1
|
Wang Z, Chu Y, Li Q, Han X, Zhao L, Zhang H, Cai K, Zhang X, Wang X, Qin Y, Fan E. A minimum functional form of the Escherichia coli BAM complex constituted by BamADE assembles outer membrane proteins in vitro. J Biol Chem 2024; 300:107324. [PMID: 38677515 PMCID: PMC11130730 DOI: 10.1016/j.jbc.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The biogenesis of outer membrane proteins is mediated by the β-barrel assembly machinery (BAM), which is a heteropentomeric complex composed of five proteins named BamA-E in Escherichia coli. Despite great progress in the BAM structural analysis, the molecular details of BAM-mediated processes as well as the exact function of each BAM component during OMP assembly are still not fully understood. To enable a distinguishment of the function of each BAM component, it is the aim of the present work to examine and identify the effective minimum form of the E. coli BAM complex by use of a well-defined reconstitution strategy based on a previously developed versatile assay. Our data demonstrate that BamADE is the core BAM component and constitutes a minimum functional form for OMP assembly in E. coli, which can be stimulated by BamB and BamC. While BamB and BamC have a redundant function based on the minimum form, both together seem to cooperate with each other to substitute for the function of the missing BamD or BamE. Moreover, the BamAE470K mutant also requires the function of BamD and BamE to assemble OMPs in vitro, which vice verse suggests that BamADE are the effective minimum functional form of the E. coli BAM complex.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yindi Chu
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qingrong Li
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaochen Han
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Leyi Zhao
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hanqing Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kun Cai
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuyan Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xingyuan Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Youcai Qin
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Enguo Fan
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; School of Medicine, Linyi University, Linyi, China.
| |
Collapse
|
2
|
Germany EM, Thewasano N, Imai K, Maruno Y, Bamert RS, Stubenrauch CJ, Dunstan RA, Ding Y, Nakajima Y, Lai X, Webb CT, Hidaka K, Tan KS, Shen H, Lithgow T, Shiota T. Dual recognition of multiple signals in bacterial outer membrane proteins enhances assembly and maintains membrane integrity. eLife 2024; 12:RP90274. [PMID: 38226797 PMCID: PMC10945584 DOI: 10.7554/elife.90274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Outer membrane proteins (OMPs) are essential components of the outer membrane of Gram-negative bacteria. In terms of protein targeting and assembly, the current dogma holds that a 'β-signal' imprinted in the final β-strand of the OMP engages the β-barrel assembly machinery (BAM) complex to initiate membrane insertion and assembly of the OMP into the outer membrane. Here, we revealed an additional rule that signals equivalent to the β-signal are repeated in other, internal β-strands within bacterial OMPs, by peptidomimetic and mutational analysis. The internal signal is needed to promote the efficiency of the assembly reaction of these OMPs. BamD, an essential subunit of the BAM complex, recognizes the internal signal and the β-signal, arranging several β-strands and partial folding for rapid OMP assembly. The internal signal-BamD ordering system is not essential for bacterial viability but is necessary to retain the integrity of the outer membrane against antibiotics and other environmental insults.
Collapse
Affiliation(s)
- Edward M Germany
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Nakajohn Thewasano
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
| | - Yuki Maruno
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Rebecca S Bamert
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Rhys A Dunstan
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Yue Ding
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Yukari Nakajima
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - XiangFeng Lai
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
| | - Chaille T Webb
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Kentaro Hidaka
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Kher Shing Tan
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Hsinhui Shen
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Takuya Shiota
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| |
Collapse
|
3
|
Storek KM, Sun D, Rutherford ST. Inhibitors targeting BamA in gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119609. [PMID: 37852326 DOI: 10.1016/j.bbamcr.2023.119609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Antibiotic resistance has led to an increase in the number of patient hospitalizations and deaths. The situation for gram-negative bacteria is especially dire as the last new class of antibiotics active against these bacteria was introduced to the clinic over 60 years ago, thus there is an immediate unmet need for new antibiotic classes able to overcome resistance. The outer membrane, a unique and essential structure in gram-negative bacteria, contains multiple potential antibacterial targets including BamA, an outer membrane protein that folds and inserts transmembrane β-barrel proteins. BamA is essential and conserved, and its outer membrane location eliminates a barrier that molecules must overcome to access this target. Recently, antibacterial small molecules, natural products, peptides, and antibodies that inhibit BamA activity have been reported, validating the druggability of this target and generating potential leads for antibiotic development. This review will describe these BamA inhibitors, highlight their key attributes, and identify challenges with this potential target.
