1
|
Hathcock D, Yu Q, Tu Y. Time-reversal symmetry breaking in the chemosensory array reveals a general mechanism for dissipation-enhanced cooperative sensing. Nat Commun 2024; 15:8892. [PMID: 39406715 PMCID: PMC11480488 DOI: 10.1038/s41467-024-52799-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
The Escherichia coli chemoreceptors form an extensive array that achieves cooperative and adaptive sensing of extracellular signals. The receptors control the activity of histidine kinase CheA, which drives a nonequilibrium phosphorylation-dephosphorylation reaction cycle for response regulator CheY. Cooperativity and dissipation are both important aspects of chemotaxis signaling, yet their consequences have only been studied separately. Recent single-cell FRET measurements revealed that kinase activity of the array spontaneously switches between active and inactive states, with asymmetric switching times that signify time-reversal symmetry breaking in the underlying dynamics. Here, we present a nonequilibrium lattice model of the chemosensory array, which demonstrates that the observed asymmetric switching dynamics can only be explained by an interplay between the dissipative reactions within individual core units and the cooperative coupling between neighboring units. Microscopically, the switching time asymmetry originates from irreversible transition paths. The model shows that strong dissipation enables sensitive and rapid signaling response by relieving the speed-sensitivity trade-off, which can be tested by future single-cell experiments. Overall, our model provides a general framework for studying biological complexes composed of coupled subunits that are individually driven by dissipative cycles and the rich nonequilibrium physics within.
Collapse
Affiliation(s)
| | - Qiwei Yu
- IBM T. J. Watson Research Center, Yorktown Heights, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, USA
| | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, USA.
| |
Collapse
|
2
|
Fukuoka H, Nishitani K, Deguchi T, Oshima T, Uchida Y, Hamamoto T, Che YS, Ishijima A. CheB localizes to polar receptor arrays during repellent adaptation. SCIENCE ADVANCES 2024; 10:eadp5636. [PMID: 39303042 PMCID: PMC11414734 DOI: 10.1126/sciadv.adp5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Adaptation of the response to stimuli is a fundamental process for all organisms. Here, we show that the adaptation enzyme CheB methylesterase of Escherichia coli assembles to the ON state receptor array after exposure to the repellent l-isoleucine and dissociates from the array after adaptation is complete. The duration of increased CheB localization and the time of highly clockwise-biased flagellar rotation were similar and depended on the strength of the stimulus. The increase in CheB at the receptor array and the decrease in cytoplasmic CheB were both ~100 molecules, which represents 15 to 20% of the total cellular content of CheB. We confirmed that the main binding site for CheB in the ON state array is the P2 domain of phosphorylated CheA, with a second minor site being the carboxyl-terminal pentapeptide of the serine chemoreceptor. Thus, we have been able to quantify the regulation of the signal output of the receptor array by the intracellular dynamics of an adaptation enzyme.
Collapse
Affiliation(s)
- Hajime Fukuoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keisuke Nishitani
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taiga Deguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taketo Oshima
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumiko Uchida
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | - Yong-Suk Che
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiko Ishijima
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Sherry DM, Graf IR, Bryant SJ, Emonet T, Machta BB. Lattice ultrasensitivity produces large gain in E. coli chemosensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596300. [PMID: 38854030 PMCID: PMC11160650 DOI: 10.1101/2024.05.28.596300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
E. coli use a regular lattice of receptors and attached kinases to detect and amplify faint chemical signals. Kinase output is characterized by precise adaptation to a wide range of background ligand levels and large gain in response to small relative changes in ligand concentration. These characteristics are well described by models which achieve their gain through equilibrium cooperativity. But these models are challenged by two experimental results. First, neither adaptation nor large gain are present in receptor binding assays. Second, in cells lacking adaptation machinery, fluctuations can sometimes be enormous, with essentially all kinases transitioning together. Here we introduce a far-from equilibrium model in which receptors gate the spread of activity between neighboring kinases. This model achieves large gain through a mechanism we term lattice ultrasensitivity (LU). In our LU model, kinase and receptor states are separate degrees of freedom, and kinase kinetics are dominated by chemical rates far-from-equilibrium rather than by equilibrium allostery. The model recapitulates the successes of past models, but also matches the challenging experimental findings. Importantly, unlike past lattice critical models, our LU model does not require parameters to be fine tuned for function.
Collapse
|
4
|
Koler M, Parkinson JS, Vaknin A. Signal integration in chemoreceptor complexes. Proc Natl Acad Sci U S A 2024; 121:e2312064121. [PMID: 38530894 PMCID: PMC10998596 DOI: 10.1073/pnas.2312064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Motile bacteria use large receptor arrays to detect chemical and physical stimuli in their environment, process this complex information, and accordingly bias their swimming in a direction they deem favorable. The chemoreceptor molecules form tripod-like trimers of receptor dimers through direct contacts between their cytoplasmic tips. A pair of trimers, together with a dedicated kinase enzyme, form a core signaling complex. Hundreds of core complexes network to form extended arrays. While considerable progress has been made in revealing the hierarchical structure of the array, the molecular properties underlying signal processing in these structures remain largely unclear. Here we analyzed the signaling properties of nonnetworked core complexes in live cells by following both conformational and kinase control responses to attractant stimuli and to output-biasing lesions at various locations in the receptor molecule. Contrary to the prevailing view that individual receptors are binary two-state devices, we demonstrate that conformational coupling between the ligand binding and the kinase-control receptor domains is, in fact, only moderate. In addition, we demonstrate communication between neighboring receptors through their trimer-contact domains that biases them to adopt similar signaling states. Taken together, these data suggest a view of signaling in receptor trimers that allows significant signal integration to occur within individual core complexes.
Collapse
Affiliation(s)
- Moriah Koler
- The Racah Institute of Physics, The Hebrew University, Jerusalem91904, Israel
| | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University, Jerusalem91904, Israel
| |
Collapse
|
5
|
Guo L, Wang YH, Cui R, Huang Z, Hong Y, Qian JW, Ni B, Xu AM, Jiang CY, Zhulin IB, Liu SJ, Li DF. Attractant and repellent induce opposing changes in the four-helix bundle ligand-binding domain of a bacterial chemoreceptor. PLoS Biol 2023; 21:e3002429. [PMID: 38079456 PMCID: PMC10735184 DOI: 10.1371/journal.pbio.3002429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Motile bacteria navigate toward favorable conditions and away from unfavorable environments using chemotaxis. Mechanisms of sensing attractants are well understood; however, molecular aspects of how bacteria sense repellents have not been established. Here, we identified malate as a repellent recognized by the MCP2201 chemoreceptor in a bacterium Comamonas testosteroni and showed that it binds to the same site as an attractant citrate. Binding determinants for a repellent and an attractant had only minor differences, and a single amino acid substitution in the binding site inverted the response to malate from a repellent to an attractant. We found that malate and citrate affect the oligomerization state of the ligand-binding domain in opposing way. We also observed opposing effects of repellent and attractant binding on the orientation of an alpha helix connecting the sensory domain to the transmembrane helix. We propose a model to illustrate how positive and negative signals might be generated.
Collapse
Affiliation(s)
- Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Hao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Rui Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Hong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jia-Wei Qian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Ni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - An-Ming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Cassidy CK, Qin Z, Frosio T, Gosink K, Yang Z, Sansom MSP, Stansfeld PJ, Parkinson JS, Zhang P. Structure of the native chemotaxis core signaling unit from phage E-protein lysed E. coli cells. mBio 2023; 14:e0079323. [PMID: 37772839 PMCID: PMC10653900 DOI: 10.1128/mbio.00793-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Bacterial chemotaxis is a ubiquitous behavior that enables cell movement toward or away from specific chemicals. It serves as an important model for understanding cell sensory signal transduction and motility. Characterization of the molecular mechanisms underlying chemotaxis is of fundamental interest and requires a high-resolution structural picture of the sensing machinery, the chemosensory array. In this study, we combine cryo-electron tomography and molecular simulation to present the complete structure of the core signaling unit, the basic building block of chemosensory arrays, from Escherichia coli. Our results provide new insight into previously poorly-resolved regions of the complex and offer a structural basis for designing new experiments to test mechanistic hypotheses.
Collapse
Affiliation(s)
- C. Keith Cassidy
- Diamond Light Source, Didcot, United Kingdom
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Zhuan Qin
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Khoosheh Gosink
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Peijun Zhang
- Diamond Light Source, Didcot, United Kingdom
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Hathcock D, Yu Q, Mello BA, Amin DN, Hazelbauer GL, Tu Y. A nonequilibrium allosteric model for receptor-kinase complexes: The role of energy dissipation in chemotaxis signaling. Proc Natl Acad Sci U S A 2023; 120:e2303115120. [PMID: 37824527 PMCID: PMC10589639 DOI: 10.1073/pnas.2303115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
The Escherichia coli chemotaxis signaling pathway has served as a model system for the adaptive sensing of environmental signals by large protein complexes. The chemoreceptors control the kinase activity of CheA in response to the extracellular ligand concentration and adapt across a wide concentration range by undergoing methylation and demethylation. Methylation shifts the kinase response curve by orders of magnitude in ligand concentration while incurring a much smaller change in the ligand binding curve. Here, we show that the disproportionate shift in binding and kinase response is inconsistent with equilibrium allosteric models. To resolve this inconsistency, we present a nonequilibrium allosteric model that explicitly includes the dissipative reaction cycles driven by adenosine triphosphate (ATP) hydrolysis. The model successfully explains all existing joint measurements of ligand binding, receptor conformation, and kinase activity for both aspartate and serine receptors. Our results suggest that the receptor complex acts as an enzyme: Receptor methylation modulates the ON-state kinetics of the kinase (e.g., phosphorylation rate), while ligand binding controls the equilibrium balance between kinase ON/OFF states. Furthermore, sufficient energy dissipation is responsible for maintaining and enhancing the sensitivity range and amplitude of the kinase response. We demonstrate that the nonequilibrium allosteric model is broadly applicable to other sensor-kinase systems by successfully fitting previously unexplained data from the DosP bacterial oxygen-sensing system. Overall, this work provides a nonequilibrium physics perspective on cooperative sensing by large protein complexes and opens up research directions for understanding their microscopic mechanisms through simultaneous measurements and modeling of ligand binding and downstream responses.
