1
|
Pincus SH, Craig RB, Weachter L, LaBranche CC, Nabi R, Watt C, Raymond M, Peters T, Song K, Maresh GA, Montefiori DC, Kozlowski PA. Bispecific Anti-HIV Immunoadhesins That Bind Gp120 and Gp41 Have Broad and Potent HIV-Neutralizing Activity. Vaccines (Basel) 2021; 9:vaccines9070774. [PMID: 34358190 PMCID: PMC8310024 DOI: 10.3390/vaccines9070774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
We have constructed bispecific immunoglobulin-like immunoadhesins that bind to both the HIV-envelope glycoproteins: gp120 and gp41. These immunoadhesins have N terminal domains of human CD4 engrafted onto the N-terminus of the heavy chain of human anti-gp41 mAb 7B2. Binding of these constructs to recombinant Env and their antiviral activities were compared to that of the parental mAbs and CD4, as well as to control mAbs. The CD4/7B2 constructs bind to both gp41 and gp140, as well as to native Env expressed on the surface of infected cells. These constructs deliver cytotoxic immunoconjugates to HIV-infected cells, but not as well as a mixture of 7B2 and sCD4, and opsonize for antibody-mediated phagocytosis. Most surprisingly, given that 7B2 neutralizes weakly, if at all, is that the chimeric CD4/7B2 immunoadhesins exhibit broad and potent neutralization of HIV, comparable to that of well-known neutralizing mAbs. These data add to the growing evidence that enhanced neutralizing activity can be obtained with bifunctional mAbs/immunoadhesins. The enhanced neutralization activity of the CD4/7B2 chimeras may result from cross-linking of the two Env subunits with subsequent inhibition of the pre-fusion conformational events that are necessary for entry.
Collapse
Affiliation(s)
- Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA; (C.W.); (M.R.); (T.P.)
- Correspondence:
| | - Ryan B. Craig
- Research Institute for Children, Children’s Hospital, New Orleans, LA 70118, USA; (R.B.C.); (L.W.); (K.S.); (G.A.M.)
- Department of Pathology, Tulane University, New Orleans, LA 70112, USA
| | - Lauren Weachter
- Research Institute for Children, Children’s Hospital, New Orleans, LA 70118, USA; (R.B.C.); (L.W.); (K.S.); (G.A.M.)
| | - Celia C. LaBranche
- Department of Surgery, Duke University, Durham, NC 27707, USA; (C.C.L.); (D.C.M.)
| | - Rafiq Nabi
- Department of Microbiology, Immunology, and Parasitology, LSU School of Medicine, New Orleans, LA 70112, USA; (R.N.); (P.A.K.)
| | - Connie Watt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA; (C.W.); (M.R.); (T.P.)
| | - Mark Raymond
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA; (C.W.); (M.R.); (T.P.)
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA; (C.W.); (M.R.); (T.P.)
| | - Kejing Song
- Research Institute for Children, Children’s Hospital, New Orleans, LA 70118, USA; (R.B.C.); (L.W.); (K.S.); (G.A.M.)
| | - Grace A. Maresh
- Research Institute for Children, Children’s Hospital, New Orleans, LA 70118, USA; (R.B.C.); (L.W.); (K.S.); (G.A.M.)
| | - David C. Montefiori
- Department of Surgery, Duke University, Durham, NC 27707, USA; (C.C.L.); (D.C.M.)
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, LSU School of Medicine, New Orleans, LA 70112, USA; (R.N.); (P.A.K.)
| |
Collapse
|
2
|
Li S, Liu M, Do MH, Chou C, Stamatiades EG, Nixon BG, Shi W, Zhang X, Li P, Gao S, Capistrano KJ, Xu H, Cheung NKV, Li MO. Cancer immunotherapy via targeted TGF-β signalling blockade in T H cells. Nature 2020; 587:121-125. [PMID: 33087933 DOI: 10.1038/s41586-020-2850-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Cancer arises from malignant cells that exist in dynamic multilevel interactions with the host tissue. Cancer therapies aiming to directly kill cancer cells, including oncogene-targeted therapy and immune-checkpoint therapy that revives tumour-reactive cytotoxic T lymphocytes, are effective in some patients1,2, but acquired resistance frequently develops3,4. An alternative therapeutic strategy aims to rectify the host tissue pathology, including abnormalities in the vasculature that foster cancer progression5,6; however, neutralization of proangiogenic factors such as vascular endothelial growth factor A (VEGFA) has had limited clinical benefits7,8. Here, following the finding that transforming growth factor-β (TGF-β) suppresses T helper 2 (TH2)-cell-mediated cancer immunity9, we show that blocking TGF-β signalling in CD4+ T cells remodels the tumour microenvironment and restrains cancer progression. In a mouse model of breast cancer resistant to immune-checkpoint or anti-VEGF therapies10,11, inducible genetic deletion of the TGF-β receptor II (TGFBR2) in CD4+ T cells suppressed tumour growth. For pharmacological blockade, we engineered a bispecific receptor decoy by attaching the TGF-β-neutralizing TGFBR2 extracellular domain to ibalizumab, a non-immunosuppressive CD4 antibody12,13, and named it CD4 TGF-β Trap (4T-Trap). Compared with a non-targeted TGF-β-Trap, 4T-Trap selectively inhibited TH cell TGF-β signalling in tumour-draining lymph nodes, causing reorganization of tumour vasculature and cancer cell death, a process dependent on the TH2 cytokine interleukin-4 (IL-4). Notably, the 4T-Trap-induced tumour tissue hypoxia led to increased VEGFA expression. VEGF inhibition enhanced the starvation-triggered cancer cell death and amplified the antitumour effect of 4T-Trap. Thus, targeted TGF-β signalling blockade in helper T cells elicits an effective tissue-level cancer defence response that can provide a basis for therapies directed towards the cancer environment.
Collapse
Affiliation(s)
- Shun Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming Liu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mytrang H Do
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Chun Chou
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Efstathios G Stamatiades
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Briana G Nixon
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Wei Shi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xian Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peng Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristelle J Capistrano
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA. .,Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bnAbs) are considered a key component of an effective HIV-1 vaccine, but despite intensive efforts, induction of bnAbs by vaccination has thus far not been possible. Potent bnAb activity is rare in natural infection and a deeper understanding of factors that promote or limit bnAb evolution is critical to guide bnAb vaccine development. This review reflects on recent key discoveries on correlates of bnAb development and discusses what further insights are needed to move forward. RECENT FINDINGS An increasing number of parameters have been implicated to influence bnAb development in natural infection. Most recent findings highlight a range of immune factors linked with bnAb evolution. Novel approaches have brought exciting progress in defining signatures of the viral envelope associated with bnAb activity. SUMMARY Focused efforts of recent years have unraveled a multiply layered process of HIV-1 bnAb development. As it is understood today, bnAb evolution can be triggered and influenced by a range of factors and several different pathways may exist how bnAb induction and maturation can occur. To capitalize on the gained knowledge, future research needs to validate factors to identify independent drivers of bnAb induction to advance vaccine design.