Collapse
Affiliation(s)
- Kelly M Storek
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Dawei Sun
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
4
|
Kumar S, Konovalova A. BamE directly interacts with BamA and BamD coordinating their functions. Mol Microbiol 2023; 120:397-407. [PMID: 37455652 PMCID: PMC10528117 DOI: 10.1111/mmi.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The β-barrel assembly machinery (Bam) complex facilitates the assembly of outer membrane proteins (OMPs) in gram-negative bacteria. The Bam complex is conserved and essential for bacterial viability and consists of five subunits, BamA-E. BamA is the transmembrane component, and its β-barrel domain opens laterally to allow folding and insertion of incoming OMPs. The remaining components are regulatory, among which only BamD is essential. Previous studies suggested that BamB regulates BamA directly, while BamE and BamC serve as BamD regulators. However, specific molecular details of their functions remain unknown. Our previous research demonstrated that BamE plays a specialized role in assembling the complex between the lipoprotein RcsF and its OMP partners, required for the Regulator of Capsule Synthesis (Rcs) stress response. Here, we used RcsF/OmpA as a model substrate to investigate BamE function. Our results challenge the current view that BamE only serves as a BamD regulator. We show that BamE also directly interacts with BamA. BamE interaction with both BamA and BamD is important for function. Our genetic and biochemical analysis shows that BamE stabilizes the Bam complex and promotes bidirectional signaling interaction between BamA and BamD. This BamE function becomes essential when direct BamA/BamD communication is impeded.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Anna Konovalova
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| |
Collapse
|
5
|
Cho SH, Dekoninck K, Collet JF. Envelope-Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram-Negative Bacteria. J Microbiol 2023; 61:317-329. [PMID: 36892778 DOI: 10.1007/s12275-023-00030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The global public health burden of bacterial antimicrobial resistance (AMR) is intensified by Gram-negative bacteria, which have an additional membrane, the outer membrane (OM), outside of the peptidoglycan (PG) cell wall. Bacterial two-component systems (TCSs) aid in maintaining envelope integrity through a phosphorylation cascade by controlling gene expression through sensor kinases and response regulators. In Escherichia coli, the major TCSs defending cells from envelope stress and adaptation are Rcs and Cpx, which are aided by OM lipoproteins RcsF and NlpE as sensors, respectively. In this review, we focus on these two OM sensors. β-Barrel assembly machinery (BAM) inserts transmembrane OM proteins (OMPs) into the OM. BAM co-assembles RcsF, the Rcs sensor, with OMPs, forming the RcsF-OMP complex. Researchers have presented two models for stress sensing in the Rcs pathway. The first model suggests that LPS perturbation stress disassembles the RcsF-OMP complex, freeing RcsF to activate Rcs. The second model proposes that BAM cannot assemble RcsF into OMPs when the OM or PG is under specific stresses, and thus, the unassembled RcsF activates Rcs. These two models may not be mutually exclusive. Here, we evaluate these two models critically in order to elucidate the stress sensing mechanism. NlpE, the Cpx sensor, has an N-terminal (NTD) and a C-terminal domain (CTD). A defect in lipoprotein trafficking results in NlpE retention in the inner membrane, provoking the Cpx response. Signaling requires the NlpE NTD, but not the NlpE CTD; however, OM-anchored NlpE senses adherence to a hydrophobic surface, with the NlpE CTD playing a key role in this function.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium. .,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| | - Kilian Dekoninck
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.,University of California, Berkeley, CA, 94720, USA
| | - Jean-Francois Collet
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
6
|
Abstract
Several antibacterial compounds have recently been discovered that potentially inhibit the activity of BamA, an essential subunit of a heterooligomer (the barrel assembly machinery or BAM) that assembles outer membrane proteins (OMPs) in Gram-negative bacteria, but their mode of action is unclear. To address this issue, we examined the effect of three inhibitors on the biogenesis of a model E. coli OMP (EspP) in vivo. We found that darobactin potently inhibited the interaction of a conserved C-terminal sequence motif (the “β signal”) with BamA, but had no effect on assembly if added at a postbinding stage. In contrast, Polyphor peptide 7 and MRL-494 inhibited both binding and at least one later step of assembly. Taken together with previous studies that analyzed the binding of darobactin and Polyphor peptide 7 to BamA in vitro, our results strongly suggest that the two compounds inhibit BAM function by distinct competitive and allosteric mechanisms. In addition to providing insights into the properties of the antibacterial compounds, our results also provide direct experimental evidence that supports a model in which the binding of the β signal to BamA initiates the membrane insertion of OMPs.
