1
|
Maruyama Y, Mitsutake A. Effect of Main and Side Chains on the Folding Mechanism of the Trp-Cage Miniprotein. ACS OMEGA 2023; 8:43827-43835. [PMID: 38027385 PMCID: PMC10666239 DOI: 10.1021/acsomega.3c05809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Proteins that do not fold into their functional native state have been linked to diseases. In this study, the influence of the main and side chains of individual amino acids on the folding of the tryptophan cage (Trp-cage), a designed 20-residue miniprotein, was analyzed. For this purpose, we calculated the solvation free energy (SFE) contributions of individual atoms by using the 3D-reference interaction site model with the atomic decomposition method. The mechanism by which the Trp-cage is stabilized during the folding process was examined by calculating the total energy, which is the sum of the conformational energy and SFE. The folding process of the Trp-cage resulted in a stable native state, with a total energy that was 62.4 kcal/mol lower than that of the unfolded state. The solvation entropy, which is considered to be responsible for the hydrophobic effect, contributed 31.3 kcal/mol to structural stabilization. In other words, the contribution of the solvation entropy accounted for approximately half of the total contribution to Trp-cage folding. The hydrophobic core centered on Trp6 contributed 15.6 kcal/mol to the total energy, whereas the solvation entropy contribution was 6.3 kcal/mol. The salt bridge formed by the hydrophilic side chains of Asp9 and Arg16 contributed 10.9 and 5.0 kcal/mol, respectively. This indicates that not only the hydrophobic core but also the salt bridge of the hydrophilic side chains gain solvation entropy and contribute to stabilizing the native structure of the Trp-cage.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Data
Science Center for Creative Design and Manufacturing, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
- Department
of Physics, School of Science and Technology, Meiji University, 1-1-1
Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department
of Physics, School of Science and Technology, Meiji University, 1-1-1
Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| |
Collapse
|
2
|
Sun Q, He X, Fu Y. The "Beacon" Structural Model of Protein Folding: Application for Trp-Cage in Water. Molecules 2023; 28:5164. [PMID: 37446826 DOI: 10.3390/molecules28135164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Protein folding is a process in which a polypeptide must undergo folding process to obtain its three-dimensional structure. Thermodynamically, it is a process of enthalpy to overcome the loss of conformational entropy in folding. Folding is primarily related to hydrophobic interactions and intramolecular hydrogen bondings. During folding, hydrophobic interactions are regarded to be the driving forces, especially in the initial structural collapse of a protein. Additionally, folding is guided by the strong interactions within proteins, such as intramolecular hydrogen bondings related to the α-helices and β-sheets of proteins. Therefore, a protein is divided into the folding key (FK) regions related to intramolecular hydrogen bondings and the non-folding key (non-FK) regions. Various conformations are expected for FK and non-FK regions. Different from non-FK regions, it is necessary for FK regions to form the specific conformations in folding, which are regarded as the necessary folding pathways (or "beacons"). Additionally, sequential folding is expected for the FK regions, and the intermediate state is found during folding. They are reflected on the local basins in the free energy landscape (FEL) of folding. To demonstrate the structural model, molecular dynamics (MD) simulations are conducted on the folding pathway of the TRP-cage in water.
Collapse
Affiliation(s)
- Qiang Sun
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Xian He
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Yanfang Fu
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Maruyama Y, Igarashi R, Ushiku Y, Mitsutake A. Analysis of Protein Folding Simulation with Moving Root Mean Square Deviation. J Chem Inf Model 2023; 63:1529-1541. [PMID: 36821519 PMCID: PMC10015464 DOI: 10.1021/acs.jcim.2c01444] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We apply moving root-mean-square deviation (mRMSD), which does not require a reference structure, as a method for analyzing protein dynamics. This method can be used to calculate the root-mean-square deviation (RMSD) of structure between two specified time points and to analyze protein dynamics behavior through time series analysis. We applied this method to the Trp-cage trajectory calculated by the Anton supercomputer and found that it shows regions of stable states as well as the conventional RMSD. In addition, we extracted a characteristic structure in which the side chains of Asp1 and Arg16 form hydrogen bonds near the most stable structure of the Trp-cage. We also determined that ≥20 ns is an appropriate time interval to investigate protein dynamics using mRMSD. Applying this method to NuG2 protein, we found that mRMSD can be used to detect regions of metastable states in addition to the stable state. This method can be applied to molecular dynamics simulations of proteins whose stable structures are unknown.
