53 sites for the G:C -> C:G transversion, 49 sites for the A:T -> G:C transition, 39 sites for the A:T -> T:A transversion, and 59 sites for the A:T -> C:G transversion. The system is thus comprised of 343 base substitution mutations at 232 different base pairs, all of which can be sequenced with a single primer pair. This allows for the examination of mutational spectra using a more detailed probe of known mutations, while still allowing one to compare the number of repeated occurrences at specific sites. We have examined several mutagens and mutators with this system, and show its utility by looking at the spectrum of cisplatin, that has a single hotspot, underscoring the value of having as large an array of sites as possible at which one can monitor repeat occurrences. To test for regions of the gene that might be hotspots for a number of mutagens, or "hot" (mutaphilic) regions, we have looked at the ratio of mutations per set of an equal number of mutational sites throughout the gene. The resulting graphs suggest that there are "hot" regions at intervals, and this may reflect aspects of secondary structures, of the higher order structure of the chromosome, or perhaps the nucleoid structure of the chromosome plus histone-like protein complexes.
Collapse
Affiliation(s)
- Daniel Mashiach
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Erin Mae Bacasen
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Sunjum Singh
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Timothy Kao
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Lekha Yaramada
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Daniel Mishail
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Summer Singh
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States.
| |
Collapse
|
6
|
Klaric JA, Glass DJ, Perr EL, Reuven AD, Towne MJ, Lovett ST. DNA damage-signaling, homologous recombination and genetic mutation induced by 5-azacytidine and DNA-protein crosslinks in Escherichia coli. Mutat Res 2021; 822:111742. [PMID: 33743507 DOI: 10.1016/j.mrfmmm.2021.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022]
Abstract
Covalent linkage between DNA and proteins produces highly toxic lesions and can be caused by commonly used chemotherapeutic agents, by internal and external chemicals and by radiation. In this study, using Escherichia coli, we investigate the consequences of 5-azacytidine (5-azaC), which traps covalent complexes between itself and the Dcm cytosine methyltransferase protein. DNA protein crosslink-dependent effects can be ascertained by effects that arise in wild-type but not in dcmΔ strains. We find that 5-azaC induces the bacterial DNA damage response and stimulates homologous recombination, a component of which is Dcm-dependent. Template-switching at an imperfect inverted repeat ("quasipalindrome", QP) is strongly enhanced by 5-azaC and this enhancement was entirely Dcm-dependent and independent of double-strand break repair. The SOS response helps ameliorate the mutagenic effect of 5-azaC but this is not a result of SOS-induced DNA polymerases since their induction, especially PolIV, seems to stimulate QP-associated mutagenesis. Cell division regulator SulA was also required for recovery of QP mutants induced by 5-azaC. In the absence of Lon protease, Dcm-dependent QP-mutagenesis is strongly elevated, suggesting it may play a role in DPC tolerance. Deletions at short tandem repeats, which occur likewise by a replication template-switch, are elevated, but only modestly, by 5-azaC. We see evidence for Dcm-dependent and-independent killing by 5-azaC in sensitive mutants, such as recA, recB, and lon; homologous recombination and deletion mutations are also stimulated in part by a Dcm-independent effect of 5-azaC. Whether this occurs by a different protein/DNA crosslink or by an alternative form of DNA damage is unknown.
Collapse
Affiliation(s)
- Julie A Klaric
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - David J Glass
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Eli L Perr
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Arianna D Reuven
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Mason J Towne
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Susan T Lovett
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States.