Collapse
Affiliation(s)
- David Hathcock
- IBM T. J. Watson Research Center, Yorktown Heights, NY10598
| | - Qiwei Yu
- IBM T. J. Watson Research Center, Yorktown Heights, NY10598
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Bernardo A. Mello
- International Center of Physics, Physics Institute, University of Brasilia, Brasilia70919-970, Brazil
| | - Divya N. Amin
- Department of Biochemistry, University of Missouri, Columbia, MO65211
| | | | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, NY10598
| |
Collapse
|
8
|
Chen EHL, Wang CH, Liao YT, Chan FY, Kanaoka Y, Uchihashi T, Kato K, Lai L, Chang YW, Ho MC, Chen RPY. Visualizing the membrane disruption action of antimicrobial peptides by cryo-electron tomography. Nat Commun 2023; 14:5464. [PMID: 37673860 PMCID: PMC10482868 DOI: 10.1038/s41467-023-41156-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
The abuse of antibiotics has led to the emergence of multidrug-resistant microbial pathogens, presenting a pressing challenge in global healthcare. Membrane-disrupting antimicrobial peptides (AMPs) combat so-called superbugs via mechanisms different than conventional antibiotics and have good application prospects in medicine, agriculture, and the food industry. However, the mechanism-of-action of AMPs has not been fully characterized at the cellular level due to a lack of high-resolution imaging technologies that can capture cellular-membrane disruption events in the hydrated state. Previously, we reported PepD2M, a de novo-designed AMP with potent and wide-spectrum bactericidal and fungicidal activity. In this study, we use cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM) to directly visualize the pepD2M-induced disruption of the outer and inner membranes of the Gram-negative bacterium Escherichia coli, and compared with a well-known pore-forming peptide, melittin. Our high-resolution cryo-ET images reveal how pepD2M disrupts the E. coli membrane using a carpet/detergent-like mechanism. Our studies reveal the direct membrane-disrupting consequence of AMPs on the bacterial membrane by cryo-ET, and this information provides critical insights into the mechanisms of this class of antimicrobial agents.
Collapse
Affiliation(s)
- Eric H-L Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ting Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Yueh Chan
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Yui Kanaoka
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Longsheng Lai
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
9
|
Tran T, Karunanayake Mudiyanselage APKK, Eyles SJ, Thompson LK. Bacterial chemoreceptor signaling complexes control kinase activity by stabilizing the catalytic domain of CheA. Proc Natl Acad Sci U S A 2023; 120:e2218467120. [PMID: 37523532 PMCID: PMC10410752 DOI: 10.1073/pnas.2218467120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Motile bacteria have a chemotaxis system that enables them to sense their environment and direct their swimming toward favorable conditions. Chemotaxis involves a signaling process in which ligand binding to the extracellular domain of the chemoreceptor alters the activity of the histidine kinase, CheA, bound ~300 Å away to the distal cytoplasmic tip of the receptor, to initiate a phosphorylation cascade that controls flagellar rotation. The cytoplasmic domain of the receptor is thought to propagate this signal via changes in dynamics and/or stability, but it is unclear how these changes modulate the kinase activity of CheA. To address this question, we have used hydrogen deuterium exchange mass spectrometry to probe the structure and dynamics of CheA within functional signaling complexes of the Escherichia coli aspartate receptor cytoplasmic fragment, CheA, and CheW. Our results reveal that stabilization of the P4 catalytic domain of CheA correlates with kinase activation. Furthermore, differences in activation of the kinase that occur during sensory adaptation depend on receptor destabilization of the P3 dimerization domain of CheA. Finally, hydrogen exchange properties of the P1 domain that bears the phosphorylated histidine identify the dimer interface of P1/P1' in the CheA dimer and support an ordered sequential binding mechanism of catalysis, in which dimeric P1/P1' has productive interactions with P4 only upon nucleotide binding. Thus stabilization/destabilization of domains is a key element of the mechanism of modulating CheA kinase activity in chemotaxis, and may play a role in the control of other kinases.
Collapse
Affiliation(s)
- Thomas Tran
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA01003
| | | | - Stephen J. Eyles
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA01003
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA01003
| | - Lynmarie K. Thompson
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA01003
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA01003
| |
Collapse
|
10
|
Ganusova EE, Rost M, Aksenova A, Abdulhussein M, Holden A, Alexandre G. Azospirillum brasilense AerC and Tlp4b Cytoplasmic Chemoreceptors Are Promiscuous and Interact with the Two Membrane-Bound Chemotaxis Signaling Clusters Mediating Chemotaxis Responses. J Bacteriol 2023; 205:e0048422. [PMID: 37255486 PMCID: PMC10294658 DOI: 10.1128/jb.00484-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Chemotaxis in Bacteria and Archaea depends on the presence of hexagonal polar arrays composed of membrane-bound chemoreceptors that interact with rings of baseplate signaling proteins. In the alphaproteobacterium Azospirillum brasilense, chemotaxis is controlled by two chemotaxis signaling systems (Che1 and Che4) that mix at the baseplates of two spatially distinct membrane-bound chemoreceptor arrays. The subcellular localization and organization of transmembrane chemoreceptors in chemotaxis signaling clusters have been well characterized but those of soluble chemoreceptors remain relatively underexplored. By combining mutagenesis, microscopy, and biochemical assays, we show that the cytoplasmic chemoreceptors AerC and Tlp4b function in chemotaxis and localize to and interact with membrane-bound chemoreceptors and chemotaxis signaling proteins from both polar arrays, indicating that soluble chemoreceptors are promiscuous. The interactions of AerC and Tlp4b with polar chemotaxis signaling clusters are not equivalent and suggest distinct functions. Tlp4b, but not AerC, modulates the abundance of chemoreceptors within the signaling clusters through an unknown mechanism. The AerC chemoreceptor, but not Tlp4b, is able to traffic in and out of chemotaxis signaling clusters depending on its level of expression. We also identify a role of the chemoreceptor composition of chemotaxis signaling clusters in regulating their polar subcellular organization. The organization of chemotaxis signaling proteins as large membrane-bound arrays underlies chemotaxis sensitivity. Our findings suggest that the composition of chemoreceptors may fine-tune chemotaxis signaling not only through their chemosensory specificity but also through their role in the organization of polar chemotaxis signaling clusters. IMPORTANCE Cytoplasmic chemoreceptors represent about 14% of all chemoreceptors encoded in bacterial and archaeal genomes, but little is known about how they interact with and function in large polar assemblies of membrane-bound chemotaxis signaling clusters. Here, we show that two soluble chemoreceptors with a role in chemotaxis are promiscuous and interact with two distinct membrane-bound chemotaxis signaling clusters that control all chemotaxis responses in Azospirillum brasilense. We also found that any change in the chemoreceptor composition of chemotaxis signaling clusters alters their polar organization, suggesting a dynamic interplay between the sensory specificity of chemotaxis signaling clusters and their polar membrane organization.
Collapse
Affiliation(s)
- Elena E. Ganusova
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Madison Rost
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Anastasia Aksenova
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mustafa Abdulhussein
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alisha Holden
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gladys Alexandre
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
11
|
Uchida Y, Hamamoto T, Che YS, Takahashi H, Parkinson JS, Ishijima A, Fukuoka H. The Chemoreceptor Sensory Adaptation System Produces Coordinated Reversals of the Flagellar Motors on an Escherichia coli Cell. J Bacteriol 2022; 204:e0027822. [PMID: 36448786 PMCID: PMC9765175 DOI: 10.1128/jb.00278-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
In isotropic environments, an Escherichia coli cell exhibits coordinated rotational switching of its flagellar motors, produced by fluctuations in the intracellular concentration of phosphorylated CheY (CheY-P) emanating from chemoreceptor signaling arrays. In this study, we show that these CheY-P fluctuations arise through modifications of chemoreceptors by two sensory adaptation enzymes: the methyltransferase CheR and the methylesterase CheB. A cell containing CheR, CheB, and the serine chemoreceptor Tsr exhibited motor synchrony, whereas a cell lacking CheR and CheB or containing enzymatically inactive forms did not. Tsr variants with different combinations of methylation-mimicking Q residues at the adaptation sites also failed to show coordinated motor switching in cells lacking CheR and CheB. Cells containing CheR, CheB, and Tsr [NDND], a variant in which the adaptation site residues are not substrates for CheR or CheB modifications, also lacked motor synchrony. TsrΔNWETF, which lacks a C-terminal pentapeptide-binding site for CheR and CheB, and the ribose-galactose receptor Trg, which natively lacks this motif, failed to produce coordinated motor switching, despite the presence of CheR and CheB. However, addition of the NWETF sequence to Trg enabled Trg-NWETF to produce motor synchrony, as the sole receptor type in cells containing CheR and CheB. Finally, CheBc, the catalytic domain of CheB, supported motor coordination in combination with CheR and Tsr. These results indicate that the coordination of motor switching requires CheR/CheB-mediated changes in receptor modification state. We conclude that the opposing receptor substrate-site preferences of CheR and CheB produce spontaneous blinking of the chemoreceptor array's output activity. IMPORTANCE Under steady-state conditions with no external stimuli, an Escherichia coli cell coordinately switches the rotational direction of its flagellar motors. Here, we demonstrate that the CheR and CheB enzymes of the chemoreceptor sensory adaptation system mediate this coordination. Stochastic fluctuations in receptor adaptation states trigger changes in signal output from the receptor array, and this array blinking generates fluctuations in CheY-P concentration that coordinate directional switching of the flagellar motors. Thus, in the absence of chemoeffector gradients, the sensory adaptation system controls run-tumble swimming of the cell, its optimal foraging strategy.