Collapse
|
4
|
Yoon A, Lee S, Lee S, Lim S, Park YY, Song E, Kim DS, Kim K, Lim Y. A Novel T Cell-Engaging Bispecific Antibody for Treating Mesothelin-Positive Solid Tumors. Biomolecules 2020; 10:biom10030399. [PMID: 32143496 PMCID: PMC7175222 DOI: 10.3390/biom10030399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/22/2022] Open
Abstract
As mesothelin is overexpressed in various types of cancer, it is an attractive target for therapeutic antibodies. T-cell bispecific antibodies bind to target cells and engage T cells via binding to CD3, resulting in target cell killing by T-cell activation. However, the affinity of the CD3-binding arm may influence CD3-mediated plasma clearance or antibody trapping in T-cell-containing tissues. This may then affect the biodistribution of bispecific antibodies. In this study, we used scFab and knob-into-hole technologies to construct novel IgG-based 1 + 1 MG1122-A and 2 + 1 MG1122-B bispecific antibodies against mesothelin and CD3ε. MG1122-B was designed to be bivalent to mesothelin and monovalent to CD3ε, using a 2 + 1 head-to-tail format. Activities of the two antibodies were evaluated in mesothelin-positive tumor cells in vitro and xenograft models in vivo. Although both antibodies exhibited target cell killing efficacy and produced regression of xenograft tumors with CD8+ T-cell infiltration, the antitumor efficacy of MG1122-B was significantly higher. MG1122-B may improve tumor targeting because of its bivalency for tumor antigen. It may also reduce systemic toxicity by limiting the activation of circulating T cells. Thus, MG1122-B may be useful for treating mesothelin-positive solid tumors.
Collapse
|
5
|
Prigent J, Jarossay A, Planchais C, Eden C, Dufloo J, Kök A, Lorin V, Vratskikh O, Couderc T, Bruel T, Schwartz O, Seaman MS, Ohlenschläger O, Dimitrov JD, Mouquet H. Conformational Plasticity in Broadly Neutralizing HIV-1 Antibodies Triggers Polyreactivity. Cell Rep 2019; 23:2568-2581. [PMID: 29847789 PMCID: PMC5990490 DOI: 10.1016/j.celrep.2018.04.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
Human high-affinity antibodies to pathogens often recognize unrelated ligands. The molecular origin and the role of this polyreactivity are largely unknown. Here, we report that HIV-1 broadly neutralizing antibodies (bNAbs) are frequently polyreactive, cross-reacting with non-HIV-1 molecules, including self-antigens. Mutating bNAb genes to increase HIV-1 binding and neutralization also results in de novo polyreactivity. Unliganded paratopes of polyreactive bNAbs with improved HIV-1 neutralization exhibit a conformational flexibility, which contributes to enhanced affinity of bNAbs to various HIV-1 envelope glycoproteins and non-HIV antigens. Binding adaptation of polyreactive bNAbs to the divergent ligands mainly involves hydrophophic interactions. Plasticity of bNAbs' paratopes may, therefore, facilitate accommodating divergent viral variants, but it simultaneously triggers promiscuous binding to non-HIV-1 antigens. Thus, a certain level of polyreactivity can be a mark of adaptable antibodies displaying optimal pathogens' recognition.
Collapse
Affiliation(s)
- Julie Prigent
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Annaëlle Jarossay
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Cyril Planchais
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Caroline Eden
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | - Ayrin Kök
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Valérie Lorin
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Oxana Vratskikh
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Thérèse Couderc
- Biology of Infection Unit, INSERM U1117, Department of Cell Biology and Infection, Institut Pasteur, Paris 75015, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | | | | | - Jordan D Dimitrov
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France.
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France.
| |
Collapse
|
6
|
Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat SD, Mahboudi F, Rahimi-Jamnani F. Single-Chain Variable Fragment-Based Bispecific Antibodies: Hitting Two Targets with One Sophisticated Arrow. Mol Ther Oncolytics 2019; 14:38-56. [PMID: 31011631 PMCID: PMC6463744 DOI: 10.1016/j.omto.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the success of monoclonal antibodies (mAbs) to treat some disorders, the monospecific molecular entity of mAbs as well as the presence of multiple factors and pathways involved in the pathogenesis of disorders, such as various malignancies, infectious diseases, and autoimmune disorders, and resistance to therapy have restricted the therapeutic efficacy of mAbs in clinical use. Bispecific antibodies (bsAbs), by concurrently recognizing two targets, can partly circumvent these problems. Serial killing of tumor cells by bsAb-redirected T cells, simultaneous blocking of two antigens involved in the HIV-1 infection, and concurrent targeting of the activating and inhibitory receptors on B cells to modulate autoimmunity are part of the capabilities of bsAbs. After designing and developing a large number of bsAbs for years, catumaxomab, a full-length bsAb targeting EpCAM and CD3, was approved in 2009 to treat EpCAM-positive carcinomas besides blinatumomab, a bispecific T cell engager antibody targeting CD19 and CD3, which was approved in 2014 to treat relapsed or refractory acute lymphoblastic leukemia. Furthermore, approximately 60 bsAbs are under investigation in clinical trials. The current review aims at portraying different formats of the single-chain variable fragment (scFv)-based bsAbs and shedding light on the scFv-based bsAbs in preclinical development, different phases of clinical trials, and the market.
Collapse
Affiliation(s)
- Raoufeh Ahamadi-Fesharaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Weiss RA, Verrips CT. Nanobodies that Neutralize HIV. Vaccines (Basel) 2019; 7:vaccines7030077. [PMID: 31370301 PMCID: PMC6789485 DOI: 10.3390/vaccines7030077] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Nanobodies or VHH (variable domains of heavy-chain only antibodies) are derived from camelid species such as llamas and camels. Nanobodies isolated and selected through phage display can neutralize a broad range of human immunodeficiency virus type 1 (HIV-1) strains. Nanobodies fit into canyons on the HIV envelope that may not be accessible to IgG (immunoglobulin G) containing both heavy and light chains, and they tend to have long CDR3 (complementarity-determining region 3) loops that further enhance recognition of otherwise cryptic epitopes. Nanobodies are readily expressed at high levels in bacteria and yeast, as well as by viral vectors, and they form relatively stable, heat-resistant molecules. Nanobodies can be linked to human Fc chains to gain immune effector functions. Bivalent and trivalent nanobodies recognizing the same or distinct epitopes on the envelope glycoproteins, gp120 and gp41, greatly increase the potency of HIV-1 neutralization. Nanobodies have potential applications for HIV-1 diagnostics, vaccine design, microbicides, immunoprophylaxis, and immunotherapy.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, 90 Gower Street, London WC1E 6BT, UK.
| | - C Theo Verrips
- QVQ Holding bv, Padualaan 8, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|
8
|
Kwak K, Akkaya M, Pierce SK. B cell signaling in context. Nat Immunol 2019; 20:963-969. [PMID: 31285625 DOI: 10.1038/s41590-019-0427-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Over the past several decades, B cell antigen receptor (BCR)-induced signaling pathways have been described in extraordinary molecular detail, mainly from studies of B cell responses to antigens in vitro. BCR signaling has been shown to govern the initiation of transcriptional programs associated with B cell activation and fate decisions, as well as the BCR-dependent processing of antigen and presentation of antigen to T cells. However, although the potential of the BCR to orchestrate B cell behavior was known, there was no clear appreciation of the context in which B cells signal in secondary lymphoid organs in vivo or how that context influences signaling. In this Review, we describe the current view of the cellular consequences of BCR signaling and advances in the understanding of B cell signaling in context in vivo.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
9
|
Strokappe NM, Hock M, Rutten L, Mccoy LE, Back JW, Caillat C, Haffke M, Weiss RA, Weissenhorn W, Verrips T. Super Potent Bispecific Llama VHH Antibodies Neutralize HIV via a Combination of gp41 and gp120 Epitopes. Antibodies (Basel) 2019; 8:antib8020038. [PMID: 31544844 PMCID: PMC6640723 DOI: 10.3390/antib8020038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022] Open
Abstract
Broad and potent neutralizing llama single domain antibodies (VHH) against HIV-1 targeting the CD4 binding site (CD4bs) have previously been isolated upon llama immunization. Here we describe the epitopes of three additional VHH groups selected from phage libraries. The 2E7 group binds to a new linear epitope in the first heptad repeat of gp41 that is only exposed in the fusion-intermediate conformation. The 1B5 group competes with co-receptor binding and the 1F10 group interacts with the crown of the gp120 V3 loop, occluded in native Env. We present biophysical and structural details on the 2E7 interaction with gp41. In order to further increase breadth and potency, we constructed bi-specific VHH. The combination of CD4bs VHH (J3/3E3) with 2E7 group VHH enhanced strain-specific neutralization with potencies up to 1400-fold higher than the mixture of the individual VHHs. Thus, these new bivalent VHH are potent new tools to develop therapeutic approaches or microbicide intervention.