| |
Collapse
|
7
|
Reha-Krantz LJ, Goodman MF. John W. (Jan) Drake: A Biochemical View of a Geneticist Par Excellence. Genetics 2020; 216:827-836. [PMID: 33268388 PMCID: PMC7768258 DOI: 10.1534/genetics.120.303813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
John W. Drake died 02-02-2020, a mathematical palindrome, which he would have enjoyed, given his love of "word play and logic," as stated in his obituary and echoed by his family, friends, students, and colleagues. Many aspects of Jan's career have been reviewed previously, including his early years as a Caltech graduate student, and when he was editor-in-chief, with the devoted assistance of his wife Pam, of this journal for 15 impactful years. During his editorship, he raised the profile of GENETICS as the flagship journal of the Genetics Society of America and inspired and contributed to the creation of the Perspectives column, coedited by Jim Crow and William Dove. At the same time, Jan was building from scratch the Laboratory of Molecular Genetics on the newly established Research Triangle Park campus of the National Institute of Environmental Health Science, which he headed for 30 years. This commentary offers a unique perspective on Jan's legacy; we showcase Jan's 1969 benchmark discovery of antimutagenic T4 DNA polymerases and the research by three generations (and counting) of scientists whose research stems from that groundbreaking discovery. This is followed by a brief discussion of Jan's passion: his overriding interest in analyzing mutation rates across species. Several anecdotal stories are included to bring alive one of Jan's favorite phrases, "to think like a geneticist." We feature Jan's genetical approach to mutation studies, along with the biochemistry of DNA polymerase function, our area of expertise. But in the end, we acknowledge, as Jan did, that genetics, also known as in vivo biochemistry, prevails.
Collapse
Affiliation(s)
- Linda J Reha-Krantz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
8
|
Identifying Small Molecules That Promote Quasipalindrome-Associated Template-Switch Mutations in Escherichia coli. G3-GENES GENOMES GENETICS 2020; 10:1809-1815. [PMID: 32220953 PMCID: PMC7202029 DOI: 10.1534/g3.120.401106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA can assemble into non-B form structures that stall replication and cause genomic instability. One such secondary structure results from an inverted DNA repeat that can assemble into hairpin and cruciform structures during DNA replication. Quasipalindromes (QP), imperfect inverted repeats, are sites of mutational hotspots. Quasipalindrome-associated mutations (QPMs) occur through a template-switch mechanism in which the replicative polymerase stalls at a QP site and uses the nascent strand as a template instead of the correct template strand. This mutational event causes the QP to become a perfect or more perfect inverted repeat. Since it is not fully understood how template-switch events are stimulated or repressed, we designed a high-throughput screen to discover drugs that affect these events. QP reporters were engineered in the Escherichia coli lacZ gene to allow us to study template-switch events specifically. We tested 700 compounds from the NIH Clinical Collection through a disk diffusion assay and identified 11 positive hits. One of the hits was azidothymidine (zidovudine, AZT), a thymidine analog and DNA chain terminator. The other ten were found to be fluoroquinolone antibiotics, which induce DNA-protein crosslinks. This work shows that our screen is useful in identifying small molecules that affect quasipalindrome-associated template-switch mutations. We are currently assessing more small molecule libraries and applying this method to study other types of mutations.
Collapse
|
9
|
Stimulation of Replication Template-Switching by DNA-Protein Crosslinks. Genes (Basel) 2018; 10:genes10010014. [PMID: 30591691 PMCID: PMC6357072 DOI: 10.3390/genes10010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
Covalent DNA protein crosslinks (DPCs) are common lesions that block replication. We examine here the consequence of DPCs on mutagenesis involving replicational template-switch reactions in Escherichia coli. 5-Azacytidine (5-azaC) is a potent mutagen for template-switching. This effect is dependent on DNA cytosine methylase (Dcm), implicating the Dcm-DNA covalent complex trapped by 5-azaC as the initiator for mutagenesis. The leading strand of replication is more mutable than the lagging strand, which can be explained by blocks to the replicative helicase and/or fork regression. We find that template-switch mutagenesis induced by 5-azaC does not require double strand break repair via RecABCD; the ability to induce the SOS response is anti-mutagenic. Mutants in recB, but not recA, exhibit high constitutive rates of template-switching, and we suggest that RecBCD-mediated DNA degradation prevents template-switching associated with fork regression. A mutation in the DnaB fork helicase also promotes high levels of template-switching. We also find that other DPC-inducers, formaldehyde (a non-specific crosslinker) and ciprofloxacin (a topoisomerase II poison) are also strong mutagens for template-switching with similar genetic properties. Induction of mutations and genetic rearrangements that occur by template-switching may constitute a previously unrecognized component of the genotoxicity and genetic instability promoted by DPCs.