Collapse
Affiliation(s)
- Yumiko Uchida
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tatsuki Hamamoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yong-Suk Che
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan
| | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Akihiko Ishijima
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hajime Fukuoka
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Hadjidemetriou K, Kaur S, Cassidy CK, Zhang P. Mechanisms of E. coli chemotaxis signaling pathways visualized using cryoET and computational approaches. Biochem Soc Trans 2022; 50:1595-1605. [PMID: 36421737 PMCID: PMC9788364 DOI: 10.1042/bst20220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
Chemotaxis signaling pathways enable bacteria to sense and respond to their chemical environment and, in some species, are critical for lifestyle processes such as biofilm formation and pathogenesis. The signal transduction underlying chemotaxis behavior is mediated by large, highly ordered protein complexes known as chemosensory arrays. For nearly two decades, cryo-electron tomography (cryoET) has been used to image chemosensory arrays, providing an increasingly detailed understanding of their structure and function. In this mini-review, we provide an overview of the use of cryoET to study chemosensory arrays, including imaging strategies, key results, and outstanding questions. We further discuss the application of molecular modeling and simulation techniques to complement structure determination efforts and provide insight into signaling mechanisms. We close the review with a brief outlook, highlighting promising future directions for the field.
Collapse
Affiliation(s)
| | - Satinder Kaur
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - C. Keith Cassidy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, U.K
| |
Collapse
|
13
|
Maschmann Z, Chandrasekaran S, Chua TK, Crane BR. Interdomain Linkers Regulate Histidine Kinase Activity by Controlling Subunit Interactions. Biochemistry 2022; 61:2672-2686. [PMID: 36321948 PMCID: PMC10134573 DOI: 10.1021/acs.biochem.2c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bacterial chemoreceptors regulate the cytosolic multidomain histidine kinase CheA through largely unknown mechanisms. Residue substitutions in the peptide linkers that connect the P4 kinase domain to the P3 dimerization and P5 regulatory domain affect CheA basal activity and activation. To understand the role that these linkers play in CheA activity, the P3-to-P4 linker (L3) and P4-to-P5 linker (L4) were extended and altered in variants of Thermotoga maritima (Tm) CheA. Flexible extensions of the L3 and L4 linkers in CheA-LV1 (linker variant 1) allowed for a well-folded kinase domain that retained wild-type (WT)-like binding affinities for nucleotide and normal interactions with the receptor-coupling protein CheW. However, CheA-LV1 autophosphorylation activity registered ∼50-fold lower compared to WT. Neither a WT nor LV1 dimer containing a single P4 domain could autophosphorylate the P1 substrate domain. Autophosphorylation activity was rescued in variants with extended L3 and L4 linkers that favor helical structure and heptad spacing. Autophosphorylation depended on linker spacing and flexibility and not on sequence. Pulse-dipolar electron-spin resonance (ESR) measurements with spin-labeled adenosine 5'-triphosphate (ATP) analogues indicated that CheA autophosphorylation activity inversely correlated with the proximity of the P4 domains within the dimers of the variants. Despite their separation in primary sequence and space, the L3 and L4 linkers also influence the mobility of the P1 substrate domains. In all, interactions of the P4 domains, as modulated by the L3 and L4 linkers, affect domain dynamics and autophosphorylation of CheA, thereby providing potential mechanisms for receptors to regulate the kinase.
Collapse
Affiliation(s)
- Zachary Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850
| | - Siddarth Chandrasekaran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850
- National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca NY 1485
| | - Teck Khiang Chua
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850
- National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca NY 1485
| |
Collapse
|
14
|
Balmaceda RS, Ramos Ricciuti FE, Redersdorff IE, Veinticcinque LM, Studdert CA, Herrera Seitz MK. Chemosensory pathways of Halomonas titanicae KHS3 control chemotaxis behaviour and biofilm formation. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36215099 DOI: 10.1099/mic.0.001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Halomonas titanicae KHS3 is a marine bacterium whose genome codes for two different chemosensory pathways. Chemosensory gene cluster 1 is very similar to the canonical Che cluster from Escherichia coli. Chemosensory cluster 2 includes a gene coding for a diguanylate cyclase with receiver domains, suggesting that it belongs to the functional group that regulates alternative cellular functions other than chemotaxis. In this work we assess the functional roles of both chemosensory pathways through approaches that include the heterologous expression of Halomonas proteins in E. coli strains and phenotypic analyses of Halomonas mutants. Our results confirm that chemosensory cluster 1 is indeed involved in chemotaxis behaviour, and only proteins from this cluster complement E. coli defects. We present evidence suggesting that chemosensory cluster 2 resembles the Wsp pathway from Pseudomonas, since the corresponding methylesterase mutant shows an increased methylation level of the cognate receptor and develops a wrinkly colony morphology correlated with an increased ability to form biofilm. Consistently, mutational interruption of this gene cluster correlates with low levels of biofilm. Our results suggest that the proteins from each pathway assemble and function independently. However, the phenotypic characteristics of the mutants show functional connections between the pathways controlled by each chemosensory system.
Collapse
Affiliation(s)
- Rocío S Balmaceda
- Instituto de Agrobiotecnología del Litoral, CONICET- Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Fernando E Ramos Ricciuti
- Instituto de Agrobiotecnología del Litoral, CONICET- Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ingrid E Redersdorff
- Instituto de Investigaciones Biológicas, CONICET- Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Luciana M Veinticcinque
- Instituto de Agrobiotecnología del Litoral, CONICET- Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Claudia A Studdert
- Instituto de Agrobiotecnología del Litoral, CONICET- Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, CONICET- Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
15
|
Joshi H, Prakash MK. Using Atomistic Simulations to Explore the Role of Methylation and ATP in Chemotaxis Signal Transduction. ACS OMEGA 2022; 7:27886-27895. [PMID: 35990422 PMCID: PMC9386827 DOI: 10.1021/acsomega.2c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
A bacterial chemotaxis mechanism is activated when nutrients bind to surface receptors. The sequence of intra- and interprotein events in this signal cascade from the receptors to the eventual molecular motors has been clearly identified. However, the atomistic details remain elusive, as in general may be expected of intraprotein signal transduction pathways, especially when fibrillar proteins are involved. We performed atomistic calculations of the methyl accepting chemoprotein (MCP)-CheA-CheW multidomain complex from Escherichia coli, simulating the methylated and unmethylated conditions in the chemoreceptors and the ATP-bound and apo conditions of the CheA. Our results indicate that these atomistic simulations, especially with one of the two force fields we tried, capture several relevant features of the downstream effects, such as the methylation favoring an intermediate structure that is more toward a dipped state and increases the chance of ATP hydrolysis. The results thus suggest the sensitivity of the model to reflect the nutrient signal response, a nontrivial validation considering the complexity of the system, encouraging even more detailed studies on the thermodynamic quantification of the effects and the identification of the signaling networks.
Collapse
|
16
|
Livne N, Vaknin A. Collective responses of bacteria to a local source of conflicting effectors. Sci Rep 2022; 12:4928. [PMID: 35322063 PMCID: PMC8943191 DOI: 10.1038/s41598-022-08762-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 12/18/2022] Open
Abstract
To cope in complex environments, motile bacteria have developed a chemosensory system that integrates multiple cues and directs their motion toward regions that it deems favorable. However, we have a limited understanding of the principles that govern bacterial behavior in complex stimuli fields. Here, we followed the spatial redistribution of E. coli cells in perplexing environments created by a local source of both beneficial (nutrients) and hazardous (low pH or indole) effectors. We identified two fundamentally distinct collective responses: a ‘trade-off’ response, in which bacteria sharply accumulated at a distance from the source that reflected a trade-off between the propagating effectors, and a ‘bet-hedging’ response, in which part of the bacteria accumulated away from the source, avoiding the hazardous effector, while the other part evaded the repulsive force and accumulated at the source. In addition, we demonstrate that cells lacking the Tsr sensor swim toward both repellents and, surprisingly, even toward pH values well below 7. Using a numerical analysis, we could correlate the collective bacterial responses with fundamentally distinct chemotactic force fields created along the channel by the propagation of the effectors and their unique perception by the chemosensory system.
Collapse
Affiliation(s)
- Nir Livne
- The Racah Institute of Physics, The Hebrew University, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
| |
Collapse
|
17
|
Liedtke J, Depelteau JS, Briegel A. How advances in cryo-electron tomography have contributed to our current view of bacterial cell biology. J Struct Biol X 2022; 6:100065. [PMID: 35252838 PMCID: PMC8894267 DOI: 10.1016/j.yjsbx.2022.100065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Advancements in the field of cryo-electron tomography have greatly contributed to our current understanding of prokaryotic cell organization and revealed intracellular structures with remarkable architecture. In this review, we present some of the prominent advancements in cryo-electron tomography, illustrated by a subset of structural examples to demonstrate the power of the technique. More specifically, we focus on technical advances in automation of data collection and processing, sample thinning approaches, correlative cryo-light and electron microscopy, and sub-tomogram averaging methods. In turn, each of these advances enabled new insights into bacterial cell architecture, cell cycle progression, and the structure and function of molecular machines. Taken together, these significant advances within the cryo-electron tomography workflow have led to a greater understanding of prokaryotic biology. The advances made the technique available to a wider audience and more biological questions and provide the basis for continued advances in the near future.
Collapse
Affiliation(s)
- Janine Liedtke
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Jamie S Depelteau
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ariane Briegel
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
18
|
Thompson LK. Protein rings are critical to the remarkable signaling properties of bacterial chemotaxis nanoarrays. Sci Signal 2022; 15:eabn2056. [PMID: 35077200 DOI: 10.1126/scisignal.abn2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacteria build an extensive sensory nanoarray to collect information that guides their swimming. In this issue of Science Signaling, Piñas et al. demonstrate that a key element of these arrays that enhances chemotaxis responses are hexameric rings of CheW, one of two types of rings that couple the responses of core signaling units to achieve remarkable signaling properties such as single-molecule detection.
