1
|
Srivastav MK, Folco HD, Nathanailidou P, Anil AT, Vijayakumari D, Jain S, Dhakshnamoorthy J, O'Neill M, Andresson T, Wheeler D, Grewal SIS. PhpC NF-Y transcription factor infiltrates heterochromatin to generate cryptic intron-containing transcripts crucial for small RNA production. Nat Commun 2025; 16:268. [PMID: 39747188 PMCID: PMC11696164 DOI: 10.1038/s41467-024-55736-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
The assembly of repressive heterochromatin in eukaryotic genomes is crucial for silencing lineage-inappropriate genes and repetitive DNA elements. Paradoxically, transcription of repetitive elements within constitutive heterochromatin domains is required for RNA-based mechanisms, such as the RNAi pathway, to target heterochromatin assembly proteins. However, the mechanism by which heterochromatic repeats are transcribed has been unclear. Using fission yeast, we show that the conserved trimeric transcription factor (TF) PhpCNF-Y complex can infiltrate constitutive heterochromatin via its histone-fold domains to transcribe repeat elements. PhpCNF-Y collaborates with a Zn-finger containing TF to bind repeat promoter regions with CCAAT boxes. Mutating either the TFs or the CCAAT binding site disrupts the transcription of heterochromatic repeats. Although repeat elements are transcribed from both strands, PhpCNF-Y-dependent transcripts originate from only one strand. These TF-driven transcripts contain multiple cryptic introns which are required for the generation of small interfering RNAs (siRNAs) via a mechanism involving the spliceosome and RNAi machinery. Our analyses show that siRNA production by this TF-mediated transcription pathway is critical for heterochromatin nucleation at target repeat loci. This study reveals a mechanism by which heterochromatic repeats are transcribed, initiating their own silencing by triggering a primary cascade that produces siRNAs necessary for heterochromatin nucleation.
Collapse
Affiliation(s)
- Manjit Kumar Srivastav
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patroula Nathanailidou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupa T Anil
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Drisya Vijayakumari
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shweta Jain
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maura O'Neill
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Muhammad A, Sarkadi Z, Mazumder A, Ait Saada A, van Emden T, Capella M, Fekete G, Suma Sreechakram VN, Al-Sady B, Lambert SAE, Papp B, Barrales RR, Braun S. A systematic quantitative approach comprehensively defines domain-specific functional pathways linked to Schizosaccharomyces pombe heterochromatin regulation. Nucleic Acids Res 2024; 52:13665-13689. [PMID: 39565189 DOI: 10.1093/nar/gkae1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024] Open
Abstract
Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres and the silent mating type locus in Schizosaccharomyces pombe. Using quantitative measures, iterative genetic screening and domain-specific heterochromatin reporters, we identified 369 mutants with different degrees of reduced or enhanced silencing. As expected, mutations in the core heterochromatin machinery globally decreased silencing. However, most other mutants exhibited distinct qualitative and quantitative profiles that indicate heterochromatin domain-specific functions, as seen for example for metabolic pathways affecting primarily subtelomere silencing. Moreover, similar phenotypic profiles revealed shared functions for subunits within complexes. We further discovered that the uncharacterized protein Dhm2 plays a crucial role in heterochromatin maintenance, affecting the inheritance of H3K9 methylation and the clonal propagation of the repressed state. Additionally, Dhm2 loss resulted in delayed S-phase progression and replication stress. Collectively, our systematic approach unveiled a landscape of domain-specific heterochromatin regulators controlling distinct states and identified Dhm2 as a previously unknown factor linked to heterochromatin inheritance and replication fidelity.
Collapse
Affiliation(s)
- Abubakar Muhammad
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Zsuzsa Sarkadi
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Budapesti út 9, 6728 Szeged, Hungary
| | - Agnisrota Mazumder
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Anissia Ait Saada
- Institut Curie, Université PSL, Université Paris-Saclay CNRS UMR3348, 91400 Orsay, France
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Matias Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Budapesti út 9, 6728 Szeged, Hungary
| | - Vishnu N Suma Sreechakram
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0552, USA
| | - Sarah A E Lambert
- Institut Curie, Université PSL, Université Paris-Saclay CNRS UMR3348, 91400 Orsay, France
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Budapesti út 9, 6728 Szeged, Hungary
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Mori M, Sato M, Takahata S, Kajitani T, Murakami Y. A zinc-finger protein Moc3 functions as a transcription activator to promote RNAi-dependent constitutive heterochromatin establishment in fission yeast. Genes Cells 2024; 29:471-485. [PMID: 38629626 DOI: 10.1111/gtc.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 06/11/2024]
Abstract
In fission yeast, Schizosaccharomyces pombe, constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called dg and dh, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at dg/dh. Bi-directional transcription at dg/dh induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of dg/dh transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes dh and activates dh-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the dh-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent dh-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.
