1
|
Zakharova K, Liu M, Greenwald JR, Caldwell BC, Qi Z, Wysocki VH, Bell CE. Structural Basis for the Interaction of Redβ Single-Strand Annealing Protein with Escherichia coli Single-Stranded DNA-Binding Protein. J Mol Biol 2024; 436:168590. [PMID: 38663547 DOI: 10.1016/j.jmb.2024.168590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Redβ is a protein from bacteriophage λ that binds to single-stranded DNA (ssDNA) to promote the annealing of complementary strands. Together with λ-exonuclease (λ-exo), Redβ is part of a two-component DNA recombination system involved in multiple aspects of genome maintenance. The proteins have been exploited in powerful methods for bacterial genome engineering in which Redβ can anneal an electroporated oligonucleotide to a complementary target site at the lagging strand of a replication fork. Successful annealing in vivo requires the interaction of Redβ with E. coli single-stranded DNA-binding protein (SSB), which coats the ssDNA at the lagging strand to coordinate access of numerous replication proteins. Previous mutational analysis revealed that the interaction between Redβ and SSB involves the C-terminal domain (CTD) of Redβ and the C-terminal tail of SSB (SSB-Ct), the site for binding of numerous host proteins. Here, we have determined the x-ray crystal structure of Redβ CTD in complex with a peptide corresponding to the last nine residues of SSB (MDFDDDIPF). Formation of the complex is predominantly mediated by hydrophobic interactions between two phenylalanine side chains of SSB (Phe-171 and Phe-177) and an apolar groove on the CTD, combined with electrostatic interactions between the C-terminal carboxylate of SSB and Lys-214 of the CTD. Mutation of any of these residues to alanine significantly disrupts the interaction of full-length Redβ and SSB proteins. Structural knowledge of this interaction will help to expand the utility of Redβ-mediated recombination to a wider range of bacterial hosts for applications in synthetic biology.
Collapse
Affiliation(s)
- Katerina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Mengqi Liu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Jacelyn R Greenwald
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Brian C Caldwell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zihao Qi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Charles E Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Sun X, Huang S, Long L. Characterization, complete genome and proteome of a bacteriophage infecting a coral-derived Vibrio strain. Mar Genomics 2019. [DOI: 10.1016/j.margen.2019.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Carr CE, Marky LA. Melting Behavior of a DNA Four-Way Junction Using Spectroscopic and Calorimetric Techniques. J Am Chem Soc 2017; 139:14443-14455. [DOI: 10.1021/jacs.7b06429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carolyn E. Carr
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luis A. Marky
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
5
|
Prajapati RK, Sengupta S, Rudra P, Mukhopadhyay J. Bacillus subtilis δ Factor Functions as a Transcriptional Regulator by Facilitating the Open Complex Formation. J Biol Chem 2015; 291:1064-75. [PMID: 26546673 DOI: 10.1074/jbc.m115.686170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 01/05/2023] Open
Abstract
Most bacterial RNA polymerases (RNAP) contain five conserved subunits, viz. 2α, β, β', and ω. However, in many Gram-positive bacteria, especially in fermicutes, RNAP is associated with an additional factor, called δ. For over three decades since its identification, it had been thought that δ functioned as a subunit of RNAP to enhance the level of transcripts by recycling RNAP. In support of the previous observations, we also find that δ is involved in recycling of RNAP by releasing the RNA from the ternary complex. We further show that δ binds to RNA and is able to recycle RNAP when the length of the nascent RNA reaches a critical length. However, in this work we decipher a new function of δ. Performing biochemical and mutational analysis, we show that Bacillus subtilis δ binds to DNA immediately upstream of the promoter element at A-rich sequences on the abrB and rrnB1 promoters and facilitates open complex formation. As a result, δ facilitates RNAP to initiate transcription in the second scale, compared with minute scale in the absence of δ. Using transcription assay, we show that δ-mediated recycling of RNAP cannot be the sole reason for the enhancement of transcript yield. Our observation that δ does not bind to RNAP holo enzyme but is required to bind to DNA upstream of the -35 promoter element for transcription activation suggests that δ functions as a transcriptional regulator.