Collapse
Affiliation(s)
- Lynmarie K Thompson
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
19
|
Piñas GE, DeSantis MD, Cassidy CK, Parkinson JS. Hexameric rings of the scaffolding protein CheW enhance response sensitivity and cooperativity in Escherichia coli chemoreceptor arrays. Sci Signal 2022; 15:eabj1737. [PMID: 35077199 DOI: 10.1126/scisignal.abj1737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Escherichia coli chemoreceptor array is a supramolecular assembly that enables cells to respond to extracellular cues dynamically and with great precision and sensitivity. In the array, transmembrane receptors organized as trimers of dimers are connected at their cytoplasmic tips by hexameric rings of alternating subunits of the kinase CheA and the scaffolding protein CheW (CheA-CheW rings). Interactions of CheW molecules with the members of receptor trimers not directly bound to CheA-CheW rings may lead to the formation of hexameric CheW rings in the chemoreceptor array. Here, we detected such CheW rings with a cellular cysteine-directed cross-linking assay and explored the requirements for their formation and their participation in array assembly. We found that CheW ring formation varied with cellular CheW abundance, depended on the presence of receptors capable of a trimer-of-dimers arrangement, and did not require CheA. Cross-linking studies of a CheA~CheW fusion protein incapable of forming homomeric CheW oligomers demonstrated that CheW rings were not essential for the assembly of CheA-containing arrays. Förster resonance energy transfer (FRET)-based kinase assays of arrays containing variable amounts of CheW rings revealed that CheW rings enhanced the cooperativity and the sensitivity of the responses to attractants. We propose that six-membered CheW rings provide the additional interconnectivity required for optimal signaling and gradient tracking performance by chemosensory arrays.
Collapse
Affiliation(s)
- Germán E Piñas
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D DeSantis
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Mandal SD, Chatterjee S. Effect of receptor cooperativity on methylation dynamics in bacterial chemotaxis with weak and strong gradient. Phys Rev E 2022; 105:014411. [PMID: 35193319 DOI: 10.1103/physreve.105.014411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
We study methylation dynamics of the chemoreceptors as an Escherichia coli cell moves around in a spatially varying chemoattractant environment. We consider attractant concentration with strong and weak spatial gradient. During the uphill and downhill motion of the cell along the gradient, we measure the temporal variation of average methylation level of the receptor clusters. Our numerical simulations we show that the methylation dynamics depends sensitively on the size of the receptor clusters and also on the strength of the gradient. At short times after the beginning of a run, the methylation dynamics is mainly controlled by short runs which are generally associated with high receptor activity. This results in demethylation at short times. But for intermediate or large times, long runs play an important role and depending on receptor cooperativity or gradient strength, the qualitative variation of methylation can be completely different in this time regime. For weak gradient, both for uphill and downhill runs, after the initial demethylation, we find methylation level increases steadily with time for all cluster sizes. Similar qualitative behavior is observed for strong gradient during uphill runs as well. However, the methylation dynamics for downhill runs in strong gradient show highly nontrivial dependence on the receptor cluster size. We explain this behavior as a result of interplay between the sensing and adaptation modules of the signaling network.
Collapse
Affiliation(s)
- Shobhan Dev Mandal
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| | - Sakuntala Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| |
Collapse
|
21
|
Gordon JB, Hoffman MC, Troiano JM, Li M, Hazelbauer GL, Schlau-Cohen GS. Concerted Differential Changes of Helical Dynamics and Packing upon Ligand Occupancy in a Bacterial Chemoreceptor. ACS Chem Biol 2021; 16:2472-2480. [PMID: 34647725 PMCID: PMC9990816 DOI: 10.1021/acschembio.1c00576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transmembrane receptors are central components of the chemosensory systems by which motile bacteria detect and respond to chemical gradients. An attractant bound to the receptor periplasmic domain generates conformational signals that regulate a histidine kinase interacting with its cytoplasmic domain. Ligand-induced signaling through the periplasmic and transmembrane domains of the receptor involves a piston-like helical displacement, but the nature of this signaling through the >200 Å four-helix coiled coil of the cytoplasmic domain had not yet been identified. We performed single-molecule Förster resonance energy transfer measurements on Escherichia coli aspartate receptor homodimers inserted into native phospholipid bilayers enclosed in nanodiscs. The receptors were labeled with fluorophores at diagnostic positions near the middle of the cytoplasmic coiled coil. At these positions, we found that the two N-helices of the homodimer were more distant, that is, less tightly packed and more dynamic than the companion C-helix pair, consistent with previous deductions that the C-helices form a stable scaffold and the N-helices are dynamic. Upon ligand binding, the scaffold pair compacted further, while separation and dynamics of the dynamic pair increased. Thus, ligand binding had asymmetric effects on the two helical pairs, shifting mean distances in opposite directions and increasing the dynamics of one pair. We suggest that this reflects a conformational change in which differential alterations to the packing and dynamics of the two helical pairs are coupled. These coupled changes could represent a previously unappreciated mode of conformational signaling that may well occur in other coiled-coil signaling proteins.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| | - Mikaila C Hoffman
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| | - Julianne M Troiano
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| | - Mingshan Li
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Gerald L Hazelbauer
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Studying bacterial chemosensory array with CryoEM. Biochem Soc Trans 2021; 49:2081-2089. [PMID: 34495335 PMCID: PMC8589424 DOI: 10.1042/bst20210080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022]
Abstract
Bacteria direct their movement in respond to gradients of nutrients and other stimuli in the environment through the chemosensory system. The behavior is mediated by chemosensory arrays that are made up of thousands of proteins to form an organized array near the cell pole. In this review, we briefly introduce the architecture and function of the chemosensory array and its core signaling unit. We describe the in vivo and in vitro systems that have been used for structural studies of chemosensory array by cryoEM, including reconstituted lipid nanodiscs, 2D lipid monolayer arrays, lysed bacterial ghosts, bacterial minicells and native bacteria cells. Lastly, we review recent advances in structural analysis of chemosensory arrays using state-of-the-art cryoEM and cryoET methodologies, focusing on the latest developments and insights with a perspective on current challenges and future directions.
Collapse
|
23
|
Ni B, Colin R, Sourjik V. Production and Characterization of Motile and Chemotactic Bacterial Minicells. ACS Synth Biol 2021; 10:1284-1291. [PMID: 34081866 PMCID: PMC8218304 DOI: 10.1021/acssynbio.1c00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Minicells are nanosized
membrane vesicles produced by bacteria.
Minicells are chromosome-free but contain cellular biosynthetic and
metabolic machinery, and they are robust due to the protection provided
by the bacterial cell envelope, which makes them potentially highly
attractive in biomedical applications. However, the applicability
of minicells and other nanoparticle-based delivery systems is limited
by their inefficient accumulation at the target. Here we engineered
the minicell-producing Escherichia coli strain to
overexpress flagellar genes, which enables the generation of motile
minicells. We subsequently performed an experimental and theoretical
analysis of the minicell motility and their responses to gradients
of chemoeffectors. Despite important differences between the motility
of minicells and normal bacterial cells, minicells were able to bias
their movement in chemical gradients and to accumulate toward the
sources of chemoattractants. Such motile and chemotactic minicells
may thus be applicable for an active effector delivery and specific
targeting of tissues and cells according to their metabolic profiles.
Collapse
Affiliation(s)
- Bin Ni
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg D-35043, Germany
| | - Remy Colin
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg D-35043, Germany
| | - Victor Sourjik
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg D-35043, Germany
| |
Collapse
|
24
|
Burt A, Cassidy CK, Stansfeld PJ, Gutsche I. Alternative Architecture of the E. coli Chemosensory Array. Biomolecules 2021; 11:biom11040495. [PMID: 33806045 PMCID: PMC8064477 DOI: 10.3390/biom11040495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chemotactic responses in motile bacteria are the result of sophisticated signal transduction by large, highly organized arrays of sensory proteins. Despite tremendous progress in the understanding of chemosensory array structure and function, a structural basis for the heightened sensitivity of networked chemoreceptors is not yet complete. Here, we present cryo-electron tomography visualisations of native-state chemosensory arrays in E. coli minicells. Strikingly, these arrays appear to exhibit a p2-symmetric array architecture that differs markedly from the p6-symmetric architecture previously described in E. coli. Based on this data, we propose molecular models of this alternative architecture and the canonical p6-symmetric assembly. We evaluate our observations and each model in the context of previously published data, assessing the functional implications of an alternative architecture and effects for future studies.
Collapse
Affiliation(s)
- Alister Burt
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France;
| | - C. Keith Cassidy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Phillip J. Stansfeld
- Department of Chemistry, School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK;
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France;
- Correspondence:
| |
Collapse
|
25
|
Mandal SD, Chatterjee S. Effect of receptor clustering on chemotactic performance of E. coli: Sensing versus adaptation. Phys Rev E 2021; 103:L030401. [PMID: 33862739 DOI: 10.1103/physreve.103.l030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/05/2021] [Indexed: 11/07/2022]
Abstract
We show how the competition between sensing and adaptation can result in a performance peak in Escherichia coli chemotaxis using extensive numerical simulations in a detailed theoretical model. Receptor clustering amplifies the input signal coming from ligand binding which enhances chemotactic efficiency. But large clusters also induce large fluctuations in total activity since the number of clusters goes down. The activity and hence the run-tumble motility now gets controlled by methylation levels which are part of adaptation module rather than ligand binding. This reduces chemotactic efficiency.
Collapse
Affiliation(s)
- Shobhan Dev Mandal
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| | - Sakuntala Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| |
Collapse
|
26
|
How an unusual chemosensory system forms arrays on the bacterial nucleoid. Biochem Soc Trans 2021; 48:347-356. [PMID: 32129822 DOI: 10.1042/bst20180450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022]
Abstract
Chemosensory systems are signaling pathways elegantly organized in hexagonal arrays that confer unique functional features to these systems such as signal amplification. Chemosensory arrays adopt different subcellular localizations from one bacterial species to another, yet keeping their supramolecular organization unmodified. In the gliding bacterium Myxococcus xanthus, a cytoplasmic chemosensory system, Frz, forms multiple clusters on the nucleoid through the direct binding of the FrzCD receptor to DNA. A small CheW-like protein, FrzB, might be responsible for the formation of multiple (instead of just one) Frz arrays. In this review, we summarize what is known on Frz array formation on the bacterial chromosome and discuss hypotheses on how FrzB might contribute to the nucleation of multiple clusters. Finally, we will propose some possible biological explanations for this type of localization pattern.