Collapse
Affiliation(s)
- Miyuki Mori
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Michiaki Sato
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Shinya Takahata
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takuya Kajitani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Ames A, Seman M, Larkin A, Raiymbek G, Chen Z, Levashkevich A, Kim B, Biteen JS, Ragunathan K. Epigenetic memory is governed by an effector recruitment specificity toggle in Heterochromatin Protein 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569027. [PMID: 38077059 PMCID: PMC10705379 DOI: 10.1101/2023.11.28.569027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
HP1 proteins are essential for establishing and maintaining transcriptionally silent heterochromatin. They dimerize, forming a binding interface to recruit diverse chromatin-associated factors. HP1 proteins are specialized and rapidly evolve, but the extent of variation required to achieve functional specialization is unknown. To investigate how changes in amino acid sequence impacts epigenetic inheritance, we performed a targeted mutagenesis screen of the S. pombe HP1 homolog, Swi6. Substitutions within an auxiliary surface adjacent to the HP1 dimerization interface produced Swi6 variants with divergent maintenance properties. Remarkably, substitutions at a single amino acid position led to the persistent gain or loss of epigenetic inheritance. These substitutions increased Swi6 chromatin occupancy in vivo and altered Swi6-protein interactions that reprogram H3K9me maintenance. We show that relatively minor changes in Swi6 amino acid composition can lead to profound changes in epigenetic inheritance which provides a redundant mechanism to evolve novel effector specificity. .
Collapse
|
5
|
Muhammad A, Sarkadi Z, van Emden T, Mazumder A, Capella M, Fekete G, Sreechakram VNS, Al-Sady B, Papp B, Barrales RR, Braun S. A systematic quantitative approach comprehensively defines domain-specific functional pathways linked to Schizosaccharomyces pombe heterochromatin regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579970. [PMID: 38405799 PMCID: PMC10888830 DOI: 10.1101/2024.02.13.579970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres, and the silent mating type locus in Schizosaccharomyces pombe. Using quantitative measures, iterative genetic screening, and domain-specific heterochromatin reporters, we identified 369 mutants with different degrees of reduced or enhanced silencing. As expected, mutations in the core heterochromatin machinery globally decreased silencing. However, most other mutants exhibited distinct qualitative and quantitative profiles that indicate domain-specific functions. For example, decreased mating type silencing was linked to mutations in heterochromatin maintenance genes, while compromised subtelomere silencing was associated with metabolic pathways. Furthermore, similar phenotypic profiles revealed shared functions for subunits within complexes. We also discovered that the uncharacterized protein Dhm2 plays a crucial role in maintaining constitutive and facultative heterochromatin, while its absence caused phenotypes akin to DNA replication-deficient mutants. Collectively, our systematic approach unveiled a landscape of domain-specific heterochromatin regulators controlling distinct states and identified Dhm2 as a previously unknown factor linked to heterochromatin inheritance and replication fidelity.
Collapse
Affiliation(s)
- Abubakar Muhammad
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Zsuzsa Sarkadi
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Agnisrota Mazumder
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Matias Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Present address: Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Vishnu N Suma Sreechakram
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Present address: Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Shaukat A, Bakhtiari MH, Chaudhry DS, Khan MHF, Akhtar J, Abro AH, Haseeb MA, Sarwar A, Mazhar K, Umer Z, Tariq M. Mask exhibits trxG-like behavior and associates with H3K27ac marked chromatin. Dev Biol 2024; 505:130-140. [PMID: 37981061 DOI: 10.1016/j.ydbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The Trithorax group (trxG) proteins counteract the repressive effect of Polycomb group (PcG) complexes and maintain transcriptional memory of active states of key developmental genes. Although chromatin structure and modifications appear to play a fundamental role in this process, it is not clear how trxG prevents PcG-silencing and heritably maintains an active gene expression state. Here, we report a hitherto unknown role of Drosophila Multiple ankyrin repeats single KH domain (Mask), which emerged as one of the candidate trxG genes in our reverse genetic screen. The genome-wide binding profile of Mask correlates with known trxG binding sites across the Drosophila genome. In particular, the association of Mask at chromatin overlaps with CBP and H3K27ac, which are known hallmarks of actively transcribed genes by trxG. Importantly, Mask predominantly associates with actively transcribed genes in Drosophila. Depletion of Mask not only results in the downregulation of trxG targets but also correlates with diminished levels of H3K27ac. The fact that Mask positively regulates H3K27ac levels in flies was also found to be conserved in human cells. Strong suppression of Pc mutant phenotype by mutation in mask provides physiological relevance that Mask contributes to the anti-silencing effect of trxG, maintaining expression of key developmental genes. Since Mask is a downstream effector of multiple cell signaling pathways, we propose that Mask may connect cell signaling with chromatin mediated epigenetic cell memory governed by trxG.