Collapse
Affiliation(s)
- Nika M Strokappe
- Department of Biology, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.
- QVQ Holding bv, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Miriam Hock
- Institute de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, F-38000 Grenoble, France.
- Immunocore Ltd., 101 Park Drive, Milto, Abingdon OX14 4RY, UK.
| | - Lucy Rutten
- Department of Biology, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.
- QVQ Holding bv, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Laura E Mccoy
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| | - Jaap W Back
- Pepscan B.V., Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands.
| | - Christophe Caillat
- Institute de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, F-38000 Grenoble, France.
| | - Matthias Haffke
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France.
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4002 Basel, Switzerland.
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| | - Winfried Weissenhorn
- Institute de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, F-38000 Grenoble, France.
| | - Theo Verrips
- Department of Biology, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.
- QVQ Holding bv, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|
10
|
Broadly resistant HIV-1 against CD4-binding site neutralizing antibodies. PLoS Pathog 2019; 15:e1007819. [PMID: 31194843 PMCID: PMC6592578 DOI: 10.1371/journal.ppat.1007819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/25/2019] [Accepted: 05/07/2019] [Indexed: 01/15/2023] Open
Abstract
Recently identified broadly neutralizing antibodies (bnAbs) show great potential for clinical interventions against HIV-1 infection. However, resistant strains may impose substantial challenges. Here, we report on the identification and characterization of a panel of HIV-1 strains with broad and potent resistance against a large number of bnAbs, particularly those targeting the CD4-binding site (CD4bs). Site-directed mutagenesis revealed that several key epitope mutations facilitate resistance and are located in the inner domain, loop D, and β23/loop V5/β24 of HIV-1 gp120. The resistance is largely correlated with binding affinity of antibodies to the envelope trimers expressed on the cell surface. Our results therefore demonstrate the existence of broadly resistant HIV-1 strains against CD4bs neutralizing antibodies. Treatment strategies based on the CD4bs bnAbs must overcome such resistance to achieve optimal clinical outcomes. Recently identified broadly neutralizing antibodies (bnAbs) show great potential for clinical interventions against HIV-1 infection. Among the bnAbs isolated to date, those targeting the CD4bs are the most abundant and thoroughly studied as they disrupt the crucial step of viral interaction with the cellular receptor molecule CD4. Despite the superior potency and breadth of these CD4bs bnAbs, each fails to neutralize a small but significant portion of pseudotyped virus panels. Here, we report on the identification and characterization of a panel of HIV-1 strains with broad and potent resistance against a large number of bnAbs, particularly those targeting the CD4bs. Resistance is largely attributed to mutated residues within the epitopes or steric hindrance imposed by the bulky side-chain or glycan shield of the mutated residues, and is largely correlated with reduced binding avidity of the antibody to the quaternary trimeric envelope protein expressed on the surface of the transfected cells. Treatment strategies based on the CD4bs bnAbs therefore must overcome such resistance to achieve optimal clinical outcomes.
Collapse
|
11
|
Heger E, Schuetz A, Vasan S. HIV Vaccine Efficacy Trials: RV144 and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:3-30. [PMID: 30030787 DOI: 10.1007/978-981-13-0484-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Despite progress in antiretroviral therapy, pre-exposure prophylaxis, microbicides, and other preventive strategies, a vaccine to prevent HIV-1 infection remains desperately needed. Development of an effective vaccine is challenged by several immunologic features of HIV-1 evidenced by the failure of five of the six HIV-1 candidate vaccine efficacy trials to date. This chapter reviews these efficacy trials with a focus on the Phase 3 RV144 trial in Thailand, the only HIV-1 vaccine efficacy trial to show a moderate protective effect of 31% with respect to placebo administration. Although modest, this protection has allowed for the study of potential immunologic correlates of protection to improve development of future HIV-1 pox-protein and other vaccine strategies. Trials in Thailand and South Africa have built upon the RV144 framework to provide additional immunologic insights which enable current and future efficacy testing of related vaccine candidates.
Collapse
Affiliation(s)
- Elizabeth Heger
- US Army Medical Materiel Development Activity, Fort Detrick, MD, USA
| | - Alexandra Schuetz
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Sandhya Vasan
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation, Bethesda, MD, USA.
| |
Collapse
|
12
|
Tang Y, Han Z, Ren H, Guo J, Chong H, Tian Y, Liu K, Xu L. A novel multivalent DNA helix-based inhibitor showed enhanced anti-HIV-1 fusion activity. Eur J Pharm Sci 2018; 125:244-253. [PMID: 30292749 DOI: 10.1016/j.ejps.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 11/27/2022]
Abstract
DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates, but further research is required to enhance their efficiency. The trimeric structure of the HIV-1 envelope glycoprotein provides a structural basis for multivalent drug design. In this work, a "multi-domain" strategy was adopted for design of an oligodeoxynucleotide with assembly, linkage, and activity domains. Built on the self-assembly of higher-order nucleic acid structure, a novel category of multivalent DNA helix-based HIV-1 fusion inhibitor could be easily obtained by a simple annealing course in solution buffer, with no other chemical synthesis for multivalent connection. An optimized multivalent molecule, M4, showed significantly higher anti-HIV-1 fusion activity than did corresponding monovalent inhibitors. Examination of the underlying mechanism indicated that M4 could interact with HIV-1 glycoproteins gp120 and gp41, thereby inhibiting 6HB formation in the fusion course. M4 also showed anti-RDDP and anti-RNase H activity of reverse transcriptase. Besides, these assembled molecules showed improved in vitro metabolic stability in liver homogenate, kidney homogenate, and rat plasma. Moreover, little acute toxicity was observed. Our findings aid in the structural design and understanding of the mechanisms of DNA helix-based HIV-1 inhibitors. This study also provides a general strategy based on a new structural paradigm for the design of other multivalent nucleic acid drugs.