Collapse
|
27
|
Muok AR, Chua TK, Srivastava M, Yang W, Maschmann Z, Borbat PP, Chong J, Zhang S, Freed JH, Briegel A, Crane BR. Engineered chemotaxis core signaling units indicate a constrained kinase-off state. Sci Signal 2020; 13:13/657/eabc1328. [PMID: 33172954 DOI: 10.1126/scisignal.abc1328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacterial chemoreceptors, the histidine kinase CheA, and the coupling protein CheW form transmembrane molecular arrays with remarkable sensing properties. The receptors inhibit or stimulate CheA kinase activity depending on the presence of attractants or repellants, respectively. We engineered chemoreceptor cytoplasmic regions to assume a trimer of receptor dimers configuration that formed well-defined complexes with CheA and CheW and promoted a CheA kinase-off state. These mimics of core signaling units were assembled to homogeneity and investigated by site-directed spin-labeling with pulse-dipolar electron-spin resonance spectroscopy (PDS), small-angle x-ray scattering, targeted protein cross-linking, and cryo-electron microscopy. The kinase-off state was especially stable, had relatively low domain mobility, and associated the histidine substrate and docking domains with the kinase core, thus preventing catalytic activity. Together, these data provide an experimentally restrained model for the inhibited state of the core signaling unit and suggest that chemoreceptors indirectly sequester the kinase and substrate domains to limit histidine autophosphorylation.
Collapse
Affiliation(s)
- Alise R Muok
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Teck Khiang Chua
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Wen Yang
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Zach Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Petr P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Jenna Chong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sheng Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
French KE, Zhou Z, Terry N. Horizontal 'gene drives' harness indigenous bacteria for bioremediation. Sci Rep 2020; 10:15091. [PMID: 32934307 PMCID: PMC7492276 DOI: 10.1038/s41598-020-72138-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Engineering bacteria to clean-up oil spills is rapidly advancing but faces regulatory hurdles and environmental concerns. Here, we develop a new technology to harness indigenous soil microbial communities for bioremediation by flooding local populations with catabolic genes for petroleum hydrocarbon degradation. Overexpressing three enzymes (almA, xylE, p450cam) in Escherichia coli led to degradation of 60-99% of target hydrocarbon substrates. Mating experiments, fluorescence microscopy and TEM revealed indigenous bacteria could obtain these vectors from E. coli through several mechanisms of horizontal gene transfer (HGT), including conjugation and cytoplasmic exchange through nanotubes. Inoculating petroleum-polluted sediments with E. coli carrying the vector pSF-OXB15-p450camfusion showed that the E. coli cells died after five days but a variety of bacteria received and carried the vector for over 60 days after inoculation. Within 60 days, the total petroleum hydrocarbon content of the polluted soil was reduced by 46%. Pilot experiments show that vectors only persist in indigenous populations when under selection pressure, disappearing when this carbon source is removed. This approach to remediation could prime indigenous bacteria for degrading pollutants while providing minimal ecosystem disturbance.
Collapse
Affiliation(s)
- Katherine E French
- Department of Plant and Microbial Biology, University of California Berkeley, Koshland Hall, Berkeley, CA, 94720, USA.
| | - Zhongrui Zhou
- QB3, University of California Berkeley, Stanley Hall, Berkeley, CA, 94720, USA
| | - Norman Terry
- Department of Plant and Microbial Biology, University of California Berkeley, Koshland Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
29
|
Ortega DR, Kjær A, Briegel A. The chemosensory systems of Vibrio cholerae. Mol Microbiol 2020; 114:367-376. [PMID: 32347610 PMCID: PMC7534058 DOI: 10.1111/mmi.14520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Vibrio cholerae, the causative agent of the acute diarrheal disease cholera, is able to thrive in diverse habitats such as natural water bodies and inside human hosts. To ensure their survival, these bacteria rely on chemosensory pathways to sense and respond to changing environmental conditions. These pathways constitute a highly sophisticated cellular control system in Bacteria and Archaea. Reflecting the complex life cycle of V. cholerae, this organism has three different chemosensory pathways that together contain over 50 proteins expressed under different environmental conditions. Only one of them is known to control motility, while the function of the other two remains to be discovered. Here, we provide an overview of the chemosensory systems in V. cholerae and the advances toward understanding their structure and function.
Collapse
Affiliation(s)
- Davi R. Ortega
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Andreas Kjær
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Ariane Briegel
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
30
|
Jun SY, Pan W, Hazelbauer GL. ATP Binding as a Key Target for Control of the Chemotaxis Kinase. J Bacteriol 2020; 202:e00095-20. [PMID: 32341073 PMCID: PMC7283602 DOI: 10.1128/jb.00095-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
In bacterial chemotaxis, chemoreceptors in signaling complexes modulate the activity of two-component histidine kinase CheA in response to chemical stimuli. CheA catalyzes phosphoryl transfer from ATP to a histidinyl residue of its P1 domain. That phosphoryl group is transferred to two response regulators. Receptor control is almost exclusively at autophosphorylation, but the aspect of enzyme action on which that control acts is unclear. We investigated this by a kinetic analysis of activated kinase in signaling complexes. We found that phosphoryl transfer from ATP to P1 is an ordered sequential reaction in which the binding of ATP to CheA is the necessary first step; the second substrate, the CheA P1 domain, binds only to an ATP-occupied enzyme; and phosphorylated P1 is released prior to the second product, namely, ADP. We confirmed the crucial features of this kinetically deduced ordered mechanism by assaying P1 binding to the enzyme. In the absence of a bound nucleotide, there was no physiologically significant binding, but the enzyme occupied with a nonhydrolyzable ATP analog bound P1. Previous structural and computational analyses indicated that ATP binding creates the P1-binding site by ordering the "ATP lid." This process identifies the structural basis for the ordered kinetic mechanism. Recent mathematical modeling of kinetic data identified ATP binding as a focus of receptor-mediated kinase control. The ordered kinetic mechanism provides the biochemical logic of that control. We conclude that chemoreceptors modulate kinase by controlling ATP binding. Structural similarities among two-component kinases, particularly the ATP lid, suggest that ordered mechanisms and control of ATP binding are general features of two-component signaling.IMPORTANCE Our work provides important new insights into the action of the chemotaxis signaling kinase CheA by identifying the kinetic mechanism of its autophosphorylation as an ordered sequential reaction, in which the required first step is binding of ATP. These insights provide a framework for integrating previous kinetic, mathematical modeling, structural, simulation, and docking observations to conclude that chemoreceptors control the activity of the chemotaxis kinase by regulating binding of the autophosphorylation substrate ATP. Previously observed conformational changes in the ATP lid of the enzyme active site provide a structural basis for the ordered mechanism. Such lids are characteristic of two-component histidine kinases in general, suggesting that ordered sequential mechanisms and regulation by controlling ATP binding are common features of these kinases.
Collapse
Affiliation(s)
- Se-Young Jun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Wenlin Pan
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
31
|
Ortega DR, Yang W, Subramanian P, Mann P, Kjær A, Chen S, Watts KJ, Pirbadian S, Collins DA, Kooger R, Kalyuzhnaya MG, Ringgaard S, Briegel A, Jensen GJ. Repurposing a chemosensory macromolecular machine. Nat Commun 2020; 11:2041. [PMID: 32341341 PMCID: PMC7184735 DOI: 10.1038/s41467-020-15736-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
How complex, multi-component macromolecular machines evolved remains poorly understood. Here we reveal the evolutionary origins of the chemosensory machinery that controls flagellar motility in Escherichia coli. We first identify ancestral forms still present in Vibrio cholerae, Pseudomonas aeruginosa, Shewanella oneidensis and Methylomicrobium alcaliphilum, characterizing their structures by electron cryotomography and finding evidence that they function in a stress response pathway. Using bioinformatics, we trace the evolution of the system through γ-Proteobacteria, pinpointing key evolutionary events that led to the machine now seen in E. coli. Our results suggest that two ancient chemosensory systems with different inputs and outputs (F6 and F7) existed contemporaneously, with one (F7) ultimately taking over the inputs and outputs of the other (F6), which was subsequently lost. Bacterial chemosensory systems are grouped into 17 flagellar classes (F1-17). Here the authors employ electron cryotomography and comparative genomics to characterise the chemosensory arrays in γ-proteobacteria and identify a structural distinct form of F7 that was repurposed to a different biological role over the course of its evolution.
Collapse
Affiliation(s)
- Davi R Ortega
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA
| | - Wen Yang
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Poorna Subramanian
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA
| | - Petra Mann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Andreas Kjær
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA.,Rex Richards Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Songye Chen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Sahand Pirbadian
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Collins
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Romain Kooger
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093, Zürich, Switzerland
| | - Marina G Kalyuzhnaya
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Ariane Briegel
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA. .,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
32
|
Strategies for identifying dynamic regions in protein complexes: Flexibility changes accompany methylation in chemotaxis receptor signaling states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183312. [PMID: 32304758 DOI: 10.1016/j.bbamem.2020.183312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Bacterial chemoreceptors are organized in arrays composed of helical receptors arranged as trimers of dimers, coupled to a histidine kinase CheA and a coupling protein CheW. Ligand binding to the external domain inhibits the kinase activity, leading to a change in the swimming behavior. Adaptation to an ongoing stimulus involves reversible methylation and demethylation of specific glutamate residues. However, the exact mechanism of signal propagation through the helical receptor to the histidine kinase remains elusive. Dynamics of the receptor cytoplasmic domain is thought to play an important role in the signal transduction, and current models propose inverse dynamic changes in different regions of the receptor. We hypothesize that the adaptational modification (methylation) controls the dynamics by stabilizing a partially ordered domain, which in turn modulates the binding of the kinase, CheA. We investigated the difference in dynamics between the methylated and unmethylated states of the chemoreceptor using solid-state NMR. The unmethylated receptor (CF4E) shows increased flexibility relative to the methylated mimic (CF4Q). Methylation helix 1 (MH1) has been shown to be flexible in the methylated mimic receptor. Our analysis indicates that in addition to MH1, methylation helix 2 also becomes flexible in the unmethylated receptor. In addition, we have demonstrated that both states of the receptor have a rigid region and segments with intermediate timescale dynamics. The strategies used in this study for identifying dynamic regions are applicable to a broad class of proteins and protein complexes with intrinsic disorder and dynamics spanning multiple timescales.