Collapse
Affiliation(s)
- Yutaka Maruyama
- OMRON SINIC X Corporation, Tokyo 113-0033, Japan.,Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Ryo Igarashi
- OMRON SINIC X Corporation, Tokyo 113-0033, Japan
| | | | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| |
Collapse
|
4
|
Zhao D, Zhao Y, He X, Ayers PW, Liu S. Efficient and accurate density-based prediction of macromolecular polarizabilities. Phys Chem Chem Phys 2023; 25:2131-2141. [PMID: 36562468 DOI: 10.1039/d2cp04690c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accurately and efficiently predicting macromolecules' polarizabilities is an open problem. In this work, we employ a few simple density-based quantities from the information-theoretic approach (ITA) to predict polarizability of proteins. We first build quantitative structure/property relationships between molecular polarizabilities and ITA quantities. We then verify the broad applicability of ITA quantities for polarizability prediction for inorganic, organic, and biological systems with both localized and delocalized electronic structure. As a proof-of-concept application, we predict the molecular polarizabilities of complex proteins. Based on the linear regression equations for 20 natural amino acid residues, 400 dipeptides, and 8000 tripeptides, one then predicts the molecular polarizability of a larger peptide or even a protein once the molecular wavefunction is obtained. Because it is extremely costly to determine the wavefunction for a macromolecule like a protein, we propose to combine the ITA with the linear-scaling generalized energy-based fragmentation (GEBF) method to predict the macromolecular polarizability. In GEBF, the total molecular polarizability is obtained as a linear combination of the corresponding quantities from a series of small subsystems. We can predict them based on the subsystem wavefunction and linear regression equations rather than compute them from the nearly-intractable coupled-perturbed Hartree-Fock or Kohn-Sham equations for the whole macromolecule. Computational results showcase that the GEBF-ITA protocol should be an inexpensive yet accurate theoretical tool for predicting macromolecular polarizabilities.
Collapse
Affiliation(s)
- Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, Yunnan, P. R. China
| | - Yilin Zhao
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ONL8S 4M1, Canada.
| | - Xin He
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, Shandong, P. R. China
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ONL8S 4M1, Canada.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|
5
|
Abstract
The potential of miniproteins in the biological and chemical sciences is constantly increasing. Significant progress in the design methodologies has been achieved over the last 30 years. Early approaches based on propensities of individual amino acid residues to form individual secondary structures were subsequently improved by structural analyses using NMR spectroscopy and crystallography. Consequently, computational algorithms were developed, which are now highly successful in designing structures with accuracy often close to atomic range. Further perspectives include construction of miniproteins incorporating non-native secondary structures derived from sequences with units other than α-amino acids. Noteworthy, miniproteins with extended structures, which are now feasibly accessible, are excellent scaffolds for construction of functional molecules.
Collapse
|
6
|
Kjaergaard M. Estimation of Effective Concentrations Enforced by Complex Linker Architectures from Conformational Ensembles. Biochemistry 2022; 61:171-182. [DOI: 10.1021/acs.biochem.1c00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus 8000, Denmark
- Center for Proteins in Memory─PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
7
|
Wolff M, Gast K, Evers A, Kurz M, Pfeiffer-Marek S, Schüler A, Seckler R, Thalhammer A. A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4. Biomolecules 2021; 11:biom11091305. [PMID: 34572518 PMCID: PMC8472270 DOI: 10.3390/biom11091305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix–helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers.
Collapse
Affiliation(s)
- Martin Wolff
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany; (M.W.); (K.G.); (A.S.); (R.S.)
| | - Klaus Gast
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany; (M.W.); (K.G.); (A.S.); (R.S.)
| | - Andreas Evers
- Sanofi-Aventis Deutschland GmbH, D-65926 Frankfurt, Germany; (A.E.); (M.K.); (S.P.-M.)
| | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, D-65926 Frankfurt, Germany; (A.E.); (M.K.); (S.P.-M.)
| | | | - Anja Schüler
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany; (M.W.); (K.G.); (A.S.); (R.S.)
| | - Robert Seckler
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany; (M.W.); (K.G.); (A.S.); (R.S.)
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany; (M.W.); (K.G.); (A.S.); (R.S.)
- Correspondence:
| |
Collapse
|
8
|
Boknevitz K, Darrigan C, Chrostowska A, Liu SY. Cation-π binding ability of BN indole. Chem Commun (Camb) 2020; 56:3749-3752. [PMID: 32125334 DOI: 10.1039/d0cc00869a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A BN indole-containing aromatic scaffold has been synthesized and the cation-π binding ability characterized by nuclear magnetic resonance (NMR) monitored titrations. The resulting chemical shifts were analyzed using a non-linear curve fitting procedure and the extracted association constants (Ka's) compared with the natural indole scaffold. Computations were also performed to support our findings. This work shows that incorporation of a B-N bond in place of a C-C bond in an aromatic system slightly lowers the cation-π binding ability of the arene's π-system with simple cations.