Collapse
Affiliation(s)
- Ammad Shaukat
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Mahnoor Hussain Bakhtiari
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Daim Shiraz Chaudhry
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Haider Farooq Khan
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Jawad Akhtar
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Ahmed Hassan Abro
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Abdul Haseeb
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Aaminah Sarwar
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Khalida Mazhar
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Zain Umer
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Tariq
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
7
|
Seman M, Levashkevich A, Larkin A, Huang F, Ragunathan K. Uncoupling the distinct functions of HP1 proteins during heterochromatin establishment and maintenance. Cell Rep 2023; 42:113428. [PMID: 37952152 DOI: 10.1016/j.celrep.2023.113428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
H3K9 methylation (H3K9me) marks transcriptionally silent genomic regions called heterochromatin. HP1 proteins are required to establish and maintain heterochromatin. HP1 proteins bind to H3K9me, recruit factors that promote heterochromatin formation, and oligomerize to form phase-separated condensates. We do not understand how these different HP1 properties are involved in establishing and maintaining transcriptional silencing. Here, we demonstrate that the S. pombe HP1 homolog, Swi6, can be completely bypassed to establish silencing at ectopic and endogenous loci when an H3K4 methyltransferase, Set1, and an H3K14 acetyltransferase, Mst2, are deleted. Deleting Set1 and Mst2 enhances Clr4 enzymatic activity, leading to higher H3K9me levels and spreading. In contrast, Swi6 and its capacity to oligomerize were indispensable during epigenetic maintenance. Our results demonstrate the role of HP1 proteins in regulating histone modification crosstalk during establishment and identify a genetically separable function in maintaining epigenetic memory.
Collapse
Affiliation(s)
- Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | | | - Ajay Larkin
- Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | - Fengting Huang
- Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | | |
Collapse
|
8
|
Seman M, Levashkevich A, Larkin A, Huang F, Ragunathan K. Uncoupling the distinct functions of HP1 proteins during heterochromatin establishment and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538869. [PMID: 37961629 PMCID: PMC10634687 DOI: 10.1101/2023.04.30.538869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
H3K9 methylation (H3K9me) marks transcriptionally silent genomic regions called heterochromatin. HP1 proteins are required to establish and maintain heterochromatin. HP1 proteins bind to H3K9me, recruit factors that promote heterochromatin formation, and oligomerize to form phase-separated condensates. We do not understand how HP1 protein binding to heterochromatin establishes and maintains transcriptional silencing. Here, we demonstrate that the S.pombe HP1 homolog, Swi6, can be completely bypassed to establish silencing at ectopic and endogenous loci when an H3K4 methyltransferase, Set1 and an H3K14 acetyltransferase, Mst2 are deleted. Deleting Set1 and Mst2 enhances Clr4 enzymatic activity, leading to higher H3K9me levels and spreading. In contrast, Swi6 and its capacity to oligomerize were indispensable during epigenetic maintenance. Our results demonstrate the role of HP1 proteins in regulating histone modification crosstalk during establishment and identifies a genetically separable function in maintaining epigenetic memory.
Collapse
Affiliation(s)
- Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA 02451 USA
| | | | - Ajay Larkin
- Department of Biology, Brandeis University, Waltham, MA 02451 USA
| | - Fengting Huang
- Department of Biology, Brandeis University, Waltham, MA 02451 USA
| | - Kaushik Ragunathan
- Department of Biology, Brandeis University, Waltham, MA 02451 USA
- Lead Contact
| |
Collapse
|
9
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
La Rocca G, Cavalieri V. Roles of the Core Components of the Mammalian miRISC in Chromatin Biology. Genes (Basel) 2022; 13:414. [PMID: 35327968 PMCID: PMC8954937 DOI: 10.3390/genes13030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022] Open
Abstract
The Argonaute (AGO) and the Trinucleotide Repeat Containing 6 (TNRC6) family proteins are the core components of the mammalian microRNA-induced silencing complex (miRISC), the machinery that mediates microRNA function in the cytoplasm. The cytoplasmic miRISC-mediated post-transcriptional gene repression has been established as the canonical mechanism through which AGO and TNRC6 proteins operate. However, growing evidence points towards an additional mechanism through which AGO and TNRC6 regulate gene expression in the nucleus. While several mechanisms through which miRISC components function in the nucleus have been described, in this review we aim to summarize the major findings that have shed light on the role of AGO and TNRC6 in mammalian chromatin biology and on the implications these novel mechanisms may have in our understanding of regulating gene expression.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
11
|
Larkin A, Ames A, Seman M, Ragunathan K. Investigating Mitotic Inheritance of Histone Modifications Using Tethering Strategies. Methods Mol Biol 2022; 2529:419-440. [PMID: 35733025 DOI: 10.1007/978-1-0716-2481-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The covalent and reversible modification of histones enables cells to establish heritable gene expression patterns without altering their genetic blueprint. Epigenetic mechanisms regulate gene expression in two separate ways: (1) establishment, which depends on sequence-specific DNA- or RNA-binding proteins that recruit histone-modifying enzymes to unique genomic loci, and (2) maintenance, which is sequence-independent and depends on the autonomous propagation of preexisting chromatin states during DNA replication. Only a subset of the vast repertoire of histone modifications in the genome is heritable. Here, we describe a synthetic biology approach to tether histone-modifying enzymes to engineer chromatin states in living cells and evaluate their potential for mitotic inheritance. In S. pombe, fusing the H3K9 methyltransferase, Clr4, to the tetracycline-inducible TetR DNA-binding domain facilitates rapid and reversible control of heterochromatin assembly. We describe a framework to successfully implement an inducible heterochromatin establishment system and evaluate its molecular properties. We anticipate that our innovative genetic strategy will be broadly applicable to the discovery of protein complexes and separation-of-function alleles of heterochromatin-associated factors with unique roles in epigenetic inheritance.