Collapse
Affiliation(s)
| | - Shreya Sengupta
- From the Department of Chemistry, Bose Institute, Kolkata-700009, India
| | - Paulami Rudra
- From the Department of Chemistry, Bose Institute, Kolkata-700009, India
| | | |
Collapse
|
6
|
Lenneman BR, Rothman-Denes LB. Structural and biochemical investigation of bacteriophage N4-encoded RNA polymerases. Biomolecules 2015; 5:647-67. [PMID: 25924224 PMCID: PMC4496689 DOI: 10.3390/biom5020647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
Bacteriophage N4 regulates the temporal expression of its genome through the activity of three distinct RNA polymerases (RNAP). Expression of the early genes is carried out by a phage-encoded, virion-encapsidated RNAP (vRNAP) that is injected into the host at the onset of infection and transcribes the early genes. These encode the components of new transcriptional machinery (N4 RNAPII and cofactors) responsible for the synthesis of middle RNAs. Both N4 RNAPs belong to the T7-like "single-subunit" family of polymerases. Herein, we describe their mechanisms of promoter recognition, regulation, and roles in the phage life cycle.
Collapse
Affiliation(s)
- Bryan R Lenneman
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | - Lucia B Rothman-Denes
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Wang WC, Wu CY, Lai YC, Lin NS, Hsu YH, Hu CC. Characterization of the cryptic AV3 promoter of ageratum yellow vein virus in prokaryotic and eukaryotic systems. PLoS One 2014; 9:e108608. [PMID: 25268755 PMCID: PMC4182527 DOI: 10.1371/journal.pone.0108608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
A cryptic prokaryotic promoter, designated AV3 promoter, has been previously identified in certain begomovirus genus, including ageratum yellow vein virus isolate NT (AYVV-NT). In this study, we demonstrated that the core nucleotides in the putative -10 and -35 boxes are necessary but not sufficient for promoter activity in Escherichia coli, and showed that AYVV-NT AV3 promoter could specifically interact with single-stranded DNA-binding protein and sigma 70 of E. coli involved in transcription. Several AYVV-NT-encoded proteins were found to increase the activity of AV3 promoter. The transcription start sites downstream to AV3 promoter were mapped to nucleotide positions 803 or 805 in E. coli, and 856 in Nicotiana benthamiana. The eukaryotic activity of AV3 promoter and the translatability of a short downstream open reading frame were further confirmed by using a green fluorescent protein reporter construct in yeast (Saccharomyces cerevisiae) cells. These results suggested that AV3 promoter might be a remnant of evolution that retained cryptic activity at present.
Collapse
Affiliation(s)
- Wei-Chen Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Ying Wu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chin Lai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Systematic functional comparative analysis of four single-stranded DNA-binding proteins and their affection on viral RNA metabolism. PLoS One 2013; 8:e55076. [PMID: 23365690 PMCID: PMC3554691 DOI: 10.1371/journal.pone.0055076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/18/2012] [Indexed: 12/17/2022] Open
Abstract
The accumulation of single-stranded DNA-binding (SSB) proteins is essential for organisms and has various applications. However, no study has simultaneously and systematically compared the characteristics of SSB proteins. In addition, SSB proteins may bind RNA and play an unknown biological role in RNA metabolism. Here, we expressed a novel species of SSB protein derived from Thermococcus kodakarensis KOD1 (KOD), as well as SSB proteins from Thermus thermophilus (TTH), Escherichia coli, and Sulfolobus Solfataricus P2 (SSOB), abbreviated kod, tth, bl21, and ssob, respectively. These SSB proteins could bind ssDNA and viral RNA. bl21 resisted heat treatment for more than 9 h, Ssob and kod could withstand 95°C for 10 h and retain its ssDNA- and RNA-binding ability. Four SSB proteins promoted the specificity of the DNA polymerase in PCR-based 5- and 9-kb genome fragment amplification. kod also increased the amplification of a 13-kb PCR product, and SSB protein-bound RNA resisted Benzonase digestion. The SSB proteins could also enter the host cell bound to RNA, which resulted in modulation of viral RNA metabolism, particularly ssob and bl21.