Collapse
Affiliation(s)
- Katherine Boknevitz
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | - Clovis Darrigan
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Anna Chrostowska
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA. and Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
9
|
Preußke N, Moormann W, Bamberg K, Lipfert M, Herges R, Sönnichsen FD. Visible-light-driven photocontrol of the Trp-cage protein fold by a diazocine cross-linker. Org Biomol Chem 2020; 18:2650-2660. [PMID: 32207764 DOI: 10.1039/c9ob02442e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diazocines are characterized by extraordinary photochemical properties rendering them of particular interest for switching the conformation of biomolecules with visible light. Current developments afford synthetic access to unprecedented diazocine derivatives promising particular opportunities in photocontrol of proteins and biological systems. In this work, the well-established approach of photocontrolling the secondary structure of α-helices was exploited using a diazocine to reversibly fold and unfold the tertiary structure of a small protein. The protein of choice was the globulary folded Trp-cage, a widely used model system for the elucidation of protein folding pathways. A specifically designed, short and rigid dicarboxy-functionalized diazocine-based cross-linker was attached to two solvent-exposed side chains at the α-helix of the miniprotein through the use of a primary amine-selective active ester. This cross-linking strategy is orthogonal to the common cysteine-based chemistry. The cross-linked Trp-cage was successfully photoisomerized and exhibited a strong correlation between protein fold and diazocine isomeric state. As determined by NMR spectroscopy, the cis-isomer stabilized the fold, while the trans-isomer led to complete protein unfolding. The successful switching of the protein fold in principle demonstrates the ability to control protein function, as the activity depends on their structural integrity.
Collapse
Affiliation(s)
- Nils Preußke
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrechts-University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Chalyavi F, Schmitz AJ, Tucker MJ. Unperturbed Detection of the Dynamic Structure in the Hydrophobic Core of Trp-Cage via Two-Dimensional Infrared Spectroscopy. J Phys Chem Lett 2020; 11:832-837. [PMID: 31931573 PMCID: PMC7026909 DOI: 10.1021/acs.jpclett.9b03706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The tyrosine ring mode is an intrinsic non-perturbing site-specific infrared reporter for conformational dynamics within protein systems. This transition is influenced by direct and indirect interactions associated with the electron-donating ability and the hydrophobicity of the surrounding molecules. Utilizing an intrinsic tyrosine moiety, two-dimensional infrared spectra of Trp-cage, often called the "hydrogen atom" of protein folding, were measured in the folded and denatured states to uncover the dynamics of the hydrophobic core. The vibrational lifetimes and the correlation decays of the tyrosine ring mode showed significant changes upon both temperature and chemical denaturation of the Trp-cage miniprotein, indicating important structural features of the hydrophobic core and its dynamics. The observed Trp6-Tyr3 interactions are in good agreement with the prior studies of the folded state, but they reach beyond the static structure. These stacking interactions and orientations fluctuate on the picosecond time scale as measured through the spectral dephasing within a dehydrated environment.
Collapse
Affiliation(s)
- Farzaneh Chalyavi
- Department of Chemistry , University of Nevada, Reno , Reno , Nevada 89557 , United States
| | - Andrew J Schmitz
- Department of Chemistry , University of Nevada, Reno , Reno , Nevada 89557 , United States
| | - Matthew J Tucker
- Department of Chemistry , University of Nevada, Reno , Reno , Nevada 89557 , United States
| |
Collapse
|
11
|
Graham KA, Byrne A, Mason M, Andersen NH. Optimizing the fold stability of the circularly permuted Trp-cage motif. Biopolymers 2019; 110:e23327. [PMID: 31479150 DOI: 10.1002/bip.23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 11/09/2022]
Abstract
Through optimization of the linker region and key stabilizing mutations, it has been possible to improve the stability of the circularly permuted (cp) Trp-cage miniprotein. However, even the most stable Trp-cage circular permutants are still less stable than the analogous standard topology (std) Trp-cages. Extending mutational studies of Trp-cage fold stability to cp-species, including analogs lacking chain terminal charges, has uncovered and quantitated some additional stabilizing and destabilizing interactions. Upon protonation, the circular permutants are destabilized to a much greater extent than the standard topology series. End effects, particularly Coulombic interactions, appear to be more important for the cp-series while the Y10/P4 interaction in the cp-series is not as significant a stabilizing feature as the corresponding Y3/P19 in the standard topology series.