Collapse
Affiliation(s)
- Yongjia Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Zeye Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Hongqian Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Jiamei Guo
- Beijing Key laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, , Institute of Materia Medica, , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huihui Chong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| |
Collapse
|
13
|
Wu X, Guo J, Niu M, An M, Liu L, Wang H, Jin X, Zhang Q, Lam KS, Wu T, Wang H, Wang Q, Du Y, Li J, Cheng L, Tang HY, Shang H, Zhang L, Zhou P, Chen Z. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice. J Clin Invest 2018; 128:2239-2251. [PMID: 29461979 DOI: 10.1172/jci96764] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/16/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral therapy (cART). Here, we investigate the potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving 2 single-chain variable fragment (scFv) binding domains of each parental bnAb, a single gene-encoded tandem bs-bnAb, BiIA-SG, displayed substantially improved breadth and potency. BiIA-SG neutralized all 124 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, variants not susceptible to parental bnAbs and to many other bnAbs with an average IC50 value of 0.073 μg/ml (range < 0.001-1.03 μg/ml). In humanized mice, an injection of BiIA-SG conferred sterile protection when administered prior to challenges with diverse live HIV-1 stains. Moreover, whereas BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of adeno-associated virus-transferred (AAV-transferred) BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for the prevention and treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Xilin Wu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Jia Guo
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Mengyue Niu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Minghui An
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Li Liu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hui Wang
- The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Xia Jin
- Unit of Antiviral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Ka Shing Lam
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Tongjin Wu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hua Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Qian Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yanhua Du
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jingjing Li
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Lin Cheng
- The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hang Ying Tang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
14
|
Han SY, Antoine A, Howard D, Chang B, Chang WS, Slein M, Deikus G, Kossida S, Duroux P, Lefranc MP, Sebra RP, Smith ML, Fofana IBF. Coupling of Single Molecule, Long Read Sequencing with IMGT/HighV-QUEST Analysis Expedites Identification of SIV gp140-Specific Antibodies from scFv Phage Display Libraries. Front Immunol 2018; 9:329. [PMID: 29545792 PMCID: PMC5837965 DOI: 10.3389/fimmu.2018.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9–25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.
Collapse
Affiliation(s)
- Seung Yub Han
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Alesia Antoine
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - David Howard
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Bryant Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Woo Sung Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Matthew Slein
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Sofia Kossida
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Marie-Paule Lefranc
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | | |
Collapse
|
15
|
HIV-Specific B Cell Frequency Correlates with Neutralization Breadth in Patients Naturally Controlling HIV-Infection. EBioMedicine 2017; 21:158-169. [PMID: 28615147 PMCID: PMC5514383 DOI: 10.1016/j.ebiom.2017.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/30/2023] Open
Abstract
HIV-specific broadly neutralizing antibodies (bnAbs) have been isolated from patients with high viremia but also from HIV controllers that repress HIV-1 replication. In these elite controllers (ECs), multiple parameters contribute to viral suppression, including genetic factors and immune responses. Defining the immune correlates associated with the generation of bnAbs may help in designing efficient immunotherapies. In this study, in ECs either positive or negative for the HLA-B*57 protective allele, in treated HIV-infected and HIV-negative individuals, we characterized memory B cell compartments and HIV-specific memory B cells responses using flow cytometry and ELISPOT. ECs preserved their memory B cell compartments and in contrast to treated patients, maintained detectable HIV-specific memory B cell responses. All ECs presented IgG1 + HIV-specific memory B cells but some individuals also preserved IgG2 + or IgG3 + responses. Importantly, we also analyzed the capacity of sera from ECs to neutralize a panel of HIV strains including transmitted/founder virus. 29% and 21% of HLA-B*57 + and HLA-B*57 − ECs, respectively, neutralized at least 40% of the viral strains tested. Remarkably, in HLA-B*57 + ECs the frequency of HIV-Env-specific memory B cells correlated positively with the neutralization breadth suggesting that preservation of HIV-specific memory B cells might contribute to the neutralizing responses in these patients. In contrast to treated HIV-infected patients, elite controllers (ECs) maintain HIV-specific memory B cell responses. In HLA-B*57 + ECs, HIV-specific B cell frequency correlates positively with the neutralization breadth of tier-2 HIV strains. In HLA-B*57 + and HLA-B*57 − ECs different antibody functions are probably involved in suppressing HIV replication.
A fraction of HIV-1-infected individuals (so-called elite controllers, ECs) naturally control HIV-1 replication maintaining undetectable viral loads. Understanding the mechanisms implicated in natural control of HIV-1 infection will help in developing efficient HIV vaccines. In ECs, we analyzed the influence of B cell antibody responses. We show that in contrast to successfully treated HIV-1-infected patients, ECs preserve memory B cell compartments and maintain HIV-specific B cell responses. In ECs positive for the protective HLA-B*57 allele, HIV-specific memory B cell responses are positively associated with the breadth of HIV neutralization. These findings will help develop novel immunotherapies to fight HIV.
Collapse
|
16
|
Huang Y, Yu J, Lanzi A, Yao X, Andrews CD, Tsai L, Gajjar MR, Sun M, Seaman MS, Padte NN, Ho DD. Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity. Cell 2017; 165:1621-1631. [PMID: 27315479 DOI: 10.1016/j.cell.2016.05.024] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/22/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
While the search for an efficacious HIV-1 vaccine remains elusive, emergence of a new generation of virus-neutralizing monoclonal antibodies (mAbs) has re-ignited the field of passive immunization for HIV-1 prevention. However, the plasticity of HIV-1 demands additional improvements to these mAbs to better ensure their clinical utility. Here, we report engineered bispecific antibodies that are the most potent and broad HIV-neutralizing antibodies to date. One bispecific antibody, 10E8V2.0/iMab, neutralized 118 HIV-1 pseudotyped viruses tested with a mean 50% inhibitory concentration (IC50) of 0.002 μg/mL. 10E8V2.0/iMab also potently neutralized 99% of viruses in a second panel of 200 HIV-1 isolates belonging to clade C, the dominant subtype accounting for ∼50% of new infections worldwide. Importantly, 10E8V2.0/iMab reduced virus load substantially in HIV-1-infected humanized mice and also provided complete protection when administered prior to virus challenge. These bispecific antibodies hold promise as novel prophylactic and/or therapeutic agents in the fight against HIV-1.
Collapse
Affiliation(s)
- Yaoxing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Anastasia Lanzi
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Xin Yao
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Chasity D Andrews
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Lily Tsai
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Mili R Gajjar
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Ming Sun
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Neal N Padte
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
17
|
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16068. [PMID: 28197421 PMCID: PMC5289440 DOI: 10.1038/mtm.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami , Miami, Florida, USA
| |
Collapse
|
18
|
Abstract
Bispecific antibody engineering, in which binding specificities toward 2 distinct epitopes are combined into a single molecule, can greatly enhance immunotherapeutic properties of monoclonal antibodies. While the bispecific antibody approach has been applied widely to targets for indications such as cancer and inflammation, the development of such agents for viral immunotherapy is only now emerging. Here, we review recent advances in the development of bispecific antibodies for viral immunotherapy, highlighting promising in vitro and in vivo results.
Collapse
Affiliation(s)
- Elisabeth K Nyakatura
- a Department of Biochemistry , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Alexandra Y Soare
- a Department of Biochemistry , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jonathan R Lai
- a Department of Biochemistry , Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
19
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
20
|
Ogishi M, Yotsuyanagi H, Moriya K, Koike K. Delineation of autoantibody repertoire through differential proteogenomics in hepatitis C virus-induced cryoglobulinemia. Sci Rep 2016; 6:29532. [PMID: 27403724 PMCID: PMC4941579 DOI: 10.1038/srep29532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022] Open
Abstract
Antibodies cross-reactive to pathogens and autoantigens are considered pivotal in both infection control and accompanying autoimmunity. However, the pathogenic roles of autoantibodies largely remain elusive without a priori knowledge of disease-specific autoantigens. Here, through a novel quantitative proteogenomics approach, we demonstrated a successful identification of immunoglobulin variable heavy chain (VH) sequences highly enriched in pathological immune complex from clinical specimens obtained from a patient with hepatitis C virus-induced cryoglobulinemia (HCV-CG). Reconstructed single-domain antibodies were reactive to both HCV antigens and potentially liver-derived human proteins. Moreover, over the course of antiviral therapy, a substantial "de-evolution" of a distinct sub-repertoire was discovered, to which proteomically identified cryoprecipitation-prone autoantibodies belonged. This sub-repertoire was characterized by IGHJ6*03-derived, long, hydrophobic complementarity determining region (CDR-H3). This study provides a proof-of-concept of de novo mining of autoantibodies and corresponding autoantigen candidates in a disease-specific context in human, thus facilitating future reverse-translational research for the discovery of novel biomarkers and the development of antigen-specific immunotherapy against various autoantibody-related disorders.