Collapse
Affiliation(s)
- Ajay Larkin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Amanda Ames
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Melissa Seman
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kaushik Ragunathan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Asanuma T, Inagaki S, Kakutani T, Aburatani H, Murakami Y. Tandemly repeated genes promote RNAi-mediated heterochromatin formation via an antisilencing factor, Epe1, in fission yeast. Genes Dev 2022; 36:1145-1159. [PMID: 36617881 PMCID: PMC9851402 DOI: 10.1101/gad.350129.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
In most eukaryotes, constitutive heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), is enriched on repetitive DNA, such as pericentromeric repeats and transposons. Furthermore, repetitive transgenes also induce heterochromatin formation in diverse model organisms. However, the mechanisms that promote heterochromatin formation at repetitive DNA elements are still not clear. Here, using fission yeast, we show that tandemly repeated mRNA genes promote RNA interference (RNAi)-mediated heterochromatin formation in cooperation with an antisilencing factor, Epe1. Although the presence of tandemly repeated genes itself does not cause heterochromatin formation, once complementary small RNAs are artificially supplied in trans, the RNAi machinery assembled on the repeated genes starts producing cognate small RNAs in cis to autonomously maintain heterochromatin at these sites. This "repeat-induced RNAi" depends on the copy number of repeated genes and Epe1, which is known to remove H3K9me and derepress the transcription of genes underlying heterochromatin. Analogous to repeated genes, the DNA sequence underlying constitutive heterochromatin encodes widespread transcription start sites (TSSs), from which Epe1 activates ncRNA transcription to promote RNAi-mediated heterochromatin formation. Our results suggest that when repetitive transcription units underlie heterochromatin, Epe1 generates sufficient transcripts for the activation of RNAi without disruption of heterochromatin.
Collapse
Affiliation(s)
- Takahiro Asanuma
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, Faculty of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Faculty of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
13
|
Takahata S, Chida S, Ohnuma A, Ando M, Asanuma T, Murakami Y. Two secured FACT recruitment mechanisms are essential for heterochromatin maintenance. Cell Rep 2021; 36:109540. [PMID: 34407404 DOI: 10.1016/j.celrep.2021.109540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/01/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
FACT (facilitate chromatin transcription) is involved in heterochromatic silencing, but its mechanisms and function remain unclear. We reveal that the Spt16 recruitment mechanism operates in two distinct ways in heterochromatin. First, Pob3 mediates Spt16 recruitment onto the heterochromatin through its Spt16 dimerization and tandem PH domains. Without Pob3, Spt16 recruitment is partially reduced, exhibiting a silencing defect and impaired H2A/H2B organization. Second, heterochromatin protein 1 (HP1)/Swi6 mediates Spt16 recruitment onto the heterochromatin by physical interaction of the Swi6 chromo-shadow domain (CSD) and Spt16 peptidase-like domains. Several CSD mutants are tested for Spt16 binding activity, and the charged loop connecting β1 and β2 is critical for Spt16 binding and heterochromatic silencing. Loss of these pathways causes a severe defect in H3K9 methylation and HP1/Swi6 localization in the pericentromeric region, exhibiting transcriptional silencing defects and disordered heterochromatin. Our findings suggest that FACT and HP1/Swi6 work intimately to regulate heterochromatin organization.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Saori Chida
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Aoi Ohnuma
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Motoyoshi Ando
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takahiro Asanuma
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
14
|
Kramer HM, Cook DE, van den Berg GCM, Seidl MF, Thomma BPHJ. Three putative DNA methyltransferases of Verticillium dahliae differentially contribute to DNA methylation that is dispensable for growth, development and virulence. Epigenetics Chromatin 2021; 14:21. [PMID: 33941240 PMCID: PMC8091789 DOI: 10.1186/s13072-021-00396-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA methylation is an important epigenetic control mechanism that in many fungi is restricted to genomic regions containing transposable elements (TEs). Two DNA methyltransferases, Dim2 and Dnmt5, are known to perform methylation at cytosines in fungi. While most ascomycete fungi encode both Dim2 and Dnmt5, only few functional studies have been performed in species containing both. METHODS In this study, we report functional analysis of both Dim2 and Dnmt5 in the plant pathogenic fungus Verticillium dahliae. RESULTS Our results show that Dim2, but not Dnmt5 or the putative sexual-cycle-related DNA methyltransferase Rid, is responsible for the majority of DNA methylation under the tested conditions. Single