Collapse
Affiliation(s)
- Katherine A Graham
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Aimee Byrne
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Micheal Mason
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
12
|
Graham KA, Byrne A, Son R, Andersen NH. Reversing the typical pH stability profile of the Trp-cage. Biopolymers 2019; 110:e23260. [PMID: 30779444 DOI: 10.1002/bip.23260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
The Trp-cage, an 18-20 residue miniprotein, has emerged as a primary test system for evaluating computational fold prediction and folding rate determination efforts. As it turns out, a number of stabilizing interactions in the Trp-cage folded state have a strong pH dependence; all prior Trp-cage mutants have been destabilized under carboxylate-protonating conditions. Notable among the pH dependent stabilizing interactions within the Trp-cage are: (1) an Asp as the helix N-cap, (2) an H-bonded Asp9/Arg16 salt bridge, (3) an interaction between the chain termini which are in close spatial proximity, and (4) additional side chain interactions with Asp9. In the present study, we have prepared Trp-cage species that are significantly more stable at pH 2.5 (rather than 7) and quantitated the contribution of each interaction listed above. The Trp-cage structure remains constant with the pH change. The study has also provided measures of the stabilizing contribution of indole ring shielding from surface exposure and the destabilizing effects of an ionized Asp at the C-terminus of an α-helix.
Collapse
Affiliation(s)
| | - Aimee Byrne
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Ruth Son
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Gerig JT. Examination of ethanol interactions with Trp‐cage peptide through MD simulations and intermolecular nuclear Overhauser effects. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John T. Gerig
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA USA
| |
Collapse
|
14
|
Reynolds NP, Adamcik J, Berryman JT, Handschin S, Zanjani AAH, Li W, Liu K, Zhang A, Mezzenga R. Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides. Nat Commun 2017; 8:1338. [PMID: 29109399 PMCID: PMC5673901 DOI: 10.1038/s41467-017-01424-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
Amyloidogenic model peptides are invaluable for investigating assembly mechanisms in disease related amyloids and in protein folding. During aggregation, such peptides can undergo bifurcation leading to fibrils or crystals, however the mechanisms of fibril-to-crystal conversion are unclear. We navigate herein the energy landscape of amyloidogenic peptides by studying a homologous series of hexapeptides found in animal, human and disease related proteins. We observe fibril-to-crystal conversion occurring within single aggregates via untwisting of twisted ribbon fibrils possessing saddle-like curvature and cross-sectional aspect ratios approaching unity. Changing sequence, pH or concentration shifts the growth towards larger aspect ratio species assembling into stable helical ribbons possessing mean-curvature. By comparing atomistic calculations of desolvation energies for association of peptides we parameterise a kinetic model, providing a physical explanation of fibril-to-crystal interconversion. These results shed light on the self-assembly of amyloidogenic peptides, suggesting amyloid crystals, not fibrils, represent the ground state of the protein folding energy landscape. Aggregation of amyloidogenic peptides into fibrils and crystals has incidence in several amyloid-related diseases. Here, the authors investigate the origins of the fibril-to-crystal conversion in amyloidogenic hexapeptides pointing to the amyloid crystals as the ground state in the protein folding energy landscape.
Collapse
Affiliation(s)
- Nicholas P Reynolds
- Swinburne University of Technology, ARC Training Centre for Biodevices, Faculty of Science, Engineering and Technology, John Street, Melbourne, VIC, 3122, Australia
| | - Jozef Adamcik
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, LFO, E23, 8092, Zürich, Switzerland
| | - Joshua T Berryman
- University of Luxembourg, Department of Physics and Materials Science, 162a Avenue de la Faïencerie, Luxembourg City, L-1511, Luxembourg
| | - Stephan Handschin
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, LFO, E23, 8092, Zürich, Switzerland
| | - Ali Asghar Hakami Zanjani
- University of Luxembourg, Department of Physics and Materials Science, 162a Avenue de la Faïencerie, Luxembourg City, L-1511, Luxembourg
| | - Wen Li
- Shanghai University, Department of Polymer Materials, Nanchen Street 333, Shanghai, 200444, China
| | - Kun Liu
- Shanghai University, Department of Polymer Materials, Nanchen Street 333, Shanghai, 200444, China
| | - Afang Zhang
- Shanghai University, Department of Polymer Materials, Nanchen Street 333, Shanghai, 200444, China
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, LFO, E23, 8092, Zürich, Switzerland. .,ETH Zurich, Department of Materials, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland.