Collapse
Affiliation(s)
- Masato Ogishi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Neu KE, Henry Dunand CJ, Wilson PC. Heads, stalks and everything else: how can antibodies eradicate influenza as a human disease? Curr Opin Immunol 2016; 42:48-55. [PMID: 27268395 DOI: 10.1016/j.coi.2016.05.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022]
Abstract
Current seasonal influenza virus vaccines are effective against infection but they have to be reformulated on a regular basis to counter antigenic variations. The majority of the antibodies induced in response to seasonal vaccination are strain-specific. However, antibodies targeting conserved epitopes on the hemagglutinin protein have been identified and they offer broad protection. Most of these antibodies bind the hemagglutinin stalk domain and are generated from preexisting memory B cells. Broadly protective stalk-biased responses induced by antigenically divergent influenza strains, in concert with prior immunity, are sufficient to eradicate seasonally circulating strains. Future vaccine trials should aim to harness and maintain such a response with the realistic goal of developing a universal influenza vaccine.
Collapse
Affiliation(s)
- Karlynn E Neu
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Carole J Henry Dunand
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA.
| | - Patrick C Wilson
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Klasse PJ. How to assess the binding strength of antibodies elicited by vaccination against HIV and other viruses. Expert Rev Vaccines 2016; 15:295-311. [PMID: 26641943 DOI: 10.1586/14760584.2016.1128831] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines that protect against viral infections generally induce neutralizing antibodies. When vaccines are evaluated, the need arises to assess the affinity maturation of the antibody responses. Binding titers of polyclonal sera depend not only on the affinities of the constituent antibodies but also on their individual concentrations, which are difficult to ascertain. Therefore an assay based on chaotrope disruption of antibody-antigen complexes was designed for measuring binding strength. This assay works well with many viral antigens but gives differential results depending on the conformational dependence of epitopes on complex antigens such as the envelope glycoprotein of HIV-1. Kinetic binding assays might offer alternatives, since they can measure average off-rate constants for polyclonal antibodies in a serum. Here, potentials and fallacies of these techniques are discussed.
Collapse
Affiliation(s)
- P J Klasse
- a Department of Microbiology and Immunology, Weill Cornell Medical College , Cornell University , New York , NY , USA
| |
Collapse
|
23
|
Antibody B cell responses in HIV-1 infection. Trends Immunol 2014; 35:549-61. [DOI: 10.1016/j.it.2014.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
|
24
|
Abstract
UNLABELLED It is generally acknowledged that human broadly neutralizing antibodies (bNAbs) capable of neutralizing multiple HIV-1 clades are often polyreactive or autoreactive. Whereas polyreactivity or autoreactivity has been proposed to be crucial for neutralization breadth, no systematic, quantitative study of self-reactivity among nonneutralizing HIV-1 Abs (nNAbs) has been performed to determine whether poly- or autoreactivity in bNAbs is a consequence of chronic antigen (Ag) exposure and/or inflammation or a fundamental property of neutralization. Here, we use protein microarrays to assess binding to >9,400 human proteins and find that as a class, bNAbs are significantly more poly- and autoreactive than nNAbs. The poly- and autoreactive property is therefore not due to the infection milieu but rather is associated with neutralization. Our observations are consistent with a role of heteroligation for HIV-1 neutralization and/or structural mimicry of host Ags by conserved HIV-1 neutralization sites. Although bNAbs are more mutated than nNAbs as a group, V(D)J mutation per se does not correlate with poly- and autoreactivity. Infrequent poly- or autoreactivity among nNAbs implies that their dominance in humoral responses is due to the absence of negative control by immune regulation. Interestingly, four of nine bNAbs specific for the HIV-1 CD4 binding site (CD4bs) (VRC01, VRC02, CH106, and CH103) bind human ubiquitin ligase E3A (UBE3A), and UBE3A protein competitively inhibits gp120 binding to the VRC01 bNAb. Among these four bNAbs, avidity for UBE3A was correlated with neutralization breadth. Identification of UBE3A as a self-antigen recognized by CD4bs bNAbs offers a mechanism for the rarity of this bNAb class. IMPORTANCE Eliciting bNAbs is key for HIV-1 vaccines; most Abs elicited by HIV-1 infection or immunization, however, are strain specific or nonneutralizing, and unsuited for protection. Here, we compare the specificities of bNAbs and nNAbs to demonstrate that bNAbs are significantly more poly- and autoreactive than nNAbs. The strong association of poly- and autoreactivity with bNAbs, but not nNAbs from infected patients, indicates that the infection milieu, chronic inflammation and Ag exposure, CD4 T-cell depletion, etc., alone does not cause poly- and autoreactivity. Instead, these properties are fundamentally linked to neutralization breadth, either by the requirement for heteroligation or the consequence of host mimicry by HIV-1. Indeed, we show that human UBE3A shares an epitope(s) with HIV-1 envelope recognized by four CD4bs bNAbs. The poly- and autoreactivity of bNAbs surely contribute to the rarity of membrane-proximal external region (MPER) and CD4bs bNAbs and identify a roadblock that must be overcome to induce protective vaccines.
Collapse
|
25
|
|
26
|
West AP, Scharf L, Scheid JF, Klein F, Bjorkman PJ, Nussenzweig MC. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 2014; 156:633-48. [PMID: 24529371 DOI: 10.1016/j.cell.2014.01.052] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 11/30/2022]
Abstract
Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
27
|
Abstract
Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.
Collapse
Affiliation(s)
- Sandhya Vasan
- Department of Retrovirology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
28
|
Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol 2013; 13:693-701. [PMID: 23969737 DOI: 10.1038/nri3516] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of HIV-1 vaccine research has seen a renaissance with the identification of antibodies that neutralize most circulating HIV-1 strains. An understanding of the structural mode of target recognition that these antibodies use and the immune pathways that lead to their development is emerging. This knowledge has provided fundamental insights into the pathways that elicit broadly neutralizing antibodies and provides a foundation for active and passive immunization strategies to prevent HIV-1 infection.