or double DNA methyltransferase mutants did not show altered development, virulence, or transcription of genes or TEs. In contrast, Hp1 and Dim5 mutants that are impacted in chromatin-associated processes upstream of DNA methylation are severely affected in development and virulence and display transcriptional reprogramming in specific hypervariable genomic regions (so-called adaptive genomic regions) that contain genes associated with host colonization. As these adaptive genomic regions are largely devoid of DNA methylation and of Hp1- and Dim5-associated heterochromatin, the differential transcription is likely caused by pleiotropic effects rather than by differential DNA methylation. CONCLUSION Overall, our study suggests that Dim2 is the main DNA methyltransferase in V. dahliae and, in conjunction with work on other fungi, is likely the main active DNMT in ascomycetes, irrespective of Dnmt5 presence. We speculate that Dnmt5 and Rid act under specific, presently enigmatic, conditions or, alternatively, act in DNA-associated processes other than DNA methylation.
Collapse
Affiliation(s)
- H Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - David E Cook
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Manhattan, KS, 66506, USA
| | - Grardy C M van den Berg
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany.
| |
Collapse
|
15
|
Yu H, Tsuchida M, Ando M, Hashizaki T, Shimada A, Takahata S, Murakami Y. Trimethylguanosine synthase 1 (Tgs1) is involved in Swi6/HP1-independent siRNA production and establishment of heterochromatin in fission yeast. Genes Cells 2021; 26:203-218. [PMID: 33527595 DOI: 10.1111/gtc.12833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022]
Abstract
In fission yeast, siRNA generated by RNA interference (RNAi) factors plays critical roles in establishment and maintenance of heterochromatin. To achieve efficient siRNA synthesis, RNAi factors assemble on heterochromatin via association with Swi6, a homologue of heterochromatin protein 1 (HP1), and heterochromatic noncoding RNA (hncRNA) retained on chromatin. In addition, spliceosomes formed on hncRNA introns recruit RNAi factors to hncRNA and heterochromatin. Small nuclear RNAs, components of the spliceosome, have a trimethylguanosine (TMG) cap that is generated by Tgs1-dependent hypermethylation of the normal m7G cap; this cap is required for efficient splicing of some mRNAs in budding yeast and Drosophila. In this study, we found that loss of Tgs1 in fission yeast destabilizes centromeric heterochromatin. Tgs1 was required for Swi6-independent siRNA synthesis, as well as for the establishment of centromeric heterochromatin. Loss of Tgs1 affected the splicing efficiency of hncRNA introns in the absence of Swi6. Furthermore, some hncRNAs have a TMG cap, and we found that loss of Tgs1 diminished the chromatin binding of these hncRNAs. Together, these results suggest that the Tgs1-dependent TMG cap plays critical roles in establishment of heterochromatin by ensuring spliceosome-dependent recruitment of RNAi factors and regulating the binding between chromatin and hncRNA.
Collapse
Affiliation(s)
- Hiroki Yu
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Ambitious Leader's Program Fostering Future Leaders to Open New Frontiers in Materials Science (ALP), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai Tsuchida
- Laboratory for Cell Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Motoyoshi Ando
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Tomoka Hashizaki
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Atsushi Shimada
- Laboratory for Cell Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Takahata
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Native Chromatin Proteomics Reveals a Role for Specific Nucleoporins in Heterochromatin Organization and Maintenance. Mol Cell 2019; 77:51-66.e8. [PMID: 31784357 DOI: 10.1016/j.molcel.2019.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/19/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
Spatially and functionally distinct domains of heterochromatin and euchromatin play important roles in the maintenance of chromosome stability and regulation of gene expression, but a comprehensive knowledge of their composition is lacking. Here, we develop a strategy for the isolation of native Schizosaccharomyces pombe heterochromatin and euchromatin fragments and analyze their composition by using quantitative mass spectrometry. The shared and euchromatin-specific proteomes contain proteins involved in DNA and chromatin metabolism and in transcription, respectively. The heterochromatin-specific proteome includes all proteins with known roles in heterochromatin formation and, in addition, is enriched for subsets of nucleoporins and inner nuclear membrane (INM) proteins, which associate with different chromatin domains. While the INM proteins are required for the integrity of the nucleolus, containing ribosomal DNA repeats, the nucleoporins are required for aggregation of heterochromatic foci and epigenetic inheritance. The results provide a comprehensive picture of heterochromatin-associated proteins and suggest a role for specific nucleoporins in heterochromatin function.