| |
Collapse
|
15
|
Anderson JM, Kier BL, Jurban B, Byrne A, Shu I, Eidenschink LA, Shcherbakov AA, Hudson M, Fesinmeyer RM, Andersen NH. Aryl-aryl interactions in designed peptide folds: Spectroscopic characteristics and optimal placement for structure stabilization. Biopolymers 2016; 105:337-356. [PMID: 26850220 PMCID: PMC5638712 DOI: 10.1002/bip.22821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/27/2023]
Abstract
We have extended our studies of Trp/Trp to other Aryl/Aryl through-space interactions that stabilize hairpins and other small polypeptide folds. Herein we detail the NMR and CD spectroscopic features of these types of interactions. NMR data remains the best diagnostic for characterizing the common T-shape orientation. Designated as an edge-to-face (EtF or FtE) interaction, large ring current shifts are produced at the edge aryl ring hydrogens and, in most cases, large exciton couplets appear in the far UV circular dichroic (CD) spectrum. The preference for the face aryl in FtE clusters is W ≫ Y ≥ F (there are some exceptions in the Y/F order); this sequence corresponds to the order of fold stability enhancement and always predicts the amplitude of the lower energy feature of the exciton couplet in the CD spectrum. The CD spectra for FtE W/W, W/Y, Y/W, and Y/Y pairs all include an intense feature at 225-232 nm. An additional couplet feature seen for W/Y, W/F, Y/Y, and F/Y clusters, is a negative feature at 197-200 nm. Tyr/Tyr (as well as F/Y and F/F) interactions produce much smaller exciton couplet amplitudes. The Trp-cage fold was employed to search for the CD effects of other Trp/Trp and Trp/Tyr cluster geometries: several were identified. In this account, we provide additional examples of the application of cross-strand aryl/aryl clusters for the design of stable β-sheet models and a scale of fold stability increments associated with all possible FtE Ar/Ar clusters in several structural contexts. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 337-356, 2016.
Collapse
Affiliation(s)
- Jordan M Anderson
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Brandon L Kier
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Brice Jurban
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Aimee Byrne
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Irene Shu
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | | | | | - Mike Hudson
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - R M Fesinmeyer
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| |
Collapse
|
16
|
Brookes DH, Head-Gordon T. Experimental Inferential Structure Determination of Ensembles for Intrinsically Disordered Proteins. J Am Chem Soc 2016; 138:4530-8. [PMID: 26967199 DOI: 10.1021/jacs.6b00351] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We develop a Bayesian approach to determine the most probable structural ensemble model from candidate structures for intrinsically disordered proteins (IDPs) that takes full advantage of NMR chemical shifts and J-coupling data, their known errors and variances, and the quality of the theoretical back-calculation from structure to experimental observables. Our approach differs from previous formulations in the optimization of experimental and back-calculation nuisance parameters that are treated as random variables with known distributions, as opposed to structural or ensemble weight optimization or use of a reference ensemble. The resulting experimental inferential structure determination (EISD) method is size extensive with O(N) scaling, with N = number of structures, that allows for the rapid ranking of large ensemble data comprising tens of thousands of conformations. We apply the EISD approach on singular folded proteins and a corresponding set of ∼25 000 misfolded states to illustrate the problems that can arise using Boltzmann weighted priors. We then apply the EISD method to rank IDP ensembles most consistent with the NMR data and show that the primary error for ranking or creating good IDP ensembles resides in the poor back-calculation from structure to simulated experimental observable. We show that a reduction by a factor of 3 in the uncertainty of the back-calculation error can improve the discrimination among qualitatively different IDP ensembles for the amyloid-beta peptide.
Collapse
Affiliation(s)
- David H Brookes
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical and Biomolecular Engineering, ∥Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California , Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical and Biomolecular Engineering, ∥Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California , Berkeley, California 94720, United States
| |
Collapse
|
17
|
Zhou CY, Jiang F, Wu YD. Folding Thermodynamics and Mechanism of Five Trp-Cage Variants from Replica-Exchange MD Simulations with RSFF2 Force Field. J Chem Theory Comput 2015; 11:5473-80. [PMID: 26574335 DOI: 10.1021/acs.jctc.5b00581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To test whether our recently developed residue-specific force field RSFF2 can reproduce the mutational effect on the thermal stability of Trp-cage mini-protein and decipher its detailed folding mechanism, we carried out long-time replica-exchange molecular dynamics (REMD) simulations on five Trp-cage variants, including TC5b and TC10b. Initiated from their unfolded structures, the simulations not only well-reproduce their experimental structures but also their melting temperatures and folding enthalpies reasonably well. For each Trp-cage variant, the overall folding free energy landscape is apparently two-state, but some intermediate states can be observed when projected on more detailed coordinates. We also found different variants have the same major folding pathway, including the well formed PII-helix in the unfolded state, the formation of W6-P12/P18/P19 contacts and the α-helix before the transition state, the following formation of most native contacts, and the final native loop formation. The folding mechanism derived here is consistent with many previous simulations and experiments.
Collapse
Affiliation(s)
- Chen-Yang Zhou
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
18
|
Baker JL, Furbish J, Lindberg GE. Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage. J Mol Graph Model 2015; 62:202-212. [PMID: 26479192 DOI: 10.1016/j.jmgm.2015.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/14/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations.