Collapse
|
33
|
Frutos-Grilo E, Marsal M, Irazoki O, Barbé J, Campoy S. The Interaction of RecA With Both CheA and CheW Is Required for Chemotaxis. Front Microbiol 2020; 11:583. [PMID: 32318049 PMCID: PMC7154110 DOI: 10.3389/fmicb.2020.00583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica is the most frequently reported cause of foodborne illness. As in other microorganisms, chemotaxis affords key physiological benefits, including enhanced access to growth substrates, but also plays an important role in infection and disease. Chemoreceptor signaling core complexes, consisting of CheA, CheW and methyl-accepting chemotaxis proteins (MCPs), modulate the switching of bacterial flagella rotation that drives cell motility. These complexes, through the formation of heterohexameric rings composed of CheA and CheW, form large clusters at the cell poles. RecA plays a key role in polar cluster formation, impairing the assembly when the SOS response is activated. In this study, we determined that RecA protein interacts with both CheW and CheA. The binding of these proteins to RecA is needed for wild-type polar cluster formation. In silico models showed that one RecA molecule, attached to one signaling unit, fits within a CheA-CheW ring without interfering with the complex formation or array assembly. Activation of the SOS response is followed by an increase in RecA, which rises up the number of signaling complexes associated with this protein. This suggests the presence of allosteric inhibition in the CheA-CheW interaction and thus of heterohexameric ring formation, impairing the array assembly. STED imaging demonstrated that all core unit components (CheA, CheW, and MPCs) have the same subcellular location as RecA. Activation of the SOS response promotes the RecA distribution along the cell instead of being at the cell poles. CheA- and CheW- RecA interactions are also crucial for chemotaxis, which is maintained when the SOS response is induced and the signaling units are dispersed. Our results provide new molecular-level insights into the function of RecA in chemoreceptor clustering and chemotaxis determining that the impaired chemoreceptor clustering not only inhibits swarming but also modulates chemotaxis in SOS-induced cells, thereby modifying bacterial motility in the presence of DNA-damaging compounds, such as antibiotics.
Collapse
Affiliation(s)
- Elisabet Frutos-Grilo
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Marsal
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oihane Irazoki
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Ma M, Li D, Kahraman O, Haselwandter CA. Symmetry of membrane protein polyhedra with heterogeneous protein size. Phys Rev E 2020; 101:022417. [PMID: 32168654 DOI: 10.1103/physreve.101.022417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
In experiments on membrane protein polyhedral nanoparticles (MPPNs) [Basta et al., Proc. Natl. Acad. Sci. USA 111, 670 (2014)PNASA60027-842410.1073/pnas.1321936111], it has been observed that membrane proteins and lipids can self-assemble into closed lipid bilayer vesicles with a polyhedral arrangement of membrane proteins. In particular, MPPNs formed from the mechanosensitive channel of small conductance (MscS) were found to have the symmetry of the snub cube-a chiral, Archimedean solid-with one MscS protein located at each one of the 24 vertices of the snub cube. It is currently unknown whether MPPNs with heterogeneous protein composition maintain a high degree of symmetry. Inspired by previous work on viral capsid symmetry, we employ here computational modeling to study the symmetry of MPPNs with heterogeneous protein size. We focus on MPPNs formed from MscS proteins, which can exist in closed or open conformational states with distinct sizes. We find that, as an increasing number of closed-state MscS proteins transitions to the open conformational state of MscS, the minimum-energy MscS arrangement in MPPNs follows a strikingly regular pattern, with the dominant MPPN symmetry always being provided by the snub cube. Our results suggest that MPPNs with heterogeneous protein size can be highly symmetric, with a well-defined polyhedral ordering of membrane proteins of different sizes.
Collapse
Affiliation(s)
- Mingyuan Ma
- Department of Physics and Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Di Li
- Department of Physics and Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Osman Kahraman
- Department of Physics and Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
35
|
Burt A, Cassidy CK, Ames P, Bacia-Verloop M, Baulard M, Huard K, Luthey-Schulten Z, Desfosses A, Stansfeld PJ, Margolin W, Parkinson JS, Gutsche I. Complete structure of the chemosensory array core signalling unit in an E. coli minicell strain. Nat Commun 2020; 11:743. [PMID: 32029744 PMCID: PMC7005262 DOI: 10.1038/s41467-020-14350-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/21/2019] [Indexed: 12/01/2022] Open
Abstract
Motile bacteria sense chemical gradients with transmembrane receptors organised in supramolecular signalling arrays. Understanding stimulus detection and transmission at the molecular level requires precise structural characterisation of the array building block known as a core signalling unit. Here we introduce an Escherichia coli strain that forms small minicells possessing extended and highly ordered chemosensory arrays. We use cryo-electron tomography and subtomogram averaging to provide a three-dimensional map of a complete core signalling unit, with visible densities corresponding to the HAMP and periplasmic domains. This map, combined with previously determined high resolution structures and molecular dynamics simulations, yields a molecular model of the transmembrane core signalling unit and enables spatial localisation of its individual domains. Our work thus offers a solid structural basis for the interpretation of a wide range of existing data and the design of further experiments to elucidate signalling mechanisms within the core signalling unit and larger array.
Collapse
Affiliation(s)
- Alister Burt
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter Ames
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Megghane Baulard
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Karine Huard
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - William Margolin
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| |
Collapse
|
36
|
Li M, Hazelbauer GL. Methyltransferase CheR binds to its chemoreceptor substrates independent of their signaling conformation yet modifies them differentially. Protein Sci 2020; 29:443-454. [PMID: 31654429 PMCID: PMC6954704 DOI: 10.1002/pro.3760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Abstract
Methylation of specific chemoreceptor glutamyl residues by methyltransferase CheR mediates sensory adaptation and gradient sensing in bacterial chemotaxis. Enzyme action is a function of chemoreceptor signaling conformation: kinase-off receptors are more readily methylated than kinase-on, a feature central to adaptational and gradient-sensing mechanisms. Differential enzyme action could reflect differential binding, catalysis or both. We investigated by measuring CheR binding to kinase-off and kinase-on forms of Escherichia coli aspartate receptor Tar deleted of its CheR-tethering, carboxyl terminus pentapeptide. This allowed characterization of the low-affinity binding of enzyme to the substrate receptor body, otherwise masked by high-affinity interaction with pentapeptide. We quantified the low-affinity protein-protein interactions by determining kinetic rate constants of association and dissociation using bio-layer interferometry and from those values calculating equilibrium constants. Whether Tar signaling conformations were shifted by ligand occupancy or adaptational modification, there was little or no difference between the two signaling conformations in kinetic or equilibrium parameters of enzyme-receptor binding. Thus, differential methyltransferase action does not reflect differential binding. Instead, the predominant determinants of binding must be common to different signaling conformations. Characterization of the dependence of association rate constants on Deybe length, a measure of the influence of electrostatics, implicated electrostatic interactions as a common binding determinant. Taken together, our observations indicate that differential action of methyltransferase on kinase-off and kinase-on chemoreceptors is not the result of differential binding and suggest it reflects differential catalytic propensity. Differential catalysis rather than binding could well be central to other enzymes distinguishing alternative conformations of protein substrates.
Collapse
Affiliation(s)
- Mingshan Li
- Department of BiochemistryUniversity of Missouri‐ColumbiaColumbiaMissouri
| | | |
Collapse
|
37
|
Pedetta A, Studdert CA. Truncated, Non-networking Versions of the Coupling Protein CheW Retain Chemoreceptor Control of Kinase CheA. J Mol Biol 2020; 432:576-584. [PMID: 31626809 DOI: 10.1016/j.jmb.2019.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
Bacterial chemoreceptors control the activity of the associated CheA kinase in response to chemical gradients and, consequently, regulate the swimming behavior of the cell. However, such control is not direct but requires the participation of the essential coupling protein CheW, which is structurally homologous to the carboxy-terminal domain of the kinase. The actual role of this small coupling protein is somehow intriguing. It has been demonstrated that it is absolutely essential for chemoreceptor control of the kinase, in spite of the occurrence of direct contacts between chemoreceptors and CheA. In addition, CheW plays an essential role in the assembly of the large macromolecular arrays that combine chemoreceptors of different specificities, and it is therefore responsible for molecular interactions that provide such arrays with remarkable signaling properties. In this work, we analyze truncated CheW derivatives that are still able to control the kinase but have lost the ability to connect signaling units. We demonstrate that these two activities can work separately and speculate about the significance of the roles of these two different activities in the context of the chemoreceptor cluster.
Collapse
Affiliation(s)
- Andrea Pedetta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar Del Plata - CONICET, Mar Del Plata, Buenos Aires, Argentina
| | - Claudia Alicia Studdert
- Instituto de Agrobiotecnología Del Litoral, CONICET - Universidad Nacional Del Litoral, Santa Fe, Santa Fe, Argentina.
| |
Collapse
|
38
|
Cassidy CK, Himes BA, Sun D, Ma J, Zhao G, Parkinson JS, Stansfeld PJ, Luthey-Schulten Z, Zhang P. Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations. Commun Biol 2020; 3:24. [PMID: 31925330 PMCID: PMC6954272 DOI: 10.1038/s42003-019-0748-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023] Open
Abstract
To enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism.
Collapse
Affiliation(s)
- C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Dapeng Sun
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jun Ma
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Zaida Luthey-Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
39
|
Guiseppi A, Vicente JJ, Herrou J, Byrne D, Barneoud A, Moine A, Espinosa L, Basse MJ, Molle V, Mignot T, Roche P, Mauriello EMF. A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays. PLoS Genet 2019; 15:e1008533. [PMID: 31860666 PMCID: PMC6952110 DOI: 10.1371/journal.pgen.1008533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/09/2020] [Accepted: 11/22/2019] [Indexed: 11/30/2022] Open
Abstract
Chemosensory systems are highly organized signaling pathways that allow bacteria to adapt to environmental changes. The Frz chemosensory system from M. xanthus possesses two CheW-like proteins, FrzA (the core CheW) and FrzB. We found that FrzB does not interact with FrzE (the cognate CheA) as it lacks the amino acid region responsible for this interaction. FrzB, instead, acts upstream of FrzCD in the regulation of M. xanthus chemotaxis behaviors and activates the Frz pathway by allowing the formation and distribution of multiple chemosensory clusters on the nucleoid. These results, together, show that the lack of the CheA-interacting region in FrzB confers new functions to this small protein.