Collapse
|
17
|
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes, which endows particular genomic domains with specific functional properties. The capacity of heterochromatin to restrain the activity of mobile elements, isolate DNA repair in repetitive regions and ensure accurate chromosome segregation is crucial for maintaining genomic stability. Nucleosomes at heterochromatin regions display histone post-translational modifications that contribute to developmental regulation by restricting lineage-specific gene expression. The mechanisms of heterochromatin establishment and of heterochromatin maintenance are separable and involve the ability of sequence-specific factors bound to nascent transcripts to recruit chromatin-modifying enzymes. Heterochromatin can spread along the chromatin from nucleation sites. The propensity of heterochromatin to promote its own spreading and inheritance is counteracted by inhibitory factors. Because of its importance for chromosome function, heterochromatin has key roles in the pathogenesis of various human diseases. In this Review, we discuss conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotes, from yeast to human, with an emphasis on insights obtained from unicellular model organisms.
Collapse
|
18
|
Suhren JH, Noto T, Kataoka K, Gao S, Liu Y, Mochizuki K. Negative Regulators of an RNAi-Heterochromatin Positive Feedback Loop Safeguard Somatic Genome Integrity in Tetrahymena. Cell Rep 2017; 18:2494-2507. [PMID: 28273462 PMCID: PMC5357732 DOI: 10.1016/j.celrep.2017.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/22/2016] [Accepted: 02/06/2017] [Indexed: 11/05/2022] Open
Abstract
RNAi-mediated positive feedback loops are pivotal for the maintenance of heterochromatin, but how they are downregulated at heterochromatin-euchromatin borders is not well understood. In the ciliated protozoan Tetrahymena, heterochromatin is formed exclusively on the sequences that are removed from the somatic genome by programmed DNA elimination, and an RNAi-mediated feedback loop is important for assembling heterochromatin on the eliminated sequences. In this study, we show that the heterochromatin protein 1 (HP1)-like protein Coi6p, its interaction partners Coi7p and Lia5p, and the histone demethylase Jmj1p are crucial for confining the production of small RNAs and the formation of heterochromatin to the eliminated sequences. The loss of Coi6p, Coi7p, or Jmj1p causes ectopic DNA elimination. The results provide direct evidence for the existence of a dedicated mechanism that counteracts a positive feedback loop between RNAi and heterochromatin at heterochromatin-euchromatin borders to maintain the integrity of the somatic genome. The HP1-like protein Coi6p confines small RNA and heterochromatin formation Two Coi6p-binding proteins and the histone demethylase Jmj1p likely act with Coi6p Coi6p and Jmj1p are important for preventing ectopic DNA elimination Suppression of RNAi-heterochromatin feedback loop maintains somatic genome integrity
Collapse
Affiliation(s)
- Jan H Suhren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Tomoko Noto
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria; Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier, France
| | - Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Shan Gao
- Pathology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifan Liu
- Pathology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria; Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier, France.
| |
Collapse
|
19
|
The RNAi Inheritance Machinery of Caenorhabditis elegans. Genetics 2017; 206:1403-1416. [PMID: 28533440 DOI: 10.1534/genetics.116.198812] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/17/2017] [Indexed: 12/30/2022] Open
Abstract
Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in Caenorhabditis elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4 The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1 Together, our results identify additional components of the RNAi inheritance machinery whose conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality.
Collapse
|
20
|
McMurchy AN, Stempor P, Gaarenstroom T, Wysolmerski B, Dong Y, Aussianikava D, Appert A, Huang N, Kolasinska-Zwierz P, Sapetschnig A, Miska EA, Ahringer J. A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress. eLife 2017; 6:e21666. [PMID: 28294943 PMCID: PMC5395297 DOI: 10.7554/elife.21666] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/10/2017] [Indexed: 12/26/2022] Open
Abstract
Repetitive sequences derived from transposons make up a large fraction of eukaryotic genomes and must be silenced to protect genome integrity. Repetitive elements are often found in heterochromatin; however, the roles and interactions of heterochromatin proteins in repeat regulation are poorly understood. Here we show that a diverse set of C. elegans heterochromatin proteins act together with the piRNA and nuclear RNAi pathways to silence repetitive elements and prevent genotoxic stress in the germ line. Mutants in genes encoding HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2, and H3K9me2 histone methyltransferase MET-2/SETDB1 also show functionally redundant sterility, increased germline apoptosis, DNA repair defects, and interactions with small RNA pathways. Remarkably, fertility of heterochromatin mutants could be partially restored by inhibiting cep-1/p53, endogenous meiotic double strand breaks, or the expression of MIRAGE1 DNA transposons. Functional redundancy among factors and pathways underlies the importance of safeguarding the genome through multiple means.