Collapse
|
10
|
Schroeder JW, Yeesin P, Simmons LA, Wang JD. Sources of spontaneous mutagenesis in bacteria. Crit Rev Biochem Mol Biol 2017; 53:29-48. [PMID: 29108429 DOI: 10.1080/10409238.2017.1394262] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in an organism's genome can arise spontaneously, that is, in the absence of exogenous stress and prior to selection. Mutations are often neutral or deleterious to individual fitness but can also provide genetic diversity driving evolution. Mutagenesis in bacteria contributes to the already serious and growing problem of antibiotic resistance. However, the negative impacts of spontaneous mutagenesis on human health are not limited to bacterial antibiotic resistance. Spontaneous mutations also underlie tumorigenesis and evolution of drug resistance. To better understand the causes of genetic change and how they may be manipulated in order to curb antibiotic resistance or the development of cancer, we must acquire a mechanistic understanding of the major sources of mutagenesis. Bacterial systems are particularly well-suited to studying mutagenesis because of their fast growth rate and the panoply of available experimental tools, but efforts to understand mutagenic mechanisms can be complicated by the experimental system employed. Here, we review our current understanding of mutagenic mechanisms in bacteria and describe the methods used to study mutagenesis in bacterial systems.
Collapse
Affiliation(s)
- Jeremy W Schroeder
- a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA
| | - Ponlkrit Yeesin
- a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA
| | - Lyle A Simmons
- b Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Jue D Wang
- a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA
| |
Collapse
|
11
|
Abstract
Replication forks frequently are challenged by lesions on the DNA template, replication-impeding DNA secondary structures, tightly bound proteins or nucleotide pool imbalance. Studies in bacteria have suggested that under these circumstances the fork may leave behind single-strand DNA gaps that are subsequently filled by homologous recombination, translesion DNA synthesis or template-switching repair synthesis. This review focuses on the template-switching pathways and how the mechanisms of these processes have been deduced from biochemical and genetic studies. I discuss how template-switching can contribute significantly to genetic instability, including mutational hotspots and frequent genetic rearrangements, and how template-switching may be elicited by replication fork damage.
Collapse
Affiliation(s)
- Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 2454-9110, USA.
| |
Collapse
|
12
|
SSB recruitment of Exonuclease I aborts template-switching in Escherichia coli. DNA Repair (Amst) 2017; 57:12-16. [PMID: 28605670 DOI: 10.1016/j.dnarep.2017.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 11/21/2022]
Abstract
Misalignment of a nascent strand and the use of an alternative template during DNA replication, a process termed "template-switching", can give rise to frequent mutations and genetic rearrangements. Mutational hotspots are frequently found associated with imperfect inverted repeats ("quasipalindromes" or "QPs") in many organisms, including bacteriophage, bacteria, yeast and mammals. Evidence suggests that QPs mutate by a replication template-switch whereby one copy of the inverted repeat templates synthesis of the other. To study quasipalindrome-associated mutagenesis ("QPM") more systematically, we have engineered mutational reporters in the lacZ gene of Escherichia coli, that revert to Lac+ specifically by QPM. We and others have shown that QPM is more efficient during replication of the leading strand than it is on the lagging strand. We have previously shown that QPM is elevated and that the leading-strand bias is lost in mutants lacking the major 3' ssDNA exonucleases, ExoI and ExoVII. This suggests that one or both of these exonucleases more efficiently abort template-switches on the lagging strand. Here, we show that ExoI is primarily responsible for this bias and that its ability to be recruited by single-strand DNA binding protein plays a critical role in QPM avoidance and strand bias. In addition to these stand-alone exonucleases, loss of the 3' proofreading exonuclease activity of the replicative DNA polymerase III also greatly elevates QPM. This may be because template-switching is initiated by base misincorporation, leading to polymerase dissociation and subsequent nascent strand misalignment; alternatively or additionally, the proofreading exonuclease may scavenge displaced 3' DNA that would otherwise be free to misalign.