Collapse
|
9
|
Marceau AH. Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 922:1-21. [PMID: 22976174 DOI: 10.1007/978-1-62703-032-8_1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Double-stranded (ds) DNA contains all of the necessary genetic information, although practical use of this information requires unwinding of the duplex DNA. DNA unwinding creates single-stranded (ss) DNA intermediates that serve as templates for myriad cellular functions. Exposure of ssDNA presents several problems to the cell. First, ssDNA is thermodynamically less stable than dsDNA, which leads to spontaneous formation of duplex secondary structures that impede genome maintenance processes. Second, relative to dsDNA, ssDNA is hypersensitive to chemical and nucleolytic attacks that can cause damage to the genome. Cells deal with these potential problems by encoding specialized ssDNA-binding proteins (SSBs) that bind to and stabilize ssDNA structures required for essential genomic processes. SSBs are essential proteins found in all domains of life. SSBs bind ssDNA with high affinity and in a sequence-independent manner and, in doing so, SSBs help to form the central nucleoprotein complex substrate for DNA replication, recombination, and repair processes. While SSBs are found in every organism, the proteins themselves share surprisingly little sequence similarity, subunit composition, and oligomerization states. All SSB proteins contain at least one DNA-binding oligonucleotide/oligosaccharide binding (OB) fold, which consists minimally of a five stranded beta-sheet arranged as a beta barrel capped by a single alpha helix. The OB fold is responsible for both ssDNA binding and oligomerization (for SSBs that operate as oligomers). The overall organization of OB folds varies between bacteria, eukaryotes, and archaea. As part of SSB/ssDNA cellular structures, SSBs play direct roles in the DNA replication, recombination, and repair. In many cases, SSBs have been found to form specific complexes with diverse genome maintenance proteins, often helping to recruit SSB/ssDNA-processing enzymes to the proper cellular sites of action. This clustering of genome maintenance factors can help to stimulate and coordinate the activities of individual enzymes and is also important for dislodging SSB from ssDNA. These features support a model in which DNA metabolic processes have evolved to work on ssDNA/SSB nucleoprotein filaments rather than on naked ssDNA. In this volume, methods are described to interrogate SSB-DNA and SSB-protein binding functions along with approaches that aim to understand the cellular functions of SSB. This introductory chapter offers a general overview of SSBs that focuses on their structures, DNA-binding mechanisms, and protein-binding partners.
Collapse
Affiliation(s)
- Aimee H Marceau
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
10
|
Richard DJ, Bolderson E, Khanna KK. Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit Rev Biochem Mol Biol 2010; 44:98-116. [PMID: 19367476 DOI: 10.1080/10409230902849180] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two single-stranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein-protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Collapse
Affiliation(s)
- Derek J Richard
- Cancer and Cell Biology Division, The Queensland Institute of Medical Research, 300 Herston Road, Herston, QLD 4006, Australia
| | | | | |
Collapse
|
11
|
Fusté JM, Wanrooij S, Jemt E, Granycome CE, Cluett TJ, Shi Y, Atanassova N, Holt IJ, Gustafsson CM, Falkenberg M. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol Cell 2010; 37:67-78. [PMID: 20129056 DOI: 10.1016/j.molcel.2009.12.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/21/2009] [Accepted: 10/14/2009] [Indexed: 11/19/2022]
Abstract
Mitochondrial DNA is replicated by a unique enzymatic machinery, which is distinct from the replication apparatus used for copying the nuclear genome. We examine here the mechanisms of origin-specific initiation of lagging-strand DNA synthesis in human mitochondria. We demonstrate that the mitochondrial RNA polymerase (POLRMT) is the primase required for initiation of DNA synthesis from the light-strand origin of DNA replication (OriL). Using only purified POLRMT and DNA replication factors, we can faithfully reconstitute OriL-dependent initiation in vitro. Leading-strand DNA synthesis is initiated from the heavy-strand origin of DNA replication and passes OriL. The single-stranded OriL is exposed and adopts a stem-loop structure. At this stage, POLRMT initiates primer synthesis from a poly-dT stretch in the single-stranded loop region. After about 25 nt, POLRMT is replaced by DNA polymerase gamma, and DNA synthesis commences. Our findings demonstrate that POLRMT can function as an origin-specific primase in mammalian mitochondria.