Collapse
Affiliation(s)
- Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
29
|
Abstract
In the absence of a vaccine or a cure, identification of novel HIV-1 inhibitors remains important. A paper in Retrovirology describes a rationally designed bi-specific protein that irreversibly damages the viral envelope glycoprotein complex via a two-punch mechanism. In contrast to traditional drugs that inhibit essential steps in the viral life cycle at the cell surface or in the infected cells, this inhibitor cripples free virus in the absence of cells. See research article: http://www.retrovirology.com/content/9/1/104
Collapse
Affiliation(s)
- Rogier W Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Lynch HE, Stewart SM, Kepler TB, Sempowski GD, Alam SM. Surface plasmon resonance measurements of plasma antibody avidity during primary and secondary responses to anthrax protective antigen. J Immunol Methods 2013; 404:1-12. [PMID: 24316020 DOI: 10.1016/j.jim.2013.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Establishment of humoral immunity against pathogens is dependent on events that occur in the germinal center and the subsequent induction of high-affinity neutralizing antibodies. Quantitative assays that allow monitoring of affinity maturation and duration of antibody responses can provide useful information regarding the efficacy of vaccines and adjuvants. Using an anthrax protective antigen (rPA) and alum model antigen/adjuvant system, we describe a methodology for monitoring antigen-specific serum antibody concentration and avidity by surface plasmon resonance during primary and secondary immune responses. Our analyses showed that following a priming dose in mice, rPA-specific antibody concentration and avidity increases over time and reaches a maximal response in about six weeks, but gradually declines in the absence of antigenic boost. Germinal center reactions were observed early with maximal development achieved during the primary response, which coincided with peak antibody avidity responses to primary immunization. Boosting with antigen resulted in a rapid increase in rPA-specific antibody concentration and five-fold increase in avidity, which was not dependent on sustained GC development. The described methodology couples surface plasmon resonance-based plasma avidity measurements with germinal center analysis and provides a novel way to monitor humoral responses that can play a role in facilitating vaccine and adjuvant development.
Collapse
Affiliation(s)
- Heather E Lynch
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Shelley M Stewart
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Gregory D Sempowski
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - S Munir Alam
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
31
|
Monoclonal antibodies for prophylactic and therapeutic use against viral infections. ACTA ACUST UNITED AC 2013; 88:T15-T23. [PMID: 32287402 PMCID: PMC7111719 DOI: 10.1016/j.pepo.2013.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/15/2013] [Indexed: 11/21/2022]
Abstract
Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable.
Collapse
|
32
|
Lutje Hulsik D, Liu YY, Strokappe NM, Battella S, El Khattabi M, McCoy LE, Sabin C, Hinz A, Hock M, Macheboeuf P, Bonvin AMJJ, Langedijk JPM, Davis D, Forsman Quigley A, Aasa-Chapman MMI, Seaman MS, Ramos A, Poignard P, Favier A, Simorre JP, Weiss RA, Verrips CT, Weissenhorn W, Rutten L. A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition. PLoS Pathog 2013; 9:e1003202. [PMID: 23505368 PMCID: PMC3591319 DOI: 10.1371/journal.ppat.1003202] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10.
Collapse
Affiliation(s)
- David Lutje Hulsik
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Ying-ying Liu
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nika M. Strokappe
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Simone Battella
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mohamed El Khattabi
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Laura E. McCoy
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Charles Sabin
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Andreas Hinz
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Miriam Hock
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Pauline Macheboeuf
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Alexandre M. J. J. Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - David Davis
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Anna Forsman Quigley
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Marlén M. I. Aasa-Chapman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pascal Poignard
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Adrien Favier
- CNRS, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- CEA, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- UJF-Grenoble-1, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
| | - Jean-Pierre Simorre
- CNRS, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- CEA, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- UJF-Grenoble-1, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
| | - Robin A. Weiss
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - C. Theo Verrips
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
- QVQ BV, Utrecht, The Netherlands
| | - Winfried Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
- * E-mail: (WW); (LR)
| | - Lucy Rutten
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail: (WW); (LR)
| |
Collapse
|
33
|
Both L, Banyard AC, van Dolleweerd C, Wright E, Ma JKC, Fooks AR. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine 2013; 31:1553-9. [PMID: 23370150 PMCID: PMC7115371 DOI: 10.1016/j.vaccine.2013.01.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/01/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable.
Collapse
Affiliation(s)
- Leonard Both
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
| | - Ashley C. Banyard
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
| | - Craig van Dolleweerd
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
| | - Edward Wright
- School of Life Sciences, University of Westminster, London, UK
| | - Julian K.-C. Ma
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
| | - Anthony R. Fooks
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
- National Consortium for Zoonosis Research, University of Liverpool, Leahurst, Neston, South Wirral CH64 7TE, UK
- Corresponding author at: Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey KT15 3NB, UK. Tel.: +44 01932 357840; fax: +44 01932 357239.
| |
Collapse
|
34
|
Yang G, Holl TM, Liu Y, Li Y, Lu X, Nicely NI, Kepler TB, Alam SM, Liao HX, Cain DW, Spicer L, VandeBerg JL, Haynes BF, Kelsoe G. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies. ACTA ACUST UNITED AC 2013; 210:241-56. [PMID: 23359068 PMCID: PMC3570098 DOI: 10.1084/jem.20121977] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Many human monoclonal antibodies that neutralize multiple clades of HIV-1 are polyreactive and bind avidly to mammalian autoantigens. Indeed, the generation of neutralizing antibodies to the 2F5 and 4E10 epitopes of HIV-1 gp41 in man may be proscribed by immune tolerance because mice expressing the V(H) and V(L) regions of 2F5 have a block in B cell development that is characteristic of central tolerance. This developmental blockade implies the presence of tolerizing autoantigens that are mimicked by the membrane-proximal external region of HIV-1 gp41. We identify human kynureninase (KYNU) and splicing factor 3b subunit 3 (SF3B3) as the primary conserved, vertebrate self-antigens recognized by the 2F5 and 4E10 antibodies, respectively. 2F5 binds the H4 domain of KYNU which contains the complete 2F5 linear epitope (ELDKWA). 4E10 recognizes an epitope of SF3B3 that is strongly dependent on hydrophobic interactions. Opossums carry a rare KYNU H4 domain that abolishes 2F5 binding, but they retain the SF3B3 4E10 epitope. Immunization of opossums with HIV-1 gp140 induced extraordinary titers of serum antibody to the 2F5 ELDKWA epitope but little or nothing to the 4E10 determinant. Identification of structural motifs shared by vertebrates and HIV-1 provides direct evidence that immunological tolerance can impair humoral responses to HIV-1.
Collapse
Affiliation(s)
- Guang Yang
- Department of Immunology, Duke University, Durham, NC 27705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mata-Fink J, Kriegsman B, Yu HX, Zhu H, Hanson MC, Irvine DJ, Wittrup KD. Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 2012; 425:444-56. [PMID: 23159556 PMCID: PMC3785227 DOI: 10.1016/j.jmb.2012.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 11/16/2022]
Abstract
gp120 is a substrate for protein engineering both for human immunodeficiency virus (HIV) immunogen design and as a bait for isolating anti-HIV antibodies from patient samples. In this work, we describe the display of a stripped core gp120 on the yeast cell surface. Validation against a panel of neutralizing antibodies confirms that yeast-displayed gp120 presents the CD4 binding site in the correct conformation. We map the epitope of the broadly neutralizing anti-gp120 antibody VRC01 using both a random mutagenesis library and a defined mutant panel and find that the resultant epitope maps are consistent with one another and with the crystallographically identified contact residues. Mapping the VRC01-competitive antibodies b12 and b13 reveals energetic differences in their epitopes that are not obvious from existing crystal structures. These data suggest mutation sets that abrogate binding to broadly neutralizing antibodies with greater specificity than the canonical mutation D368R, useful in rapidly assessing the nature of a vaccine response.