Collapse
|
7
|
Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. Commun Biol 2022; 5:560. [PMID: 35676411 PMCID: PMC9177699 DOI: 10.1038/s42003-022-03502-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Correct folding of outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria depends on delivery of unfolded OMPs to the β-barrel assembly machinery (BAM). How unfolded substrates are presented to BAM remains elusive, but the major OMP chaperone SurA is proposed to play a key role. Here, we have used hydrogen deuterium exchange mass spectrometry (HDX-MS), crosslinking, in vitro folding and binding assays and computational modelling to show that the core domain of SurA and one of its two PPIase domains are key to the SurA-BAM interaction and are required for maximal catalysis of OMP folding. We reveal that binding causes changes in BAM and SurA conformation and/or dynamics distal to the sites of binding, including at the BamA β1-β16 seam. We propose a model for OMP biogenesis in which SurA plays a crucial role in OMP delivery and primes BAM to accept substrates for folding. Interaction of the outer membrane protein (OMP) chaperone SurA and the OMP folding catalyst BAM results in changes in the conformational ensembles of both species, suggesting a mechanism for delivery of OMPs to BAM in Gram-negative bacteria.
Collapse
|
8
|
Doyle MT, Bernstein HD. Function of the Omp85 Superfamily of Outer Membrane Protein Assembly Factors and Polypeptide Transporters. Annu Rev Microbiol 2022; 76:259-279. [PMID: 35650668 DOI: 10.1146/annurev-micro-033021-023719] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Omp85 protein superfamily is found in the outer membrane (OM) of all gram-negative bacteria and eukaryotic organelles of bacterial origin. Members of the family catalyze both the membrane insertion of β-barrel proteins and the translocation of proteins across the OM. Although the mechanism(s) by which these proteins function is unclear, striking new insights have emerged from recent biochemical and structural studies. In this review we discuss the entire Omp85 superfamily but focus on the function of the best-studied member, BamA, which is an essential and highly conserved component of the bacterial barrel assembly machinery (BAM). Because BamA has multiple functions that overlap with those of other Omp85 proteins, it is likely the prototypical member of the Omp85 superfamily. Furthermore, BamA has become a protein of great interest because of the recent discovery of small-molecule inhibitors that potentially represent an important new class of antibiotics. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
9
|
Wang X, Bernstein HD. The Escherichia coli outer membrane protein OmpA acquires secondary structure prior to its integration into the membrane. J Biol Chem 2022; 298:101802. [PMID: 35257747 PMCID: PMC8987393 DOI: 10.1016/j.jbc.2022.101802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Almost all proteins that reside in the outer membrane (OM) of Gram-negative bacteria contain a membrane-spanning segment that folds into a unique β barrel structure and inserts into the membrane by an unknown mechanism. To obtain further insight into outer membrane protein (OMP) biogenesis, we revisited the surprising observation reported over 20 years ago that the Escherichia coli OmpA β barrel can be assembled into a native structure in vivo when it is expressed as two noncovalently linked fragments. Here, we show that disulfide bonds between β strand 4 in the N-terminal fragment and β strand 5 in the C-terminal fragment can form in the periplasmic space and greatly increase the efficiency of assembly of "split" OmpA, but only if the cysteine residues are engineered in perfect register (i.e., they are aligned in the fully folded β barrel). In contrast, we observed only weak disulfide bonding between β strand 1 in the N-terminal fragment and β strand 8 in the C-terminal fragment that would form a closed or circularly permutated β barrel. Our results not only demonstrate that β barrels begin to fold into a β-sheet-like structure before they are integrated into the OM but also help to discriminate among the different models of OMP biogenesis that have been proposed.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