Collapse
Affiliation(s)
- Javier Miralles Fusté
- Division of Metabolic Diseases, Karolinska Institutet, Novum, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. Mol Cell 2008; 32:707-17. [PMID: 19061645 PMCID: PMC2639713 DOI: 10.1016/j.molcel.2008.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/02/2008] [Accepted: 10/29/2008] [Indexed: 01/07/2023]
Abstract
Coliphage N4 virion-encapsidated RNA polymerase (vRNAP) is a member of the phage T7-like single-subunit RNA polymerase (RNAP) family. Its central domain (mini-vRNAP) contains all RNAP functions of the full-length vRNAP, which recognizes a 5 to 7 base pair stem and 3 nucleotide loop hairpin DNA promoter. Here, we report the X-ray crystal structures of mini-vRNAP bound to promoters. Mini-vRNAP uses four structural motifs to recognize DNA sequences at the hairpin loop and stem and to unwind DNA. Despite their low sequence similarity, three out of four motifs are shared with T7 RNAP that recognizes a double-stranded DNA promoter. The binary complex structure and results of engineered disulfide linkage experiments reveal that the plug and motif B loop, which block the access of template DNA to the active site in the apo-form mini-vRNAP, undergo a large-scale conformational change upon promoter binding, explaining the restricted promoter specificity that is critical for N4 phage early transcription.
Collapse
|
13
|
Davydova EK, Kaganman I, Kazmierczak KM, Rothman-Denes LB. Identification of bacteriophage N4 virion RNA polymerase-nucleic acid interactions in transcription complexes. J Biol Chem 2008; 284:1962-70. [PMID: 19015264 DOI: 10.1074/jbc.m807785200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage N4 mini-virion RNA polymerase (mini-vRNAP), the 1106-amino acid transcriptionally active domain of vRNAP, recognizes single-stranded DNA template-containing promoters composed of conserved sequences and a 3-base loop-5-base pair stem hairpin structure. The major promoter recognition determinants are a purine located at the center of the hairpin loop (-11G) and a base at the hairpin stem (-8G). Mini-vRNAP is an evolutionarily highly diverged member of the T7 family of RNAPs. A two-plasmid system was developed to measure the in vivo activity of mutant mini-vRNAP enzymes. Five mini-vRNAP derivatives, each containing a pair of cysteine residues separated by approximately 100 amino acids and single cysteine-containing enzymes, were generated. These reagents were used to determine the smallest catalytically active polypeptide and to map promoter, substrate, and RNA-DNA hybrid contact sites to single amino acid residues in the enzyme by using end-labeled 5-iododeoxyuridine- and azidophenacyl-substituted oligonucleotides, cross-linkable derivatives of the initiating nucleotide, and RNA products with 5-iodouridine incorporated at specific positions. Localization of functionally important amino acid residues in the recently determined crystal structures of apomini-vRNAP and the mini-vRNAP-promoter complex and comparison with the crystal structures of the T7 RNAP initiation and elongation complexes allowed us to predict major rearrangements in mini-vRNAP in the transition from transcription initiation to elongation similar to those observed in T7 RNAP, a task otherwise precluded by the lack of sequence homology between N4 mini-vRNAP and T7 RNAP.
Collapse
Affiliation(s)
- Elena K Davydova
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
14
|
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 2008; 43:289-318. [PMID: 18937104 PMCID: PMC2583361 DOI: 10.1080/10409230802341296] [Citation(s) in RCA: 418] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems.
Collapse
Affiliation(s)
- Robert D Shereda
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
15
|
X-ray crystal structure of the polymerase domain of the bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci U S A 2008; 105:5046-51. [PMID: 18362338 DOI: 10.1073/pnas.0712325105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coliphage N4 virion RNA polymerase (vRNAP), which is injected into the host upon infection, transcribes the phage early genes from promoters that have a 5-bp stem-3 nt loop hairpin structure. Here, we describe the 2.0-A resolution x-ray crystal structure of N4 mini-vRNAP, a member of the T7-like, single-unit RNAP family and the minimal component having all RNAP functions of the full-length vRNAP. The structure resembles a "fisted right hand" with Fingers, Palm and Thumb subdomains connected to an N-terminal domain. We established that the specificity loop extending from the Fingers along with W129 of the N-terminal domain play critical roles in hairpin-promoter recognition. A comparison with the structure of the T7 RNAP initiation complex reveals that the pathway of the DNA to the active site is blocked in the apo-form vRNAP, indicating that vRNAP must undergo a large-scale conformational change upon promoter DNA binding and explaining the highly restricted promoter specificity of vRNAP that is essential for phage early transcription.