Collapse
Affiliation(s)
- Annick Guiseppi
- Laboratoire de Chimie Bactérienne, Aix Marseille Univ, CNRS, Marseille, France
| | - Juan Jesus Vicente
- Physiology & Biophysics, University of Washington, Seattle, WA, United States of America
| | - Julien Herrou
- Laboratoire de Chimie Bactérienne, Aix Marseille Univ, CNRS, Marseille, France
| | - Deborah Byrne
- Protein Purification Platform, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France
| | - Aurelie Barneoud
- Laboratoire de Chimie Bactérienne, Aix Marseille Univ, CNRS, Marseille, France
| | - Audrey Moine
- Laboratoire de Chimie Bactérienne, Aix Marseille Univ, CNRS, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, Aix Marseille Univ, CNRS, Marseille, France
| | - Marie-Jeanne Basse
- CRCM, Institute Paoli-Calmettes, CNRS, INSERM, Aix Marseille Univ, Marseille, France
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologique, Montpellier II et I University, CNRS, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Aix Marseille Univ, CNRS, Marseille, France
| | - Philippe Roche
- CRCM, Institute Paoli-Calmettes, CNRS, INSERM, Aix Marseille Univ, Marseille, France
| | | |
Collapse
|
40
|
Identification of a Kinase-Active CheA Conformation in Escherichia coli Chemoreceptor Signaling Complexes. J Bacteriol 2019; 201:JB.00543-19. [PMID: 31501279 DOI: 10.1128/jb.00543-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli chemotaxis relies on control of the autophosphorylation activity of the histidine kinase CheA by transmembrane chemoreceptors. Core signaling units contain two receptor trimers of dimers, one CheA homodimer, and two monomeric CheW proteins that couple CheA activity to receptor control. Core signaling units appear to operate as two-state devices, with distinct kinase-on and kinase-off CheA output states whose structural nature is poorly understood. A recent all-atom molecular dynamic simulation of a receptor core unit revealed two alternative conformations, "dipped" and "undipped," for the ATP-binding CheA.P4 domain that could be related to kinase activity states. To explore possible signaling roles for the dipped CheA.P4 conformation, we created CheA mutants with amino acid replacements at residues (R265, E368, and D372) implicated in promoting the dipped conformation and examined their signaling consequences with in vivo Förster resonance energy transfer (FRET)-based kinase assays. We used cysteine-directed in vivo cross-linking reporters for the dipped and undipped conformations to assess mutant proteins for these distinct CheA.P4 domain configurations. Phenotypic suppression analyses revealed functional interactions among the conformation-controlling residues. We found that structural interactions between R265, located at the N terminus of the CheA.P3 dimerization domain, and E368/D372 in the CheA.P4 domain played a critical role in stabilizing the dipped conformation and in producing kinase-on output. Charge reversal replacements at any of these residues abrogated the dipped cross-linking signal, CheA kinase activity, and chemotactic ability. We conclude that the dipped conformation of the CheA.P4 domain is critical to the kinase-active state in core signaling units.IMPORTANCE Regulation of CheA kinase in chemoreceptor arrays is critical for Escherichia coli chemotaxis. However, to date, little is known about the CheA conformations that lead to the kinase-on or kinase-off states. Here, we explore the signaling roles of a distinct conformation of the ATP-binding CheA.P4 domain identified by all-atom molecular dynamics simulation. Amino acid replacements at residues predicted to stabilize the so-called "dipped" CheA.P4 conformation abolished the kinase activity of CheA and its ability to support chemotaxis. Our findings indicate that the dipped conformation of the CheA.P4 domain is critical for reaching the kinase-active state in chemoreceptor signaling arrays.
Collapse
|
41
|
Zhang P. Advances in cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struct Biol 2019; 58:249-258. [PMID: 31280905 PMCID: PMC6863431 DOI: 10.1016/j.sbi.2019.05.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022]
Abstract
Cryo-electron tomography (cryoET) can provide 3D reconstructions, or tomograms, of pleomorphic objects such as organelles or cells in their close-to-native states. Subtomograms that contain repetitive structures can be further extracted and subjected to averaging and classification to improve resolution, and this process has become an emerging structural biology method referred to as cryoET subtomogram averaging and classification (cryoSTAC). Recent technical advances in cryoSTAC have had a profound impact on many fields in biology. Here, I review recent exciting work on several macromolecular assemblies demonstrating the power of cryoSTAC for in situ structure analysis and discuss challenges and future directions.
Collapse
Affiliation(s)
- Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK; Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
42
|
Distinct Chemotaxis Protein Paralogs Assemble into Chemoreceptor Signaling Arrays To Coordinate Signaling Output. mBio 2019; 10:mBio.01757-19. [PMID: 31551333 PMCID: PMC6759762 DOI: 10.1128/mbio.01757-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The assembly of chemotaxis receptors and signaling proteins into polar arrays is universal in motile chemotactic bacteria. Comparative genome analyses indicate that most motile bacteria possess multiple chemotaxis signaling systems, and experimental evidence suggests that signaling from distinct chemotaxis systems is integrated. Here, we identify one such mechanism. We show that paralogs from two chemotaxis systems assemble together into chemoreceptor arrays, forming baseplates comprised of proteins from both chemotaxis systems. These mixed arrays provide a straightforward mechanism for signal integration and coordinated response output from distinct chemotaxis systems. Given that most chemotactic bacteria encode multiple chemotaxis systems and the propensity for these systems to be laterally transferred, this mechanism may be common to ensure chemotaxis signal integration occurs. Most chemotactic motile bacteria possess multiple chemotaxis signaling systems, the functions of which are not well characterized. Chemotaxis signaling is initiated by chemoreceptors that assemble as large arrays, together with chemotaxis coupling proteins (CheW) and histidine kinase proteins (CheA), which form a baseplate with the cytoplasmic tips of receptors. These cell pole-localized arrays mediate sensing, signaling, and signal amplification during chemotaxis responses. Membrane-bound chemoreceptors with different cytoplasmic domain lengths segregate into distinct arrays. Here, we show that a bacterium, Azospirillum brasilense, which utilizes two chemotaxis signaling systems controlling distinct motility parameters, coordinates its chemotactic responses through the production of two separate membrane-bound chemoreceptor arrays by mixing paralogs within chemotaxis baseplates. The polar localization of chemoreceptors of different length classes is maintained in strains that had baseplate signaling proteins from either chemotaxis system but was lost when both systems were deleted. Chemotaxis proteins (CheA and CheW) from each of the chemotaxis signaling systems (Che1 and Che4) could physically interact with one another, and chemoreceptors from both classes present in A. brasilense could interact with Che1 and Che4 proteins. The assembly of paralogs from distinct chemotaxis pathways into baseplates provides a straightforward mechanism for coordinating signaling from distinct pathways, which we predict is not unique to this system given the propensity of chemotaxis systems for horizontal gene transfer.
Collapse
|
43
|
Abstract
Prokaryotic organisms occupy the most diverse set of environments and conditions on our planet. Their ability to sense and respond to a broad range of external cues remain key research areas in modern microbiology, central to behaviors that underlie beneficial and pathogenic interactions of bacteria with multicellular organisms and within complex ecosystems. Advances in our understanding of the one- and two-component signal transduction systems that underlie these sensing pathways have been driven by advances in imaging the behavior of many individual bacterial cells, as well as visualizing individual proteins and protein arrays within living cells. Cryo-electron tomography continues to provide new insights into the structure and function of chemosensory receptors and flagellar motors, while advances in protein labeling and tracking are applied to understand information flow between receptor and motor. Sophisticated microfluidics allow simultaneous analysis of the behavior of thousands of individual cells, increasing our understanding of how variance between individuals is generated, regulated and employed to maximize fitness of a population. In vitro experiments have been complemented by the study of signal transduction and motility in complex in vivo models, allowing investigators to directly address the contribution of motility, chemotaxis and aggregation/adhesion on virulence during infection. Finally, systems biology approaches have demonstrated previously uncharted areas of protein space in which novel two-component signal transduction pathways can be designed and constructed de novo These exciting experimental advances were just some of the many novel findings presented at the 15th Bacterial Locomotion and Signal Transduction conference (BLAST XV) in January 2019.
Collapse
|
44
|
Li X, Eyles SJ, Thompson LK. Hydrogen exchange of chemoreceptors in functional complexes suggests protein stabilization mediates long-range allosteric coupling. J Biol Chem 2019; 294:16062-16079. [PMID: 31506298 DOI: 10.1074/jbc.ra119.009865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/08/2019] [Indexed: 11/06/2022] Open
Abstract
Bacterial chemotaxis receptors form extended hexagonal arrays that integrate and amplify signals to control swimming behavior. Transmembrane signaling begins with a 2-Å ligand-induced displacement of an α helix in the periplasmic and transmembrane domains, but it is unknown how the cytoplasmic domain propagates the signal an additional 200 Å to control the kinase CheA bound to the membrane-distal tip of the receptor. The receptor cytoplasmic domain has previously been shown to be highly dynamic as both a cytoplasmic fragment (CF) and within the intact chemoreceptor; modulation of its dynamics is thought to play a key role in signal propagation. This hydrogen deuterium exchange-MS (HDX-MS) study of functional complexes of CF, CheA, and CheW bound to vesicles in native-like arrays reveals that the CF is well-ordered only in its protein interaction region where it binds CheA and CheW. We observe rapid exchange throughout the rest of the CF, with both uncorrelated (EX2) and correlated (EX1) exchange patterns, suggesting the receptor cytoplasmic domain retains disorder even within functional complexes. HDX rates are increased by inputs that favor the kinase-off state. We propose that chemoreceptors achieve long-range allosteric control of the kinase through a coupled equilibrium: CheA binding in a kinase-on conformation stabilizes the cytoplasmic domain, and signaling inputs that destabilize this domain (ligand binding and demethylation) disfavor CheA binding such that it loses key contacts and reverts to a kinase-off state. This study reveals the mechanistic role of an intrinsically disordered region of a transmembrane receptor in long-range allostery.