Collapse
Affiliation(s)
- Joseph L Baker
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, United States.
| | - Jeffrey Furbish
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, United States
| | - Gerrick E Lindberg
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S. Osbourne Drive, Flagstaff, AZ 86011, United States.
| |
Collapse
|
19
|
Kamo F, Ishizuka R, Matubayasi N. Correlation analysis for heat denaturation of Trp-cage miniprotein with explicit solvent. Protein Sci 2015; 25:56-66. [PMID: 26189564 DOI: 10.1002/pro.2754] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/15/2015] [Indexed: 11/10/2022]
Abstract
Energetics was analyzed for Trp-cage miniprotein in water to elucidate the solvation effect in heat denaturation. The solvation free energy was computed for a set of protein structures at room and high temperatures with all-atom molecular dynamics simulation combined with the solution theory in the energy representation, and its correlations were investigated against the intramolecular (structural) energy of the protein and the average interaction energy of the protein with the solvent water. It was observed both at room and high temperatures that the solvation free energy is anticorrelated to the structural energy and varies in parallel to the electrostatic component of the protein-water interaction energy without correlations to the van der Waals and excluded-volume components. When the set of folded structures sampled at room temperature was compared with the set of unfolded ones at high temperature, it was found that the preference order of the two sets is in correspondence to the van der Waals and excluded-volume components in the sum of the protein intramolecular and protein-water intermolecular interactions and is not distinguished by the electrostatic component.
Collapse
Affiliation(s)
- Fumitaka Kamo
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Ryosuke Ishizuka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
20
|
Kardos J, Kiss B, Micsonai A, Rovó P, Menyhárd DK, Kovács J, Váradi G, Tóth GK, Perczel A. Phosphorylation as conformational switch from the native to amyloid state: Trp-cage as a protein aggregation model. J Phys Chem B 2015; 119:2946-55. [PMID: 25625571 DOI: 10.1021/jp5124234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 20 residue long Trp-cage miniprotein is an excellent model for both computational and experimental studies of protein folding and stability. Recently, great attention emerged to study disease-related protein misfolding, aggregation, and amyloid formation, with the aim of revealing their structural and thermodynamic background. Trp-cage is sensitive to both environmental and structure-modifying effects. It aggregates with ease upon structure destabilization, and thus it is suitable for modeling aggregation and amyloid formation. Here, we characterize the amyloid formation of several sequence modified and side-chain phosphorylated Trp-cage variants. We applied NMR, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies, molecular dynamics (MD) simulations, and transmission electron microscopy (TEM) in conjunction with thioflavin-T (ThT) fluorescence measurements to reveal the structural consequences of side-chain phosphorylation. We demonstrate that the native fold is destabilized upon serine phosphorylation, and the resultant highly dynamic structures form amyloid-like ordered aggregates with high intermolecular β-structure content. The only exception is the D9S(P) variant, which follows an alternative aggregation process by forming thin fibrils, presenting a CD spectrum of PPII helix, and showing low ThT binding capability. We propose a complex aggregation model for these Trp-cage miniproteins. This model assumes an additional aggregated state, a collagen triple helical form that can precede amyloid formation. The phosphorylation of a single serine residue serves as a conformational switch, triggering aggregation, otherwise mediated by kinases in cell. We show that Trp-cage miniprotein is indeed a realistic model of larger globular systems of composite folding and aggregation landscapes and helps us to understand the fundamentals of deleterious protein aggregation and amyloid formation.
Collapse
Affiliation(s)
- József Kardos
- Department of Biochemistry, ‡MTA-ELTE NAP B Neuroimmunology Research Group, and §Department of Anatomy, Cell and Developmental Biology, Institute of Biology Eötvös Loránd University , Pázmány P. sétány 1/C, Budapest, H-1117 Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim SB, Palmer JC, Debenedetti PG. A Computational Study of the Effect of Matrix Structural Order on Water Sorption by Trp-Cage Miniproteins. J Phys Chem B 2015; 119:1847-56. [DOI: 10.1021/jp510172w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sang Beom Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jeremy C. Palmer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
22
|
Structure of the extracellular domain of matrix protein 2 of influenza A virus in complex with a protective monoclonal antibody. J Virol 2015; 89:3700-11. [PMID: 25609808 DOI: 10.1128/jvi.02576-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The extracellular domain of influenza A virus matrix protein 2 (M2e) is conserved and is being evaluated as a quasiuniversal influenza A vaccine candidate. We describe the crystal structure at 1.6 Å resolution of M2e in complex with the Fab fragment of an M2e-specific monoclonal antibody that protects against influenza A virus challenge. This antibody binds M2 expressed on the surfaces of cells infected with influenza A virus. Five out of six complementary determining regions interact with M2e, and three highly conserved M2e residues are critical for this interaction. In this complex, M2e adopts a compact U-shaped conformation stabilized in the center by the highly conserved tryptophan residue in M2e. This is the first description of the three-dimensional structure of M2e. IMPORTANCE M2e of influenza A is under investigation as a universal influenza A vaccine, but its three-dimensional structure is unknown. We describe the structure of M2e stabilized with an M2e-specific monoclonal antibody that recognizes natural M2. We found that the conserved tryptophan is positioned in the center of the U-shaped structure of M2e and stabilizes its conformation. The structure also explains why previously reported in vivo escape viruses, selected with a similar monoclonal antibody, carried proline residue substitutions at position 10 in M2.