Collapse
|
16
|
Davydova EK, Santangelo TJ, Rothman-Denes LB. Bacteriophage N4 virion RNA polymerase interaction with its promoter DNA hairpin. Proc Natl Acad Sci U S A 2007; 104:7033-8. [PMID: 17438270 PMCID: PMC1855362 DOI: 10.1073/pnas.0610627104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage N4 minivirion RNA polymerase (mini-vRNAP), the RNA polymerase (RNAP) domain of vRNAP, is a member of the T7-like RNAP family. Mini-vRNAP recognizes promoters that comprise conserved sequences and a 3-base loop-5-base pair (bp) stem DNA hairpin structure on single-stranded templates. Here, we defined the DNA structural and sequence requirements for mini-vRNAP promoter recognition. Mini-vRNAP binds a 20-nucleotide (nt) N4 P2 promoter deoxyoligonucleotide with high affinity (K(d) = 2 nM) to form a salt-resistant complex. We show that mini-vRNAP interacts specifically with the central base of the hairpin loop (-11G) and a base at the stem (-8G) and that the guanine 6-keto and 7-imino groups at both positions are essential for binding and complex salt resistance. The major determinant (-11G), which must be presented to mini-vRNAP in the context of a hairpin loop, appears to interact with mini-vRNAP Trp-129. This interaction requires template single-strandedness at positions -2 and -1. Contacts with the promoter are disrupted when the RNA product becomes 11-12 nt long. This detailed description of vRNAP interaction with its promoter hairpin provides insights into RNAP-promoter interactions and explains how the injected vRNAP, which is present in one or two copies, recognizes its promoters on a single copy of the injected genome.
Collapse
Affiliation(s)
- Elena K. Davydova
- *Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637; and
| | - Thomas J. Santangelo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Lucia B. Rothman-Denes
- *Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637; and
- To whom correspondence should be addressed at:
Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, CLSC 613, Chicago, IL 60637. E-mail:
| |
Collapse
|
17
|
Cubeddu L, White MF. DNA damage detection by an archaeal single-stranded DNA-binding protein. J Mol Biol 2005; 353:507-16. [PMID: 16181640 DOI: 10.1016/j.jmb.2005.08.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/11/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Archaeal DNA repair pathways are not well defined; in particular, there are no convincing candidate proteins for detection of DNA mismatches or the bulky lesions removed by excision repair pathways. Single-stranded DNA-binding proteins (SSBs) play a central role in DNA replication, recombination and repair. The crenarchaeal SSB is a monomer with a single oligonucleotide-binding fold for single-stranded DNA binding coupled to a flexible C-terminal tail reminiscent of bacterial SSB that mediates interactions with other proteins. We demonstrate that Sulfolobus solfataricus SSB can melt DNA containing a mismatch or DNA lesion specifically in vitro. We suggest that a potential role for SSB in archaea is the detection of DNA damage due to local destabilisation of the DNA double helix, followed by recruitment of specific repair proteins. Proteins interacting specifically with a single-stranded DNA:SSB complex include several known or putative DNA repair proteins and DNA helicases.