10
|
Bautista DE, Carr JF, Mitchell AM. Suppressor Mutants: History and Today's Applications. EcoSal Plus 2021; 9:eESP00372020. [PMID: 34910591 PMCID: PMC9008745 DOI: 10.1128/ecosalplus.esp-0037-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
For decades, biologist have exploited the near boundless advantages that molecular and genetic tools and analysis provide for our ability to understand biological systems. One of these genetic tools, suppressor analysis, has proven invaluable in furthering our understanding of biological processes and pathways and in discovering unknown interactions between genes and gene products. The power of suppressor analysis lies in its ability to discover genetic interactions in an unbiased manner, often leading to surprising discoveries. With advancements in technology, high-throughput approaches have aided in large-scale identification of suppressors and have helped provide insight into the core functional mechanisms through which suppressors act. In this review, we examine some of the fundamental discoveries that have been made possible through analysis of suppressor mutations. In addition, we cover the different types of suppressor mutants that can be isolated and the biological insights afforded by each type. Moreover, we provide considerations for the design of experiments to isolate suppressor mutants and for strategies to identify intergenic suppressor mutations. Finally, we provide guidance and example protocols for the isolation and mapping of suppressor mutants.
Collapse
Affiliation(s)
- David E. Bautista
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Joseph F. Carr
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Angela M. Mitchell
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Zhang Z, Huang Z, Tong J, Wu Q, Pan Y, Malakar PK, Zhao Y. An outlook for food sterilization technology: targeting the outer membrane of foodborne gram-negative pathogenic bacteria. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
High-throughput suppressor screen demonstrates that RcsF monitors outer membrane integrity and not Bam complex function. Proc Natl Acad Sci U S A 2021; 118:2100369118. [PMID: 34349021 DOI: 10.1073/pnas.2100369118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulator of capsule synthesis (Rcs) is a complex signaling cascade that monitors gram-negative cell envelope integrity. The outer membrane (OM) lipoprotein RcsF is the sensory component, but how RcsF functions remains elusive. RcsF interacts with the β-barrel assembly machinery (Bam) complex, which assembles RcsF in complex with OM proteins (OMPs), resulting in RcsF's partial cell surface exposure. Elucidating whether RcsF/Bam or RcsF/OMP interactions are important for its sensing function is challenging because the Bam complex is essential, and partial loss-of-function mutations broadly compromise the OM biogenesis. Our recent discovery that, in the absence of nonessential component BamE, RcsF inhibits function of the central component BamA provided a genetic tool to select mutations that specifically prevent RcsF/BamA interactions. We employed a high-throughput suppressor screen to isolate a collection of such rcsF and bamA mutants and characterized their impact on RcsF/OMP assembly and Rcs signaling. Using these mutants and BamA inhibitors MRL-494L and darobactin, we provide multiple lines of evidence against the model in which RcsF senses Bam complex function. We show that Rcs activation in bam mutants results from secondary OM and lipopolysaccharide defects and that RcsF/OMP assembly is required for this activation, supporting an active role of RcsF/OMP complexes in sensing OM stress.
Collapse
|
13
|
The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nat Commun 2021; 12:4174. [PMID: 34234105 PMCID: PMC8263589 DOI: 10.1038/s41467-021-24432-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.