Collapse
Affiliation(s)
- Jordi Mata-Fink
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Effect of complement on HIV-2 plasma antiviral activity is intratype specific and potent. J Virol 2012; 87:273-81. [PMID: 23077299 DOI: 10.1128/jvi.01640-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2)-infected individuals develop immunodeficiency with a considerable delay and transmit the virus at rates lower than HIV-1-infected persons. Conceivably, comparative studies on the immune responsiveness of HIV-1- and HIV-2-infected hosts may help to explain the differences in pathogenesis and transmission between the two types of infection. Previous studies have shown that the neutralizing antibody response is more potent and broader in HIV-2 than in HIV-1 infection. In the present study, we have examined further the function of the humoral immune response and studied the effect of complement on the antiviral activity of plasma from singly HIV-1- or HIV-2-infected individuals, as well as HIV-1/HIV-2 dually infected individuals. The neutralization and antibody-dependent complement-mediated inactivation of HIV-1 and HIV-2 isolates were tested in a plaque reduction assay using U87.CD4.CCR5 cells. The results showed that the addition of complement increased intratype antiviral activities of both HIV-1 and HIV-2 plasma samples, although the complement effect was more pronounced with HIV-2 than HIV-1 plasma. Using an area-under-the-curve (AUC)-based readout, multivariate statistical analysis confirmed that the type of HIV infection was independently associated with the magnitude of the complement effect. The analyses carried out with purified IgG indicated that the complement effect was largely exerted through the classical complement pathway involving IgG in both HIV-1 and HIV-2 infections. In summary, these findings suggest that antibody binding to HIV-2 structures facilitates the efficient use of complement and thereby may be one factor contributing to a strong antiviral activity present in HIV-2 infection.
Collapse
|
37
|
Craig RB, Summa CM, Corti M, Pincus SH. Anti-HIV double variable domain immunoglobulins binding both gp41 and gp120 for targeted delivery of immunoconjugates. PLoS One 2012; 7:e46778. [PMID: 23056448 PMCID: PMC3464217 DOI: 10.1371/journal.pone.0046778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/06/2012] [Indexed: 12/19/2022] Open
Abstract
Background Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs) that bind to both epitopes. Methods Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells. Findings The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK]nA) resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS]n). In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent. Conclusions DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.
Collapse
Affiliation(s)
- Ryan B. Craig
- Department of Microbiology, Immunology, and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
| | - Christopher M. Summa
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
- Department of Computer Sciences, University of New Orleans, New Orleans, Louisiana, United States of America
| | - Miriam Corti
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
| | - Seth H. Pincus
- Department of Microbiology, Immunology, and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
- Department of Pediatrics, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
38
|
Zhang MY, Yuan T, Li J, Rosa Borges A, Watkins JD, Guenaga J, Yang Z, Wang Y, Wilson R, Li Y, Polonis VR, Pincus SH, Ruprecht RM, Dimitrov DS. Identification and characterization of a broadly cross-reactive HIV-1 human monoclonal antibody that binds to both gp120 and gp41. PLoS One 2012; 7:e44241. [PMID: 22970187 PMCID: PMC3438192 DOI: 10.1371/journal.pone.0044241] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022] Open
Abstract
Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics.
Collapse
Affiliation(s)
- Mei-Yun Zhang
- AIDS Institute; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Antibody-based therapeutics have been successfully used for the treatment of various diseases and as research tools. Several well characterized, broadly neutralizing monoclonal antibodies (bnmAbs) targeting HIV-1 envelope glycoproteins or related host cell surface proteins show sterilizing protection of animals, but they are not effective when used for therapy of an established infection in humans. Recently, a number of novel bnmAbs, engineered antibody domains (eAds), and multifunctional fusion proteins have been reported which exhibit exceptionally potent and broad neutralizing activity against a wide range of HIV-1 isolates from diverse genetic subtypes. eAds could be more effective in vivo than conventional full-size antibodies generated by the human immune system. Because of their small size (12∼15 kD), they can better access sterically restricted epitopes and penetrate densely packed tissue where HIV-1 replicates than the larger full-size antibodies. HIV-1 possesses a number of mechanisms to escape neutralization by full-size antibodies but could be less likely to develop resistance to eAds. Here, we review the in vitro and in vivo antiviral efficacies of existing HIV-1 bnmAbs, summarize the development of eAds and multispecific fusion proteins as novel types of HIV-1 inhibitors, and discuss possible strategies to generate more potent antibody-based candidate therapeutics against HIV-1, including some that could be used to eradicate the virus.
Collapse
Affiliation(s)
- Rui Gong
- Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
40
|
Klein C, Sustmann C, Thomas M, Stubenrauch K, Croasdale R, Schanzer J, Brinkmann U, Kettenberger H, Regula JT, Schaefer W. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs 2012; 4:653-63. [PMID: 22925968 DOI: 10.4161/mabs.21379] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The development of bispecific antibodies has attracted substantial interest, and many different formats have been described. Those specifically containing an Fc part are mostly tetravalent, such as stabilized IgG-scFv fusions or dual-variable domain (DVD) IgGs. However, although they exhibit IgG-like properties and technical developability, these formats differ in size and geometry from classical IgG antibodies. Thus, considerable efforts focus on bispecific heterodimeric IgG antibodies that more closely mimic natural IgG molecules. The inherent chain association problem encountered when producing bispecific heterodimeric IgG antibodies can be overcome by several methods. While technologies like knobs-into-holes (KiH) combined with a common light chain or the CrossMab technology enforce the correct chain association, other approaches, e.g., the dual-acting Fab (DAF) IgGs, do not rely on a heterodimeric Fc part. This review discusses the state of the art in bispecific heterodimeric IgG antibodies, with an emphasis on recent progress.
Collapse
Affiliation(s)
- Christian Klein
- Discovery Oncology, Roche Pharma Research and Early Development pRED, Roche Glycart AG, Schlieren, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chang CH, Hinkula J, Loo M, Falkeborn T, Li R, Cardillo TM, Rossi EA, Goldenberg DM, Wahren B. A novel class of anti-HIV agents with multiple copies of enfuvirtide enhances inhibition of viral replication and cellular transmission in vitro. PLoS One 2012; 7:e41235. [PMID: 22844444 PMCID: PMC3402531 DOI: 10.1371/journal.pone.0041235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/19/2012] [Indexed: 01/08/2023] Open
Abstract
We constructed novel HIV-1 fusion inhibitors that may overcome the current limitations of enfuvirtide, the first such therapeutic in this class. The three prototypes generated by the Dock-and-Lock (DNL) technology to comprise four copies of enfuvirtide tethered site-specifically to the Fc end of different humanized monoclonal antibodies potently neutralize primary isolates (both R5-tropic and X4-tropic), as well as T-cell-adapted strains of HIV-1 in vitro. All three prototypes show EC50 values in the subnanomolar range, which are 10- to 100-fold lower than enfuvirtide and attainable whether or not the constitutive antibody targets HIV-1. The potential of such conjugates to purge latently infected cells was also demonstrated in a cell-to-cell viral inhibition assay by measuring their efficacy to inhibit the spread of HIV-1LAI from infected human peripheral blood mononuclear cells to Jurkat T cells over a period of 30 days following viral activation with 100 nM SAHA (suberoylanilide hydroxamic acid). The IgG-like half-life was not significantly different from that of the parental antibody, as shown by the mean serum concentration of one prototype in mice at 72 h. These encouraging results provide a rationale to develop further novel anti-HIV agents by coupling additional antibodies of interest with alternative HIV-inhibitors via recombinantly-produced, self-assembling, modules.