Collapse
Affiliation(s)
- Liza Cubeddu
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews KY16 9ST, UK
| | | |
Collapse
|
18
|
Piché C, Schernthaner JP. Optimization of in vitro transcription and full-length cDNA synthesis using the T4 bacteriophage gene 32 protein. J Biomol Tech 2005; 16:239-47. [PMID: 16461948 PMCID: PMC2291727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We evaluated the effect of the T4 bacteriophage gene 32 protein (T4gp32) on in vitro transcription and reverse transcription. T4gp32 doubled the yield of in vitro transcripts obtained with T7 RNA polymerase and increased the yield of cDNA synthesis when used in combination with an RNaseH-deficient Moloney murine leukemia virus [Au: ok] reverse transcriptase. The positive effect could be correlated with the RNA chaperone activity of T4gp32. T4gp32 stimulated the synthesis of long cDNAs, particularly species longer than 7 kb. By comparison, thermal activation of reverse transcriptase with trehalose only boosted the production of shorter cDNAs. For the construction of an Arabidopsis thaliana cDNA library, where the average cDNA size is 1.2 kbp, both the presence of T4gp32 under standard reaction conditions as well as thermal activation resulted in similarly high percentages of full-length cDNA. However, the inclusion of T4gp32 in a standard reverse transcription reaction resulted in the highest cDNA yield. We conclude that the addition of T4gp32 in standard reverse transcription reactions can increase the quality and yield of full-length cDNA libraries.
Collapse
Affiliation(s)
- Caroline Piché
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Center, 960 Carling Ave. Ottawa, Ontario, K1A0C6, Canada
| | | |
Collapse
|
19
|
Adhya S, Black L, Friedman D, Hatfull G, Kreuzer K, Merril C, Oppenheim A, Rohwer F, Young R. 2004 ASM Conference on the New Phage Biology: the 'Phage Summit'. Mol Microbiol 2005; 55:1300-14. [PMID: 15720541 DOI: 10.1111/j.1365-2958.2005.04509.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In August, more than 350 conferees from 24 countries attended the ASM Conference on the New Phage Biology, in Key Biscayne, Florida. This meeting, also called the Phage Summit, was the first major international gathering in decades devoted exclusively to phage biology. What emerged from the 5 days of the Summit was a clear perspective on the explosive resurgence of interest in all aspects of bacteriophage biology. The classic phage systems like lambda and T4, reinvigorated by structural biology, bioinformatics and new molecular and cell biology tools, remain model systems of unequalled power and facility for studying fundamental biological issues. In addition, the New Phage Biology is also populated by basic and applied scientists focused on ecology, evolution, nanotechnology, bacterial pathogenesis and phage-based immunologics, therapeutics and diagnostics, resulting in a heightened interest in bacteriophages per se, rather than as a model system. Besides constituting another landmark in the long history of a field begun by d'Herelle and Twort during the early 20th century, the Summit provided a unique venue for establishment of new interactive networks for collaborative efforts between scientists of many different backgrounds, interests and expertise.
Collapse
Affiliation(s)
- Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., Rm 5138, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Davydova EK, Kazmierczak KM, Rothman-Denes LB. Bacteriophage N4-coded, virion-encapsulated DNA-dependent RNA polymerase. Methods Enzymol 2004; 370:83-94. [PMID: 14712636 DOI: 10.1016/s0076-6879(03)70008-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Elena K Davydova
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E. 58th Street, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
21
|
Carter RH, Demidenko AA, Hattingh-Willis S, Rothman-Denes LB. Phage N4 RNA polymerase II recruitment to DNA by a single-stranded DNA-binding protein. Genes Dev 2003; 17:2334-45. [PMID: 12975320 PMCID: PMC196469 DOI: 10.1101/gad.1121403] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription of bacteriophage N4 middle genes is carried out by a phage-coded, heterodimeric RNA polymerase (N4 RNAPII), which belongs to the family of T7-like RNA polymerases. In contrast to phage T7-RNAP, N4 RNAPII displays no activity on double-stranded templates and low activity on single-stranded templates. In vivo, at least one additional N4-coded protein (p17) is required for N4 middle transcription. We show that N4 ORF2 encodes p17 (gp2). Characterization of purified gp2revealed that it is a single-stranded DNA-binding protein that activates N4 RNAPII transcription on single-stranded DNA templates through specific interaction with N4 RNAPII. On the basis of the properties of the proteins involved in N4 RNAPII transcription and of middle promoters, we propose a model for N4 RNAPII promoter recognition, in which gp2plays two roles, stabilization of a single-stranded region at the promoter and recruitment of N4 RNAPII through gp2-N4 RNAPII interactions. Furthermore, we discuss our results in the context of transcription initiation by mitochondrial RNA polymerases.
Collapse
Affiliation(s)
- Richard H Carter
- Departments of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|