Collapse
|
14
|
Wang X, Peterson JH, Bernstein HD. Bacterial Outer Membrane Proteins Are Targeted to the Bam Complex by Two Parallel Mechanisms. mBio 2021; 12:e00597-21. [PMID: 33947759 PMCID: PMC8262991 DOI: 10.1128/mbio.00597-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 01/23/2023] Open
Abstract
Membrane proteins that are integrated into the outer membrane of Gram-negative bacteria typically contain a unique "β barrel" structure that serves as a membrane spanning segment. A conserved "β signal" motif is located at the C terminus of the β barrel of many outer membrane proteins (OMPs), but the function of this sequence is unclear. We found that mutations in the β signal slightly delayed the assembly of three model Escherichia coli OMPs by reducing their affinity for the barrel assembly machinery (Bam) complex, a heterooligomer that catalyzes β barrel insertion, and led to the degradation of a fraction of the protein in the periplasm. Interestingly, the absence of the periplasmic chaperone SurA amplified the effect of the mutations and caused the complete degradation of the mutant proteins. In contrast, the absence of another periplasmic chaperone (Skp) suppressed the effect of the mutations and considerably enhanced the efficiency of assembly. Our results reveal the existence of two parallel OMP targeting mechanisms that rely on a cis-acting peptide (the β signal) and a trans-acting factor (SurA), respectively. Our results also challenge the long-standing view that periplasmic chaperones are redundant and provide evidence that they have specialized functions.IMPORTANCE Proteins that are embedded in the outer membrane of Gram-negative bacteria (OMPs) play an important role in protecting the cell from harmful chemicals. OMPs share a common architecture and often contain a conserved sequence motif (β motif) of unknown function. Although OMPs are escorted to the outer membrane by proteins called chaperones, the exact function of the chaperones is also unclear. Here, we show that the β motif and the chaperone SurA both target OMPs to the β barrel insertion machinery in the outer membrane. In contrast, the chaperone Skp delivers unintegrated OMPs to protein degradation complexes. Our results challenge the long-standing view that chaperones are functionally redundant and strongly suggest that they have specialized roles in OMP targeting and quality control.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. Modulators of protein-protein interactions as antimicrobial agents. RSC Chem Biol 2021; 2:387-409. [PMID: 34458791 PMCID: PMC8341153 DOI: 10.1039/d0cb00205d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-Protein interactions (PPIs) are involved in a myriad of cellular processes in all living organisms and the modulation of PPIs is already under investigation for the development of new drugs targeting cancers, autoimmune diseases and viruses. PPIs are also involved in the regulation of vital functions in bacteria and, therefore, targeting bacterial PPIs offers an attractive strategy for the development of antibiotics with novel modes of action. The latter are urgently needed to tackle multidrug-resistant and multidrug-tolerant bacteria. In this review, we describe recent developments in the modulation of PPIs in pathogenic bacteria for antibiotic development, including advanced small molecule and peptide inhibitors acting on bacterial PPIs involved in division, replication and transcription, outer membrane protein biogenesis, with an additional focus on toxin-antitoxin systems as upcoming drug targets.
Collapse
Affiliation(s)
- Rashi Kahan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Dennis J Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Guilherme V de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Simon Ng
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
16
|
Tomasek D, Kahne D. The assembly of β-barrel outer membrane proteins. Curr Opin Microbiol 2021; 60:16-23. [PMID: 33561734 DOI: 10.1016/j.mib.2021.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts contain β-barrel integral membrane proteins. In bacteria, the five-protein β-barrel assembly machine (Bam) accelerates the folding and membrane integration of these proteins. The central component of the machine, BamA, contains a β-barrel domain that can adopt a lateral-open state with its N-terminal and C-terminal β-strands unpaired. Recently, strategies have been developed to capture β-barrel folding intermediates on the Bam complex. Biochemical and structural studies provide support for a model in which substrates assemble at the lateral opening of BamA. In this model, the N-terminal β-strand of BamA captures the C-terminal β-strand of substrates by hydrogen bonding to allow their directional folding and subsequent release into the membrane.
Collapse
Affiliation(s)
- David Tomasek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Functions of the BamBCDE Lipoproteins Revealed by Bypass Mutations in BamA. J Bacteriol 2020; 202:JB.00401-20. [PMID: 32817097 DOI: 10.1128/jb.00401-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022] Open
Abstract
The heteropentomeric β-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of β-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the β-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K ), the A-to-P change at position 496 (bamAA496P ), and the A-to-S change at position 499 (bamAA499S ), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates.IMPORTANCE The folding and insertion of β-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric β-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.