Collapse
|
13
|
Wambaugh MA, Shakya VPS, Lewis AJ, Mulvey MA, Brown JCS. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance. PLoS Biol 2017; 15:e2001644. [PMID: 28632788 PMCID: PMC5478098 DOI: 10.1371/journal.pbio.2001644] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Infective Agents, Urinary/chemistry
- Anti-Infective Agents, Urinary/pharmacology
- Anti-Infective Agents, Urinary/therapeutic use
- Bacterial Proteins/antagonists & inhibitors
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biological Assay
- Computational Biology
- Drug Design
- Drug Resistance, Multiple, Bacterial
- Drug Synergism
- Drug Therapy, Combination
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/microbiology
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Infections/drug therapy
- Escherichia coli Infections/metabolism
- Escherichia coli Infections/microbiology
- Folic Acid Antagonists/chemistry
- Folic Acid Antagonists/pharmacology
- Folic Acid Antagonists/therapeutic use
- High-Throughput Screening Assays
- Klebsiella Infections/drug therapy
- Klebsiella Infections/metabolism
- Klebsiella Infections/microbiology
- Klebsiella pneumoniae/drug effects
- Klebsiella pneumoniae/growth & development
- Klebsiella pneumoniae/metabolism
- Microbial Sensitivity Tests
- Mutation
- Mutation Rate
- Pattern Recognition, Automated
- Reverse Transcriptase Inhibitors/chemistry
- Reverse Transcriptase Inhibitors/pharmacology
- Reverse Transcriptase Inhibitors/therapeutic use
- Small Molecule Libraries
- Sulfamethizole/agonists
- Sulfamethizole/chemistry
- Sulfamethizole/pharmacology
- Sulfamethizole/therapeutic use
- Trimethoprim/agonists
- Trimethoprim/chemistry
- Trimethoprim/pharmacology
- Trimethoprim/therapeutic use
- Zebrafish/embryology
Collapse
Affiliation(s)
- Morgan A. Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Viplendra P. S. Shakya
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Adam J. Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jessica C. S. Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
14
|
Kingston AW, Ponkratz C, Raleigh EA. Rpn (YhgA-Like) Proteins of Escherichia coli K-12 and Their Contribution to RecA-Independent Horizontal Transfer. J Bacteriol 2017; 199:e00787-16. [PMID: 28096446 PMCID: PMC5350276 DOI: 10.1128/jb.00787-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/09/2017] [Indexed: 01/21/2023] Open
Abstract
Bacteria use a variety of DNA-mobilizing enzymes to facilitate environmental niche adaptation via horizontal gene transfer. This has led to real-world problems, like the spread of antibiotic resistance, yet many mobilization proteins remain undefined. In the study described here, we investigated the uncharacterized family of YhgA-like transposase_31 (Pfam PF04754) proteins. Our primary focus was the genetic and biochemical properties of the five Escherichia coli K-12 members of this family, which we designate RpnA to RpnE, where Rpn represents recombination-promoting nuclease. We employed a conjugal system developed by our lab that demanded RecA-independent recombination following transfer of chromosomal DNA. Overexpression of RpnA (YhgA), RpnB (YfcI), RpnC (YadD), and RpnD (YjiP) increased RecA-independent recombination, reduced cell viability, and induced the expression of reporter of DNA damage. For the exemplar of the family, RpnA, mutational changes in proposed catalytic residues reduced or abolished all three phenotypes in concert. In vitro, RpnA displayed magnesium-dependent, calcium-stimulated DNA endonuclease activity with little, if any, sequence specificity and a preference for double-strand cleavage. We propose that Rpn/YhgA-like family nucleases can participate in gene acquisition processes.IMPORTANCE Bacteria adapt to new environments by obtaining new genes from other bacteria. Here, we characterize a set of genes that can promote the acquisition process by a novel mechanism. Genome comparisons had suggested the horizontal spread of the genes for the YhgA-like family of proteins through bacteria. Although annotated as transposase_31, no member of the family has previously been characterized experimentally. We show that four Escherichia coli K-12 paralogs contribute to a novel RecA-independent recombination mechanism in vivo For RpnA, we demonstrate in vitro action as a magnesium-dependent, calcium-stimulated nonspecific DNA endonuclease. The cleavage products are capable of providing priming sites for DNA polymerase, which can enable DNA joining by primer-template switching.