Collapse
Affiliation(s)
- Xuni Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Stephen J Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Lynmarie K Thompson
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 .,Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
45
|
Hong Y, Huang Z, Guo L, Ni B, Jiang CY, Li XJ, Hou YJ, Yang WS, Wang DC, Zhulin IB, Liu SJ, Li DF. The ligand-binding domain of a chemoreceptor from Comamonas testosteroni has a previously unknown homotrimeric structure. Mol Microbiol 2019; 112:906-917. [PMID: 31177588 PMCID: PMC6736725 DOI: 10.1111/mmi.14326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
Transmembrane chemoreceptors are widely present in Bacteria and Archaea. They play a critical role in sensing various signals outside and transmitting to the cell interior. Here, we report the structure of the periplasmic ligand-binding domain (LBD) of the transmembrane chemoreceptor MCP2201, which governs chemotaxis to citrate and other organic compounds in Comamonas testosteroni. The apo-form LBD crystal revealed a typical four-helix bundle homodimer, similar to previously well-studied chemoreceptors such as Tar and Tsr of Escherichia coli. However, the citrate-bound LBD revealed a four-helix bundle homotrimer that had not been observed in bacterial chemoreceptor LBDs. This homotrimer was further confirmed with size-exclusion chromatography, analytical ultracentrifugation and cross-linking experiments. The physiological importance of the homotrimer for chemotaxis was demonstrated with site-directed mutations of key amino acid residues in C. testosteroni mutants.
Collapse
Affiliation(s)
- Yuan Hong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Bin Ni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Xiao-Jing Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yan-Jie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Igor B. Zhulin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,For correspondence. (D.-F.L.); (S.-J.L.); Tel. (+86) 10 64807423; Fax (+86) 10 64807421
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,For correspondence. (D.-F.L.); (S.-J.L.); Tel. (+86) 10 64807423; Fax (+86) 10 64807421
| |
Collapse
|
46
|
Yang W, Briegel A. Diversity of Bacterial Chemosensory Arrays. Trends Microbiol 2019; 28:68-80. [PMID: 31473052 DOI: 10.1016/j.tim.2019.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 02/01/2023]
Abstract
Chemotaxis is crucial for the survival of bacteria, and the signaling systems associated with it exhibit a high level of evolutionary conservation. The architecture of the chemosensory array and the signal transduction mechanisms have been extensively studied in Escherichia coli. More recent studies have revealed a vast diversity of the chemosensory system among bacteria. Unlike E. coli, some bacteria assemble more than one chemosensory array and respond to a broader spectrum of environmental and internal stimuli. These chemosensory arrays exhibit a great variability in terms of protein composition, cellular localization, and functional variability. Here, we present recent findings that emphasize the extent of diversity in chemosensory arrays and highlight the importance of studying chemosensory arrays in bacteria other than the common model organisms.
Collapse
Affiliation(s)
- Wen Yang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
47
|
Muok AR, Briegel A, Crane BR. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183030. [PMID: 31374212 DOI: 10.1016/j.bbamem.2019.183030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Bacteria sense and respond to their environment through a highly conserved assembly of transmembrane chemoreceptors (MCPs), the histidine kinase CheA, and the coupling protein CheW, hereafter termed "the chemosensory array". In recent years, great strides have been made in understanding the architecture of the chemosensory array and how this assembly engenders sensitive and cooperative responses. Nonetheless, a central outstanding question surrounds how receptors modulate the activity of the CheA kinase, the enzymatic output of the sensory system. With a focus on recent advances, we summarize the current understanding of array structure and function to comment on the molecular mechanism by which CheA, receptors and CheW generate the high sensitivity, gain and dynamic range emblematic of bacterial chemotaxis. The complexity of the chemosensory arrays has motivated investigation with many different approaches. In particular, structural methods, genetics, cellular activity assays, nanodisc technology and cryo-electron tomography have provided advances that bridge length scales and connect molecular mechanism to cellular function. Given the high degree of component integration in the chemosensory arrays, we ultimately aim to understand how such networked molecular interactions generate a whole that is truly greater than the sum of its parts. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Alise R Muok
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
48
|
Conformational shifts in a chemoreceptor helical hairpin control kinase signaling in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:15651-15660. [PMID: 31315979 PMCID: PMC6681711 DOI: 10.1073/pnas.1902521116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Motile bacteria use chemoreceptor signaling arrays to track chemical gradients with high precision. The Escherichia coli chemotaxis system offers an ideal model for probing the molecular mechanisms of transmembrane and intracellular signaling. In this study, we characterized the signaling properties of mutant E. coli receptors that had amino acid replacements in residues that form a salt-bridge connection between the cytoplasmic tips of receptor molecules. The mutant signaling defects suggested that the chemoreceptor tip operates as a two-state device with discrete active and inactive conformations and that the level of output activity modulates connections between receptor signaling units that produce highly cooperative responses to attractant stimuli. These findings shed important light on the nature and control of receptor signaling states. Motile Escherichia coli cells use chemoreceptor signaling arrays to track chemical gradients with exquisite precision. Highly conserved residues in the cytoplasmic hairpin tip of chemoreceptor molecules promote assembly of trimer-based signaling complexes and modulate the activity of their CheA kinase partners. To explore hairpin tip output states in the serine receptor Tsr, we characterized the signaling consequences of amino acid replacements at the salt-bridge residue pair E385-R388. All mutant receptors assembled trimers and signaling complexes, but most failed to support serine chemotaxis in soft agar assays. Small side-chain replacements at either residue produced OFF- or ON-shifted outputs that responded to serine stimuli in wild-type fashion, suggesting that these receptors, like the wild-type, operate as two-state signaling devices. Larger aliphatic or aromatic side chains caused slow or partial kinase control responses that proved dependent on the connections between core signaling units that promote array cooperativity. In a mutant lacking one of two key adapter-kinase contacts (interface 2), those mutant receptors exhibited more wild-type behaviors. Lastly, mutant receptors with charged amino acid replacements assembled signaling complexes that were locked in kinase-ON (E385K|R) or kinase-OFF (R388D|E) output. The hairpin tips of mutant receptors with these more aberrant signaling properties probably have nonnative structures or dynamic behaviors. Our results suggest that chemoeffector stimuli and adaptational modifications influence the cooperative connections between core signaling units. This array remodeling process may involve activity-dependent changes in the relative strengths of interface 1 and 2 interactions between the CheW and CheA.P5 components of receptor core signaling complexes.
Collapse
|
49
|
Yang W, Cassidy CK, Ames P, Diebolder CA, Schulten K, Luthey-Schulten Z, Parkinson JS, Briegel A. In Situ Conformational Changes of the Escherichia coli Serine Chemoreceptor in Different Signaling States. mBio 2019; 10:e00973-19. [PMID: 31266867 PMCID: PMC6606802 DOI: 10.1128/mbio.00973-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
Tsr, the serine chemoreceptor in Escherichia coli, transduces signals from a periplasmic ligand-binding site to its cytoplasmic tip, where it controls the activity of the CheA kinase. To function, Tsr forms trimers of homodimers (TODs), which associate in vivo with the CheA kinase and CheW coupling protein. Together, these proteins assemble into extended hexagonal arrays. Here, we use cryo-electron tomography and molecular dynamics simulation to study Tsr in the context of a near-native array, characterizing its signaling-related conformational changes at both the individual dimer and the trimer level. In particular, we show that individual Tsr dimers within a trimer exhibit asymmetric flexibilities that are a function of the signaling state, highlighting the effect of their different protein interactions at the receptor tips. We further reveal that the dimer compactness of the Tsr trimer changes between signaling states, transitioning at the glycine hinge from a compact conformation in the kinase-OFF state to an expanded conformation in the kinase-ON state. Hence, our results support a crucial role for the glycine hinge: to allow the receptor flexibility necessary to achieve different signaling states while also maintaining structural constraints imposed by the membrane and extended array architecture.IMPORTANCE In Escherichia coli, membrane-bound chemoreceptors, the histidine kinase CheA, and coupling protein CheW form highly ordered chemosensory arrays. In core signaling complexes, chemoreceptor trimers of dimers undergo conformational changes, induced by ligand binding and sensory adaptation, which regulate kinase activation. Here, we characterize by cryo-electron tomography the kinase-ON and kinase-OFF conformations of the E. coli serine receptor in its native array context. We found distinctive structural differences between the members of a receptor trimer, which contact different partners in the signaling unit, and structural differences between the ON and OFF signaling complexes. Our results provide new insights into the signaling mechanism of chemoreceptor arrays and suggest an important functional role for a previously postulated flexible region and glycine hinge in the receptor molecule.
Collapse
Affiliation(s)
- Wen Yang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Physics and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Peter Ames
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zaida Luthey-Schulten
- Department of Chemistry and Center for the Physics of Living Cells, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
50
|
Stalla D, Akkaladevi N, White TA, Hazelbauer GL. Spatial Restrictions in Chemotaxis Signaling Arrays: A Role for Chemoreceptor Flexible Hinges across Bacterial Diversity. Int J Mol Sci 2019; 20:ijms20122989. [PMID: 31248079 PMCID: PMC6628036 DOI: 10.3390/ijms20122989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
The chemotactic sensory system enables motile bacteria to move toward favorable environments. Throughout bacterial diversity, the chemoreceptors that mediate chemotaxis are clustered into densely packed arrays of signaling complexes. In these arrays, rod-shaped receptors are in close proximity, resulting in limited options for orientations. A recent geometric analysis of these limitations in Escherichia coli, using published dimensions and angles, revealed that in this species, straight chemoreceptors would not fit into the available space, but receptors bent at one or both of the recently-documented flexible hinges would fit, albeit over a narrow window of shallow bend angles. We have now expanded our geometric analysis to consider variations in receptor length, orientation and placement, and thus to species in which those parameters are known to be, or might be, different, as well as to the possibility of dynamic variation in those parameters. The results identified significant limitations on the allowed combinations of chemoreceptor dimensions, orientations and placement. For most combinations, these limitations excluded straight chemoreceptors, but allowed receptors bent at a flexible hinge. Thus, our analysis identifies across bacterial diversity a crucial role for chemoreceptor flexible hinges, in accommodating the limitations of molecular crowding in chemotaxis core signaling complexes and their arrays.
Collapse
Affiliation(s)
- David Stalla
- Electron Microscopy Core Facility, W117 Veterinary Medicine Building, 1600 East Rollins St., University of Missouri, Columbia, MO 65211, USA.
| | - Narahari Akkaladevi
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| | - Tommi A White
- Electron Microscopy Core Facility, W117 Veterinary Medicine Building, 1600 East Rollins St., University of Missouri, Columbia, MO 65211, USA.
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| | - Gerald L Hazelbauer
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|