Collapse
|
18
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
19
|
The gain-of-function allele bamA E470K bypasses the essential requirement for BamD in β-barrel outer membrane protein assembly. Proc Natl Acad Sci U S A 2020; 117:18737-18743. [PMID: 32675245 DOI: 10.1073/pnas.2007696117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The outer membrane (OM) of gram-negative bacteria confers innate resistance to toxins and antibiotics. Integral β-barrel outer membrane proteins (OMPs) function to establish and maintain the selective permeability of the OM. OMPs are assembled into the OM by the β-barrel assembly machine (BAM), which is composed of one OMP-BamA-and four lipoproteins-BamB, C, D, and E. BamB, C, and E can be removed individually with only minor effects on barrier function; however, depletion of either BamA or BamD causes a global defect in OMP assembly and results in cell death. We have identified a gain-of-function mutation, bamA E470K , that bypasses the requirement for BamD. Although bamD::kan bamA E470K cells exhibit growth and OM barrier defects, they assemble OMPs with surprising robustness. Our results demonstrate that BamD does not play a catalytic role in OMP assembly, but rather functions to regulate the activity of BamA.
Collapse
|
20
|
Lee J, Tomasek D, Santos TM, May MD, Meuskens I, Kahne D. Formation of a β-barrel membrane protein is catalyzed by the interior surface of the assembly machine protein BamA. eLife 2019; 8:49787. [PMID: 31724945 PMCID: PMC6887485 DOI: 10.7554/elife.49787] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/13/2019] [Indexed: 01/02/2023] Open
Abstract
The β-barrel assembly machine (Bam) complex in Gram-negative bacteria and its counterparts in mitochondria and chloroplasts fold and insert outer membrane β-barrel proteins. BamA, an essential component of the complex, is itself a β-barrel and is proposed to play a central role in assembling other barrel substrates. Here, we map the path of substrate insertion by the Bam complex using site-specific crosslinking to understand the molecular mechanisms that control β-barrel folding and release. We find that the C-terminal strand of the substrate is stably held by BamA and that the N-terminal strands of the substrate are assembled inside the BamA β-barrel. Importantly, we identify contacts between the assembling β-sheet and the BamA interior surface that determine the rate of substrate folding. Our results support a model in which the interior wall of BamA acts as a chaperone to catalyze β-barrel assembly.
Collapse
Affiliation(s)
- James Lee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - David Tomasek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Thiago Ma Santos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Mary D May
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Ina Meuskens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
21
|
Sequential Translocation of Polypeptides across the Bacterial Outer Membrane through the Trimeric Autotransporter Pathway. mBio 2019; 10:mBio.01973-19. [PMID: 31641085 PMCID: PMC6805991 DOI: 10.1128/mbio.01973-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trimeric autotransporter adhesins (TAAs) are a family of bacterial outer membrane (OM) proteins that are comprised of three identical subunits. Each subunit contains an N-terminal extracellular ("passenger") domain and a short C-terminal segment that contributes four β strands to a single 12-stranded β barrel. The mechanism by which the passenger domains are translocated across the OM and the energetics of the translocation reaction are poorly understood. To address these issues, we examined the secretion of modified versions of the passenger domain of UpaG, a TAA produced by Escherichia coli CFT073. Using the SpyTag-SpyCatcher system to probe passenger domain localization, we found that both intrinsically disordered polypeptides fused to the UpaG passenger domain and artificially disulfide-bonded polypeptides were secreted effectively but relatively slowly. Surprisingly, we also found that in some cases, the three nonnative passenger domain segments associated with a single trimer were secreted sequentially. Photo-cross-linking experiments indicated that incompletely assembled UpaG derivatives remained bound to the barrel assembly machinery (Bam) complex until all three passenger domains were fully secreted. Taken together, our results strongly suggest that the secretion of polypeptides through the TAA pathway is coordinated with the assembly of the β barrel domain and that the folding of passenger domains in the extracellular space maximizes the rate of secretion. Furthermore, our work provides evidence for an unprecedented sequential mode of protein translocation, at least under specific experimental conditions.IMPORTANCE Trimeric autotransporter adhesins (TAAs) are specialized bacterial outer membrane proteins consisting of three identical subunits. TAAs contain large extracellular domains that trimerize and promote virulence, but the mechanism by which they are secreted is poorly understood. We found that the extracellular domains of a native TAA were secreted rapidly but that disordered and artificially folded polypeptides fused to native passenger domains were secreted in a slow, sequential fashion. Our results strongly suggest that the efficient secretion of native extracellular domains is driven by their trimerization following export but that alternative energy sources can be harnessed to secrete nonnative polypeptides. Furthermore, we obtained evidence that TAA extracellular domains are secreted before the assembly of the linked membrane spanning domain is completed.