Collapse
|
15
|
Tremblay-Belzile S, Lepage É, Zampini É, Brisson N. Short-range inversions: rethinking organelle genome stability: template switching events during DNA replication destabilize organelle genomes. Bioessays 2015. [PMID: 26222836 DOI: 10.1002/bies.201500064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the organelles of plants and mammals, recent evidence suggests that genomic instability stems in large part from template switching events taking place during DNA replication. Although more than one mechanism may be responsible for this, some similarities exist between the different proposed models. These can be separated into two main categories, depending on whether they involve a single-strand-switching or a reciprocal-strand-switching event. Single-strand-switching events lead to intermediates containing Y junctions, whereas reciprocal-strand-switching creates Holliday junctions. Common features in all the described models include replication stress, fork stalling and the presence of inverted repeats, but no single element appears to be required in all cases. We review the field, and examine the ideas that several mechanisms may take place in any given genome, and that the presence of palindromes or inverted repeats in certain regions may favor specific rearrangements.
Collapse
Affiliation(s)
- Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Universit, é, de Montréal, Montréal, Québec, Canada
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Universit, é, de Montréal, Montréal, Québec, Canada
| | - Éric Zampini
- Department of Biochemistry and Molecular Medicine, Universit, é, de Montréal, Montréal, Québec, Canada
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Universit, é, de Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Vivanti A, Soheili TS, Cuccuini W, Luce S, Mandelbrot L, Lechenadec J, Cordier AG, Azria E, Soulier J, Cavazzana M, Blanche S, André-Schmutz I. Comparing genotoxic signatures in cord blood cells from neonates exposed in utero to zidovudine or tenofovir. AIDS 2015; 29:1319-24. [PMID: 25513819 PMCID: PMC4502990 DOI: 10.1097/qad.0000000000000564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Zidovudine and tenofovir are the two main nucleos(t)ide analogs used to prevent mother-to-child transmission of HIV. In vitro, both drugs bind to and integrate into human DNA and inhibit telomerase. The objective of the present study was to assess the genotoxic effects of either zidovudine or tenofovir-based combination therapies on cord blood cells in newborns exposed in utero. DESIGN We compared the aneuploid rate and the gene expression profiles in cord blood samples from newborns exposed either to zidovudine or tenofovir-based combination therapies during pregnancy and from unexposed controls (n = 8, 9, and 8, respectively). METHODS The aneuploidy rate was measured on the cord blood T-cell karyotype. Gene expression profiles of cord blood T cells and hematopoietic stem and progenitor cells were determined with microarrays, analyzed in a gene set enrichment analysis and confirmed by real-time quantitative PCRs. RESULTS Aneuploidy was more frequent in the zidovudine-exposed group (26.3%) than in the tenofovir-exposed group (14.2%) or in controls (13.3%; P < 0.05 for both). The transcription of genes involved in DNA repair, telomere maintenance, nucleotide metabolism, DNA/RNA synthesis, and the cell cycle was deregulated in samples from both the zidovudine and the tenofovir-exposed groups. CONCLUSION Although tenofovir has a lower clastogenic impact than zidovudine, gene expression profiling showed that both drugs alter the transcription of DNA repair and telomere maintenance genes.