Collapse
Affiliation(s)
- Alicia N McMurchy
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tessa Gaarenstroom
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Brian Wysolmerski
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Darya Aussianikava
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Alexandra Sapetschnig
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Eric A Miska
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Forsburg SL, Shen KF. Centromere Stability: The Replication Connection. Genes (Basel) 2017; 8:genes8010037. [PMID: 28106789 PMCID: PMC5295031 DOI: 10.3390/genes8010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022] Open
Abstract
The fission yeast centromere, which is similar to metazoan centromeres, contains highly repetitive pericentromere sequences that are assembled into heterochromatin. This is required for the recruitment of cohesin and proper chromosome segregation. Surprisingly, the pericentromere replicates early in the S phase. Loss of heterochromatin causes this domain to become very sensitive to replication fork defects, leading to gross chromosome rearrangements. This review examines the interplay between components of DNA replication, heterochromatin assembly, and cohesin dynamics that ensures maintenance of genome stability and proper chromosome segregation.
Collapse
Affiliation(s)
- Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | - Kuo-Fang Shen
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| |
Collapse
|
22
|
Yu Y, Zhou H, Deng X, Wang W, Lu H. Set3 contributes to heterochromatin integrity by promoting transcription of subunits of Clr4-Rik1-Cul4 histone methyltransferase complex in fission yeast. Sci Rep 2016; 6:31752. [PMID: 27538348 PMCID: PMC4990937 DOI: 10.1038/srep31752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/25/2016] [Indexed: 02/05/2023] Open
Abstract
Heterochromatin formation in fission yeast depends on RNAi machinery and histone-modifying enzymes. One of the key histone-modifying complexes is Clr4-Rik1-Cul4 methyltransferase complex (CLRC), which mediates histone H3K9 methylation, a hallmark for heterochromatin. CLRC is composed of the Clr4 histone methyltransferase, Rik1, Raf1, Raf2 and Pcu4. However, transcriptional regulation of the CLRC subunits is not well understood. In this study, we identified Set3, a core subunit of the Set3/Hos2 histone deacetylase complex (Set3C), as a contributor to the integrity and silencing of heterochromatin at centromeres, telomeres and silent mating-type locus. This novel role of Set3 relies on its PHD finger, but is independent of deacetylase activity or structural integrity of Set3C. Set3 is not located to the centromeric region. Instead, Set3 is targeted to the promoters of clr4+ and rik1+, probably through its PHD finger. Set3 promotes transcription of clr4+ and rik1+. Consistently, the protein levels of Clr4 and Rik1 were reduced in the set3Δ mutant. The heterochromatin silencing defect in the set3Δ mutant could be rescued by overexpressing of clr4+ or rik1+. Our study suggests transcriptional activation of essential heterochromatin factors underlies the tight regulation of heterochromatin integrity.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China
| | - Huan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China
| | - Xiaolong Deng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China
| | - Wenchao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, 200237, China
| |
Collapse
|
23
|
Abstract
SUMMARY The involvement of RNA interference (RNAi) in heterochromatin formation has become clear largely through studies in the fission yeast Schizosaccharomyces pombe and plants like Arabidopsis thaliana. This article discusses how heterochromatic small interfering RNAs are produced and how the RNAi machinery participates in the formation and function of heterochromatin.
Collapse
Affiliation(s)
| | - Danesh Moazed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115-5730
| |
Collapse
|
24
|
Abstract
Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
Collapse
Affiliation(s)
- Daniel Holoch
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
25
|
Abstract
Replication stress is a significant contributor to genome instability. Recent studies suggest that the centromere is particularly susceptible to replication stress and prone to rearrangements and genome damage, as well as chromosome loss. This effect is enhanced by loss of heterochromatin. The resulting changes in genetic organization, including chromosome loss, increased mutation and loss of heterozygosity, are important contributors to malignant growth.