Collapse
|
22
|
A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc Natl Acad Sci U S A 2019; 116:21748-21757. [PMID: 31591200 DOI: 10.1073/pnas.1912345116] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the β-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamA E470K BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.
Collapse
|
23
|
Psonis JJ, Chahales P, Henderson NS, Rigel NW, Hoffman PS, Thanassi DG. The small molecule nitazoxanide selectively disrupts BAM-mediated folding of the outer membrane usher protein. J Biol Chem 2019; 294:14357-14369. [PMID: 31391254 PMCID: PMC6768635 DOI: 10.1074/jbc.ra119.009616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial pathogens assemble adhesive surface structures termed pili or fimbriae to initiate and sustain infection of host tissues. Uropathogenic Escherichia coli, the primary causative agent of urinary tract infections, expresses type 1 and P pili required for colonization of the bladder and kidney, respectively. These pili are assembled by the conserved chaperone-usher (CU) pathway, in which a periplasmic chaperone works together with an outer membrane (OM) usher protein to build and secrete the pilus fiber. Previously, we found that the small molecule and antiparasitic drug nitazoxanide (NTZ) inhibits CU pathway-mediated pilus biogenesis in E. coli by specifically interfering with proper maturation of the usher protein in the OM. The usher is folded and inserted into the OM by the β-barrel assembly machine (BAM) complex, which in E. coli comprises five proteins, BamA-E. Here, we show that sensitivity of the usher to NTZ is modulated by BAM expression levels and requires the BamB and BamE lipoproteins. Furthermore, a genetic screen for NTZ-resistant bacterial mutants isolated a mutation in the essential BamD lipoprotein. These findings suggest that NTZ selectively interferes with an usher-specific arm of the BAM complex, revealing new details of the usher folding pathway and BAM complex function. Evaluation of a set of NTZ derivatives identified compounds with increased potency and disclosed that NTZ's nitrothiazole ring is critical for usher inhibition. In summary, our findings indicate highly specific effects of NTZ on the usher folding pathway and have uncovered NTZ analogs that specifically decrease usher levels in the OM.
Collapse
Affiliation(s)
- John J Psonis
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Peter Chahales
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Nadine S Henderson
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Nathan W Rigel
- Department of Biology, Hofstra University, Hempstead, New York 11549
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22908
| | - David G Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
24
|
Wu R, Stephenson R, Gichaba A, Noinaj N. The big BAM theory: An open and closed case? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183062. [PMID: 31520605 DOI: 10.1016/j.bbamem.2019.183062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
The β-barrel assembly machinery (BAM) is responsible for the biogenesis of outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria. These OMPs have a membrane-embedded domain consisting of a β-barrel fold which can vary from 8 to 36 β-strands, with each serving a diverse role in the cell such as nutrient uptake and virulence. BAM was first identified nearly two decades ago, but only recently has the molecular structure of the full complex been reported. Together with many years of functional characterization, we have a significantly clearer depiction of BAM's structure, the intra-complex interactions, conformational changes that BAM may undergo during OMP biogenesis, and the role chaperones may play. But still, despite advances over the past two decades, the mechanism for BAM-mediated OMP biogenesis remains elusive. Over the years, several theories have been proposed that have varying degrees of support from the literature, but none has of yet been conclusive enough to be widely accepted as the sole mechanism. We will present a brief history of BAM, the recent work on the structures of BAM, and a critical analysis of the current theories for how it may function.