Collapse
|
23
|
Byrne A, Williams DV, Barua B, Hagen SJ, Kier BL, Andersen NH. Folding dynamics and pathways of the trp-cage miniproteins. Biochemistry 2014; 53:6011-21. [PMID: 25184759 PMCID: PMC4179588 DOI: 10.1021/bi501021r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Using alternate measures of fold stability for a wide variety of Trp-cage mutants has raised the possibility that prior dynamics T-jump measures may not be reporting on complete cage formation for some species. NMR relaxation studies using probes that only achieve large chemical shift difference from unfolded values on complete cage formation indicate slower folding in some but not all cases. Fourteen species have been examined, with cage formation time constants (1/kF) ranging from 0.9-7.5 μs at 300 K. The present study does not change the status of the Trp-cage as a fast folding, essentially two-state system, although it does alter the stage at which this description applies. A diversity of prestructuring events, depending on the specific analogue examined, may appear in the folding scenario, but in all cases, formation of the N-terminal helix is complete either at or before the cage-formation transition state. In contrast, the fold-stabilizing H-bonding interactions of the buried Ser14 side chain and the Arg/Asp salt bridge are post-transition state features on the folding pathway. The study has also found instances in which a [P12W] mutation is fold destabilizing but still serves to accelerate the folding process.
Collapse
Affiliation(s)
- Aimee Byrne
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | | | | | | |
Collapse
|
24
|
Singh P, Sarkar SK, Bandyopadhyay P. Wang-Landau density of states based study of the folding-unfolding transition in the mini-protein Trp-cage (TC5b). J Chem Phys 2014; 141:015103. [DOI: 10.1063/1.4885726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Priya Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| | - Subir K. Sarkar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| |
Collapse
|
25
|
Role of tryptophan side chain dynamics on the Trp-cage mini-protein folding studied by molecular dynamics simulations. PLoS One 2014; 9:e88383. [PMID: 24563686 PMCID: PMC3921895 DOI: 10.1371/journal.pone.0088383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
The 20 residue Trp-cage mini-protein is one of smallest proteins that adopt a stable folded structure containing also well-defined secondary structure elements. The hydrophobic core is arranged around a single central Trp residue. Despite several experimental and simulation studies the detailed folding mechanism of the Trp-cage protein is still not completely understood. Starting from fully extended as well as from partially folded Trp-cage structures a series of molecular dynamics simulations in explicit solvent and using four different force fields was performed. All simulations resulted in rapid collapse of the protein to on average relatively compact states. The simulations indicate a significant dependence of the speed of folding to near-native states on the side chain rotamer state of the central Trp residue. Whereas the majority of intermediate start structures with the central Trp side chain in a near-native rotameric state folded successfully within less than 100 ns only a fraction of start structures reached near-native folded states with an initially non-native Trp side chain rotamer state. Weak restraining of the Trp side chain dihedral angles to the state in the folded protein resulted in significant acceleration of the folding both starting from fully extended or intermediate conformations. The results indicate that the side chain conformation of the central Trp residue can create a significant barrier for controlling transitions to a near native folded structure. Similar mechanisms might be of importance for the folding of other protein structures.
Collapse
|
26
|
Yegambaram K, Bulloch EMM, Kingston RL. Protein domain definition should allow for conditional disorder. Protein Sci 2013; 22:1502-18. [PMID: 23963781 DOI: 10.1002/pro.2336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.