Collapse
|
26
|
Juang BT, Gu C, Starnes L, Palladino F, Goga A, Kennedy S, L'Etoile ND. Endogenous nuclear RNAi mediates behavioral adaptation to odor. Cell 2013; 154:1010-1022. [PMID: 23993094 DOI: 10.1016/j.cell.2013.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/16/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
Most eukaryotic cells express small regulatory RNAs. The purpose of one class, the somatic endogenous siRNAs (endo-siRNAs), remains unclear. Here, we show that the endo-siRNA pathway promotes odor adaptation in C. elegans AWC olfactory neurons. In adaptation, the nuclear Argonaute NRDE-3, which acts in AWC, is loaded with siRNAs targeting odr-1, a gene whose downregulation is required for adaptation. Concomitant with increased odr-1 siRNA in AWC, we observe increased binding of the HP1 homolog HPL-2 at the odr-1 locus in AWC and reduced odr-1 mRNA in adapted animals. Phosphorylation of HPL-2, an in vitro substrate of the EGL-4 kinase that promotes adaption, is necessary and sufficient for behavioral adaptation. Thus, environmental stimulation amplifies an endo-siRNA negative feedback loop to dynamically repress cognate gene expression and shape behavior. This class of siRNA may act broadly as a rheostat allowing prolonged stimulation to dampen gene expression and promote cellular memory formation. PAPERFLICK:
Collapse
Affiliation(s)
- Bi-Tzen Juang
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA
| | - Chen Gu
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA; Amunix, Inc., 500 Ellis Street, Mountain View, CA 94043, USA
| | - Linda Starnes
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA; Chromatin Structure and Function Group, NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, Room 4.3.07, 2200 Copenhagen N, Denmark
| | - Francesca Palladino
- École Normale Supérieure de Lyon, CNRS, Molecular Biology of the Cell Laboratory/ UMR5239, Université Claude Bernard Lyon, 69007 Lyon, France
| | - Andrei Goga
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA
| | - Scott Kennedy
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noelle D L'Etoile
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA.
| |
Collapse
|
27
|
Li PC, Green MD, Forsburg SL. Mutations disrupting histone methylation have different effects on replication timing in S. pombe centromere. PLoS One 2013; 8:e61464. [PMID: 23658693 PMCID: PMC3641051 DOI: 10.1371/journal.pone.0061464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
The fission yeast pericentromere comprises repetitive sequence elements packaged into heterchromatin marked by histone H3K9 methylation and Swi6 binding. Transient disruption of Swi6 during S phase allows a period of RNA synthesis which programs the RNAi machinery to maintain histone methylation. However, Swi6 is also required for early replication timing. We show that not only Swi6 but also the chromodomain protein Chp1 are delocalized during S phase. Different from loss of swi6, mutations that disrupt histone methylation in the centromere, chp1Δ and clr4Δ, undergo early DNA replication. However, timing is modestly delayed in RNAi mutants dcr1Δ or rdp1Δ, while hrr1Δ mutants resemble swi6Δ in their replication delay. Finally, we show that recruitment of RNA polymerase II in the centromere occurs independently of replication. These different effects indicate that replication timing is not simply linked to histone methylation.
Collapse
Affiliation(s)
- Pao-Chen Li
- Molecular & Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Marc D. Green
- Molecular & Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Susan L. Forsburg
- Molecular & Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
Pericentromeric heterochromatin formation is mediated by repressive histone H3 lysine 9 methylation (H3K9Me) and its recognition by HP1 proteins. Intriguingly, in many organisms, RNAi is coupled to this process through poorly understood mechanisms. In Schizosaccharomyces pombe, the H3-K9 methyltransferase Clr4 and the heterochromatin protein 1 (HP1) ortholog Swi6 are critical for RNAi, whereas RNAi stimulates H3K9Me. In addition to the endoribonuclease Dcr1, RNAi in S. pombe requires two interacting protein complexes, the RITS complex, which contains an Argonaute subunit, and the RDRC complex, which contains an RNA-dependent RNA polymerase subunit. We previously identified Ers1 (essential for RNAi-dependent silencing) as an orphan protein that genetically acts in the RNAi pathway. Using recombinant proteins, we show here that Ers1 directly and specifically interacts with HP1/Swi6. Two-hybrid assays indicate that Ers1 also directly interacts with several RNAi factors. Consistent with these interactions, Ers1 associates in vivo with the RITS complex, the RDRC complex, and Dcr1, and it promotes interactions between these factors. Ers1, like Swi6, is also required for RNAi complexes to associate with pericentromeric noncoding RNAs. Overexpression of Ers1 results in a dominant-negative phenotype that can be specifically suppressed by increasing levels of the RDRC subunit Hrr1 or of Dcr1, further supporting a functional role for Ers1 in promoting the assembly of the RNAi machinery. Through the interactions described here, Ers1 may promote RNAi by tethering the corresponding enzyme complexes to HP1-coated chromatin, thereby placing them in proximity to the nascent noncoding RNA substrate.
Collapse
|