Collapse
Affiliation(s)
- Alexandre Vivanti
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine
| | - Tayebeh S. Soheili
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine
| | - Wendy Cuccuini
- Laboratoire d’Hématologie Biologique, Assistance Publique-Hopitaux de Paris (AP-HP)
- Laboratoire Génome et Cancer, INSERM, U944 and UMR7212, Hôpital Saint Louis
| | - Sonia Luce
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine
| | - Laurent Mandelbrot
- Service de Gynécologie Obstétrique, Hôpital Louis Mourier, Hôpitaux Universitaire Paris Nord Val de Seine (HUPNVS), AP-HP, Colombes
- INSERM U1018, Centre de recherche en Epidémiologie et Santé des Populations
| | - Jerome Lechenadec
- INSERM U1018, Centre de recherche en Epidémiologie et Santé des Populations
- Université Paris-Sud, Le Kremlin Bicêtre
| | - Anne-Gael Cordier
- Service de Gynécologie Obstétrique, Hôpital Antoine Béclère, AP-HP, Clamart
| | - Elie Azria
- Service de Gynécologie Obstétrique, Hôpital Bichat, HUPNVS, AP-HP
| | - Jean Soulier
- Laboratoire d’Hématologie Biologique, Assistance Publique-Hopitaux de Paris (AP-HP)
- Laboratoire Génome et Cancer, INSERM, U944 and UMR7212, Hôpital Saint Louis
- Université Paris-Diderot
- Institut Universitaire d’Hématologie, Paris
| | - Marina Cavazzana
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine
- Département de Biothérapie
| | - Stéphane Blanche
- Unité d’Immunologie Hématologie Rhumatologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP
- EA 7323, Pharmacologie et évaluation des médicaments chez l’enfant et la femme enceinte, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Stéphane Blanche and Isabelle André-Schmutz contributed equally to the writing of this article
| | - Isabelle André-Schmutz
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine
- Stéphane Blanche and Isabelle André-Schmutz contributed equally to the writing of this article
| |
Collapse
|
17
|
Population approach to analyze the pharmacokinetics of free and total lopinavir in HIV-infected pregnant women and consequences for dose adjustment. Antimicrob Agents Chemother 2015; 59:5727-35. [PMID: 26149996 DOI: 10.1128/aac.00863-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022] Open
Abstract
The aims of this study were to describe the unbound and total lopinavir (LPV) pharmacokinetics in pregnant women in order to evaluate if a dosing adjustment is necessary during pregnancy. Lopinavir placental transfer is described, and several genetic covariates were tested to explain its variability. A total of 400 maternal, 79 cord blood, and 48 amniotic fluid samples were collected from 208 women for LPV concentration determinations and pharmacokinetics analysis. Among the maternal LPV concentrations, 79 samples were also used to measure the unbound LPV concentrations. Population pharmacokinetics models were developed by using NONMEM software. Two models were developed to describe (i) unbound and total LPV pharmacokinetics and (ii) LPV placental transfer. The pharmacokinetics was best described by a one-compartment model with first-order absorption and elimination. A pregnancy effect was found on maternal clearance (39% increase), whereas the treatment group (monotherapy versus triple therapy) or the genetic polymorphisms did not explain the pharmacokinetics or placental transfer of LPV. Efficient unbound LPV concentrations in nonpregnant women were similar to those measured during the third trimester of pregnancy. Our study showed a 39% increase of maternal total LPV clearance during pregnancy, whereas unbound LPV concentrations were similar to those simulated in nonpregnant women. The genetic polymorphisms selected did not influence the LPV pharmacokinetics or placental transfer. Thus, we suggest that the LPV dosage should not be increased during pregnancy.
Collapse
|
18
|
Zampini É, Lepage É, Tremblay-Belzile S, Truche S, Brisson N. Organelle DNA rearrangement mapping reveals U-turn-like inversions as a major source of genomic instability in Arabidopsis and humans. Genome Res 2015; 25:645-54. [PMID: 25800675 PMCID: PMC4417113 DOI: 10.1101/gr.188573.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
Failure to maintain organelle genome stability has been linked to numerous phenotypes, including variegation and cytosolic male sterility (CMS) in plants, as well as cancer and neurodegenerative diseases in mammals. Here we describe a next-generation sequencing approach that precisely maps and characterizes organelle DNA rearrangements in a single genome-wide experiment. In addition to displaying global portraits of genomic instability, it surprisingly unveiled an abundance of short-range rearrangements in Arabidopsis thaliana and human organelles. Among these, short-range U-turn-like inversions reach 25% of total rearrangements in wild-type Arabidopsis plastids and 60% in human mitochondria. Furthermore, we show that replication stress correlates with the accumulation of this type of rearrangement, suggesting that U-turn-like rearrangements could be the