Collapse
Affiliation(s)
- Chien-Hsing Chang
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, United States of America
- * E-mail: (CHC); (BW)
| | - Jorma Hinkula
- Department of Microbiology and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Virology, Linkoping University, Linkoping, Sweden
| | - Meiyu Loo
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, United States of America
| | - Tina Falkeborn
- Department of Molecular Virology, Linkoping University, Linkoping, Sweden
| | - Rongxiu Li
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
| | | | - Edmund A. Rossi
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, United States of America
| | - David M. Goldenberg
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, United States of America
- Center for Molecular Medicine and Immunology, Garden State Cancer Center, Morris Plains, New Jersey, United States of America
| | - Britta Wahren
- Department of Microbiology and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (CHC); (BW)
| |
Collapse
|
42
|
Euler Z, Schuitemaker H. Cross-reactive broadly neutralizing antibodies: timing is everything. Front Immunol 2012; 3:215. [PMID: 22833745 PMCID: PMC3400945 DOI: 10.3389/fimmu.2012.00215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/03/2012] [Indexed: 11/23/2022] Open
Abstract
The recent surge of research into new broadly neutralizing antibodies in HIV-1 infection has recharged the field of HIV-1 vaccinology. In this review we discuss the currently known broadly neutralizing antibodies and focus on factors that may shape these antibodies in natural infection. We further discuss the role of these antibodies in the clinical course of the infection and consider immunological obstacles in inducing broadly neutralizing antibodies with a vaccine.
Collapse
Affiliation(s)
- Zelda Euler
- Landsteiner Laboratory, Sanquin Research, Amsterdam, Netherlands
| | | |
Collapse
|
43
|
Jones DD, DeIulio GA, Winslow GM. Antigen-driven induction of polyreactive IgM during intracellular bacterial infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:1440-7. [PMID: 22730531 DOI: 10.4049/jimmunol.1200878] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyreactivity is well known as a property of natural IgM produced by B-1 cells. We demonstrate that polyreactive IgM is also generated during infection of mice with Ehrlichia muris, a tick-borne intracellular bacterial pathogen. The polyreactive IgM bound self and foreign Ags, including single-stranded and double-stranded DNA, insulin, thyroglobulin, LPS, influenza virus, and Borrelia burgdorferi. Production of polyreactive IgM during infection was Ag driven, not due to polyclonal B cell activation, as the majority of polyreactive IgM recognized ehrlichial Ag(s), including an immunodominant outer membrane protein. Monoclonal polyreactive IgM derived from T cell-independent spleen plasmablasts, which was germline-encoded, also bound cytoplasmic and nuclear Ags in HEp-2 cells. Polyreactive IgM protected immunocompromised mice against lethal bacterial challenge infection. Serum from human ehrlichiosis patients also contained polyreactive and self-reactive IgM. We propose that polyreactivity increases IgM efficacy during infection but may also exacerbate or mollify the response to foreign and self Ags.
Collapse
Affiliation(s)
- Derek D Jones
- Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | | | | |
Collapse
|
44
|
Vasan S, Michael NL. Improved outlook on HIV-1 prevention and vaccine development. Expert Opin Biol Ther 2012; 12:983-94. [DOI: 10.1517/14712598.2012.688020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
HIV-1 gp120 vaccine induces affinity maturation in both new and persistent antibody clonal lineages. J Virol 2012; 86:7496-507. [PMID: 22553329 DOI: 10.1128/jvi.00426-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most antibodies that broadly neutralize HIV-1 are highly somatically mutated in antibody clonal lineages that persist over time. Here, we describe the analysis of human antibodies induced during an HIV-1 vaccine trial (GSK PRO HIV-002) that used the clade B envelope (Env) gp120 of clone W6.1D (gp120(W6.1D)). Using dual-color antigen-specific sorting, we isolated Env-specific human monoclonal antibodies (MAbs) and studied the clonal persistence of antibodies in the setting of HIV-1 Env vaccination. We found evidence of V(H) somatic mutation induced by the vaccine but only to a modest level (3.8% ± 0.5%; range 0 to 8.2%). Analysis of 34 HIV-1-reactive MAbs recovered over four immunizations revealed evidence of both sequential recruitment of naïve B cells and restimulation of previously recruited memory B cells. These recombinant antibodies recapitulated the anti-HIV-1 activity of participant serum including pseudovirus neutralization and antibody-dependent cell-mediated cytotoxicity (ADCC). One antibody (3491) demonstrated a change in specificity following somatic mutation with binding of the inferred unmutated ancestor to a linear C2 peptide while the mutated antibody reacted only with a conformational epitope in gp120 Env. Thus, gp120(W6.1D) was strongly immunogenic but over four immunizations induced levels of affinity maturation below that of broadly neutralizing MAbs. Improved vaccination strategies will be needed to drive persistent stimulation of antibody clonal lineages to induce affinity maturation that results in highly mutated HIV-1 Env-reactive antibodies.
Collapse
|
46
|
Neutralization resistance of virological synapse-mediated HIV-1 Infection is regulated by the gp41 cytoplasmic tail. J Virol 2012; 86:7484-95. [PMID: 22553332 DOI: 10.1128/jvi.00230-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can spread efficiently from infected to uninfected T cells through adhesive contacts called virological synapses (VSs). In this process, cell-surface envelope glycoprotein (Env) initiates adhesion and viral transfer into an uninfected recipient cell. Previous studies have found some HIV-1-neutralizing patient sera to be less effective at blocking VS-mediated infection than infection with cell-free virus. Here we employ sensitive flow cytometry-based infection assays to measure the inhibitory potency of HIV-1-neutralizing monoclonal antibodies (MAb) and HIV-1-neutralizing patient sera against cell-free and VS-mediated infection. To various degrees, anti-Env MAbs exhibited significantly higher 50% inhibitory concentration (IC(50)s) against VS-mediated infection than cell-free infection. Notably, the MAb 17b, which binds a CD4-induced (CD4i) epitope on gp120, displayed a 72-fold reduced efficacy against VS-mediated inocula compared to cell-free inocula. A mutant with truncation mutation in the gp41 cytoplasmic tail (CT) which is unable to modulate Env fusogenicity in response to virus particle maturation but which can still engage in cell-to-cell infection was tested for the ability to resist neutralizing antibodies. The ΔCT mutation increased cell surface staining by neutralizing antibodies, significantly enhanced neutralization of VS-mediated infection, and had reduced or no effect on cell-free infection, depending upon the antibody. Our results suggest that the gp41 CT regulates the exposure of key neutralizing epitopes during cell-to-cell infection and plays an important role in immune evasion. Vaccine strategies should consider immunogens that reflect Env conformations exposed on the infected cell surface to enhance protection against VS-mediated HIV-1 spread.
Collapse
|
47
|
Scholz JL, Cancro MP. Resolve, revise, and relax: the 3 Rs of B cell repertoire adjustment. Immunol Lett 2012; 143:2-8. [PMID: 22330846 DOI: 10.1016/j.imlet.2012.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/29/2012] [Indexed: 12/20/2022]
Abstract
Competition for limited, cell extrinsic survival factors is a general feature of peripheral selection checkpoints involved in B lymphocyte maturation and activation. Perhaps the best-characterized example involves BLyS (B lymphocyte stimulator), which modulates the size and composition of mature naïve B cell pools, but evidence for analogous competitive checkpoints is emerging for both germinal center B cells and plasma cells. Here we discuss how deliberate alteration of BLyS levels might be used to manipulate B cell repertoire selection in order to restore self-tolerance in autoimmunity, remodel the repertoire to accommodate neo-self antigens introduced through transplantation and gene therapy, or expand repertoire diversity to reveal novel, therapeutically useful specificities.
Collapse
Affiliation(s)
- Jean L Scholz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | | |
Collapse
|