Collapse
Affiliation(s)
- Kavestri Yegambaram
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | | | | |
Collapse
|
27
|
Okur A, Miller BT, Joo K, Lee J, Brooks BR. Generating reservoir conformations for replica exchange through the use of the conformational space annealing method. J Chem Theory Comput 2013; 9:1115-1124. [PMID: 23585739 PMCID: PMC3621806 DOI: 10.1021/ct300996m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Temperature replica exchange molecular dynamics (T-REM) has been successfully used to improve the conformational search for model peptides and small proteins. However, for larger and more complicated systems, the use of T-REM is computationally intensive since the complexity of the free energy landscape and number of replicas required increase with system size. Achieving convergence of systems with slow transition kinetics is often difficult. Several methods have been proposed to overcome the size and convergence speed issues of standard T-REM. One of these is the Reservoir Replica Exchange Method (R-REM), in which the conformational search and temperature equilibration are separated by exchanging with a pre-existing reservoir of structures. This approach allows the integration of computationally efficient search algorithms with replica exchange. The Conformational Space Annealing (CSA) method has been shown to be able to determine the global energy minimum of proteins efficiently and has been used in structure prediction successfully. CSA uses a genetic algorithm to generate a diverse set of conformations to determine the minimum energy structure. We combine these methods by using conformations generated by the CSA method to build a reservoir. R-REM is then used to seed the top replica with the structures from the reservoir; fast convergence at every temperature is observed. The efficiency of this method is then demonstrated with model peptides and small proteins, and significant improvement of efficiency is observed while maintaining the overall shape of the free energy landscape.
Collapse
Affiliation(s)
- Asim Okur
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda MD
| | - Benjamin T. Miller
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda MD
| | | | - Jooyoung Lee
- Korea Institute of Advanced Sciences, Seoul, Korea
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda MD
| |
Collapse
|
28
|
Rovó P, Stráner P, Láng A, Bartha I, Huszár K, Nyitray L, Perczel A. Structural insights into the Trp-cage folding intermediate formation. Chemistry 2013; 19:2628-40. [PMID: 23319425 DOI: 10.1002/chem.201203764] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Indexed: 02/02/2023]
Abstract
The 20 residue long Trp-cage is the smallest protein known, and thus has been the subject of several in vitro and in silico folding studies. Here, we report the multistate folding scenario of the miniprotein in atomic detail. We detected and characterized different intermediate states by temperature dependent NMR measurements of the (15)N and (13)C/(15)N labeled protein, both at neutral and acidic pH values. We developed a deconvolution technique to characterize the invisible--fully folded, unfolded and intermediate--fast exchanging states. Using nonlinear fitting methods we can obtain both the thermodynamic parameters (ΔH(F-I), T(m)(F-I), ΔC(p)(F-I) and ΔH(I-U), T(m)(I-U), ΔC(p)(I-U)) and the NMR chemical shifts of the conformers of the multistate unfolding process. During the unfolding of Trp-cage distinct intermediates evolve: a fast-exchanging intermediate is present under neutral conditions, whereas a slow-exchanging intermediate-pair emerges at acidic pH. The fast-exchanging intermediate has a native-like structure with a short α-helix in the G(11)-G(15) segment, whereas the slow-exchanging intermediate-pair presents elevated dynamics, with no detectable native-like residue contacts in which the G(11)-P(12) peptide bond has either cis or trans conformation. Heteronuclear relaxation studies combined with MD simulations revealed the source of backbone mobility and the nature of structural rearrangements during these transitions. The ability to detect structural and dynamic information about folding intermediates in vitro provides an excellent opportunity to gain new insights into the energetic aspects of the energy landscape of protein folding. Our new experimental data offer exceptional testing ground for further computational simulations.
Collapse
Affiliation(s)
- Petra Rovó
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry and Protein Modeling Group of HAS-ELTE, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/A, Hungary
| | | | | | | | | | | | | |
Collapse
|
29
|
Byrne A, Kier BL, Williams DV, Scian M, Andersen NH. Circular Permutation of the Trp-cage: Fold Rescue upon Addition of a Hydrophobic Staple. RSC Adv 2013; 2013. [PMID: 24376912 DOI: 10.1039/c3ra43674h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Trp-cage, at 20 residues in length, is generally acknowledged as the smallest fully protein-like folding motif. Linking the termini by a two-residue unit and excising one residue affords circularly permuted sequences that adopt the same structure. This represents the first successful circular permutation of any fold of less than 50-residue length. As was observed for the original topology, a hydrophobic staple near the chain termini is required for enhanced fold stability.
Collapse
Affiliation(s)
- Aimee Byrne
- Department of Chemistry, University of Washington Seattle, Washington, 98195, USA
| | - Brandon L Kier
- Department of Chemistry, University of Washington Seattle, Washington, 98195, USA
| | - D V Williams
- Department of Chemistry, University of Washington Seattle, Washington, 98195, USA
| | - Michele Scian
- Department of Chemistry, University of Washington Seattle, Washington, 98195, USA
| | - Niels H Andersen
- Department of Chemistry, University of Washington Seattle, Washington, 98195, USA
| |
Collapse
|