outcome of a replication-dependent mechanism. We also show that U-turn-like rearrangements are mostly generated using microhomologies and are repressed in plastids by Whirly proteins WHY1 and WHY3. A synergistic interaction is also observed between the genes for the plastid DNA recombinase RECA1 and those encoding plastid Whirly proteins, and the triple mutant why1why3reca1 accumulates almost 60 times the WT levels of U-turn-like rearrangements. We thus propose that the process leading to U-turn-like rearrangements may constitute a RecA-independent mechanism to restart stalled forks. Our results reveal that short-range rearrangements, and especially U-turn-like rearrangements, are a major factor of genomic instability in organelles, and this raises the question of whether they could have been underestimated in diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Éric Zampini
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Sébastien Truche
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
19
|
Kim N, Cho JE, Li YC, Jinks-Robertson S. RNA∶DNA hybrids initiate quasi-palindrome-associated mutations in highly transcribed yeast DNA. PLoS Genet 2013; 9:e1003924. [PMID: 24244191 PMCID: PMC3820800 DOI: 10.1371/journal.pgen.1003924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
RNase H enzymes promote genetic stability by degrading aberrant RNA∶DNA hybrids and by removing ribonucleotide monophosphates (rNMPs) that are present in duplex DNA. Here, we report that loss of RNase H2 in yeast is associated with mutations that extend identity between the arms of imperfect inverted repeats (quasi-palindromes or QPs), a mutation type generally attributed to a template switch during DNA synthesis. QP events were detected using frameshift-reversion assays and were only observed under conditions of high transcription. In striking contrast to transcription-associated short deletions that also are detected by these assays, QP events do not require Top1 activity. QP mutation rates are strongly affected by the direction of DNA replication and, in contrast to their elevation in the absence of RNase H2, are reduced when RNase H1 is additionally eliminated. Finally, transcription-associated QP events are limited by components of the nucleotide excision repair pathway and are promoted by translesion synthesis DNA polymerases. We suggest that QP mutations reflect either a transcription-associated perturbation of Okazaki-fragment processing, or the use of a nascent transcript to resume replication following a transcription-replication conflict. Mutation rates are correlated with the level of gene expression in budding yeast, demonstrating a link between transcription and stability of the underlying DNA template. In the current work, we describe a novel type of transcription-associated mutation that converts imperfect inverted repeats (quasi-palindromes or QPs) to perfect inverted repeats. Using appropriate mutation reporters, we demonstrate that QP mutations are strongly affected by the direction of DNA replication and have distinctive genetic requirements. Most notably, rates of transcription-associated QP events are regulated by the RNase H class of enzymes, which are specialized to process the RNA component of RNA∶DNA hybrids. The source of the RNA∶DNA hybrids that initiate QP mutations is unclear, but could reflect transcripts that remain stably base-paired with the DNA template, or aberrant processing of the RNA primers normally used to initiate DNA synthesis. These studies further expand the diverse ways that transcription affects the mutation landscape, and establish a novel way that RNA∶DNA hybrids can contribute to genetic instability. The high conservation of basic DNA-related metabolic processes suggests that results in yeast will be broadly applicable in higher eukaryotes.
Collapse
Affiliation(s)
- Nayun Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yue C. Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Blanche S, Dollfus C, Faye A, Rouzioux C, Mandelbrot L, Tubiana R, Warszawski J. [Pediatric aids, 30 years later]. Arch Pediatr 2013; 20:890-6. [PMID: 23850051 DOI: 10.1016/j.arcped.2013.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 05/29/2013] [Indexed: 12/01/2022]
Abstract
Thirty years after the first descriptions of AIDS in children in May 1983, the risk of viral transmission from mother to child has been reduced to almost zero and the disease in infected children has become an asymptomatic condition, stable in the long-term, thanks to antiretroviral drugs. Unbelievable though it may have seemed until the mid-1990s, children infected during the perinatal period are now growing up to be adults in a chronic, stable, asymptomatic medical condition with often satisfactory personal, family, and social lives. The French perinatal epidemiological cohort, which was set up in 1984 and has included more than 18,000 mother-child pairs to date, traces the steps in this extraordinary revolution in the prevention and treatment of HIV-1 infection in children.
Collapse
Affiliation(s)
- S Blanche
- Unité d'immunologie hématologie pédiatrique, hôpital Necker-Enfants-Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tubiana R, Mandelbrot L, Le Chenadec J, Delmas S, Rouzioux C, Hirt D, Treluyer JM, Ekoukou D, Bui E, Chaix ML, Blanche S, Warszawski J, Ngondi J, Chernai N, Teglas JP, Laurent C, Huyn P, Le Chenadec J, Delmas S, Warszawski J, Muret P, Baazia Y, Jeantils V, Lachassine E, Rodrigues A, Sackho A, Sagnet-Pham I, Tassi S, Breilh D, Iriard X, Andre G, Douard D, Reigadas S, Roux D, Louis I, Morlat P, Pedebosq S, Barre J, Estrangin E, Fauveau E, Garrait V, Ledudal P, Pichon C, Richier L, Thebault A, Touboul C, Bornarel D, Chambrin V, Clech L, Dubreuil P, Foix L'helias L, Picone O, Schoen H, Stralka M, Crenn-Hebert C, Floch-Tudal C, Hery E, Ichou H, Mandelbrot L, Meier F, Tournier V, Walter S, Chevojon P, Devidas A, Granier M, Khanfar-boudjemai M, Malbrunot C, Nguyen R, Ollivier B, Radideau E, Turpault I, Jault T, Barrail A, Colmant C, Fourcade C, Goujard C, Pallier C, Peretti D, Taburet AM, Bocket L, D'angelo S, Godart F, Hammou Y, Houdret N, Mazingue F, Thielemans B, Brochier C, Cotte L, Januel F, Le Thi T, Gagneux MC, Bozio A, Massardier J, Kebaïli K, Ben AK, Heller-Roussin B, Riehl C, Roos S, Taccot F, Winter C, Arias J, Brunet-François C, Dailly E, Flet L, Gournay V, Mechinaud F, Reliquet V, Winner N, Peytavin G, Bardin C, Boudjoudi N, Compagnucci A, Guerin C, Krivine A, Pannier E, Salmon D, Treluyer JM, Firtion G, Ayral D, Ciraru-Vigneron N, Mazeron MC, Rizzo Badoin N, Trout H, Benachi A, Boissand C, Bonnet D, Boucly S, Blanche S, Chaix ML, Duvivier C, Parat S, Cayol V, Oucherif S, Rouzioux C, Viard JP, Bonmarchand M, De Montgolfier I, Dommergues M, Fievet MH, Iguertsira M, Pauchard M, Quetin F, Soulie C, Tubiana R, Faye A, Magnier S, Bui E, Carbonne B, Daguenel Nguyen A, Harchi N, Meyohas MC, Poirier JM, Rodriguez J, Hervé F, Pialloux G, Dehee A, Dollfus C, Tillous Borde I, Vaudre G, Wallet A, Allemon MC, Bolot P, Boussairi A, Chaplain C, Ekoukou D, Ghibaudo N, Kana JM, Khuong MA, Weil M, Entz-Werle N, Livolsi Lutz P, Beretz L, Cheneau M, Partisani ML, Schmitt MP, Acar P, Armand E, Berrebi A, Guibaud Plo C, Lavit M, Nicot F, Tricoire J, Ajana F, Huleux T. Lopinavir/Ritonavir Monotherapy as a Nucleoside Analogue–Sparing Strategy to Prevent HIV-1 Mother-to-Child Transmission: The ANRS 135 PRIMEVA Phase 2/3 Randomized Trial. Clin Infect Dis 2013; 57:891-902. [DOI: 10.1093/cid/cit390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Andre-Schmutz I, Dal-Cortivo L, Six E, Kaltenbach S, Cocchiarella F, Le Chenadec J, Cagnard N, Cordier AG, Benachi A, Mandelbrot L, Azria E, Bouallag N, Luce S, Ternaux B, Reimann C, Revy P, Radford-Weiss I, Leschi C, Recchia A, Mavilio F, Cavazzana M, Blanche S. Genotoxic Signature in Cord Blood Cells of Newborns Exposed In Utero to a Zidovudine-Based Antiretroviral Combination. J Infect Dis 2013; 208:235-43. [DOI: 10.1093/infdis/jit149] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|