Collapse
Affiliation(s)
- Runrun Wu
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Stephenson
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Gichaba
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
25
|
Kaur H, Hartmann JB, Jakob RP, Zahn M, Zimmermann I, Maier T, Seeger MA, Hiller S. Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach. JOURNAL OF BIOMOLECULAR NMR 2019; 73:375-384. [PMID: 31073665 DOI: 10.1007/s10858-019-00250-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The insertase BamA is an essential protein of the bacterial outer membrane. Its 16-stranded transmembrane β-barrel contains a lateral gate as a key functional element. This gate is formed by the C-terminal half of the last β-strand. The BamA barrel was previously found to sample different conformations in aqueous solution, as well as different gate-open, gate-closed, and collapsed conformations in X-ray crystallography and cryo-electron microscopy structures. Here, we report the successful identification of conformation-selective nanobodies that stabilize BamA in specific conformations. While the initial candidate generation and selection protocol was based on established alpaca immunization and phage display selection procedures, the final selection of nanobodies was enhanced by a solution NMR-based screening step to shortlist the targets for crystallization. In this way, three crystal structures of BamA-nanobody complexes were efficiently obtained, showing two types of nanobodies that indeed stabilized BamA in two different conformations, i.e., with open and closed lateral gate, respectively. Then, by correlating the structural data with high resolution NMR spectra, we could for the first time assign the BamA conformational solution ensemble to defined structural states. The new nanobodies will be valuable tools towards understanding the client insertion mechanism of BamA and towards developing improved antibiotics.
Collapse
Affiliation(s)
- Hundeep Kaur
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | - Roman P Jakob
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Michael Zahn
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland
| | | |
Collapse
|
26
|
Tata M, Konovalova A. Improper Coordination of BamA and BamD Results in Bam Complex Jamming by a Lipoprotein Substrate. mBio 2019; 10:e00660-19. [PMID: 31113900 PMCID: PMC6529637 DOI: 10.1128/mbio.00660-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
The β-barrel assembly machinery, the Bam complex, is central to the biogenesis of integral outer membrane proteins (OMPs) as well as OMP-dependent surface-exposed lipoproteins, such as regulator of capsule synthesis protein F (RcsF). Previous genetic analysis established the model that nonessential components BamE and BamB have overlapping, redundant functions to enhance the kinetics of the highly conserved BamA/BamD core. Here we report that BamE plays a specialized nonredundant role in the Bam complex required for surface exposure of RcsF. We show that the lack of bamE, but not bamB, completely abolishes assembly of RcsF/OMP complexes and establish that the inability to assemble RcsF/OMP complexes is a molecular reason underlying all synthetic lethal interactions of ΔbamE Our genetic analysis and biochemical cross-linking suggest that RcsF accumulates on BamA when BamA cannot engage with BamD because of its limited availability or the incompatible conformation. The role of BamE is to promote proper coordination of RcsF-bound BamA with BamD to complete OMP assembly around RcsF. We show that in the absence of BamE, RcsF is stalled on BamA, thus blocking its function, and we identify the lipoprotein RcsF as a bona fide jamming substrate of the Bam complex.IMPORTANCE The β-barrel assembly machinery, the Bam complex, consists of five components, BamA to -E, among which BamA and BamD are highly conserved and essential. The nonessential components are believed to play redundant roles simply by improving the rate of β-barrel folding. Here we show that BamE contributes a specific and nonoverlapping function to the Bam complex. BamE coordinates BamA and BamD to form a complex between the lipoprotein RcsF and its partner outer membrane β-barrel protein, allowing RcsF to reach the cell surface. In the absence of BamE, RcsF accumulates on BamA, thus blocking the activity of the Bam complex. As the Bam complex is a major antibiotic target in Gram-negative bacteria, the discovery that a lipoprotein can act as a jamming substrate may open the door for development of novel Bam complex inhibitors.
Collapse
Affiliation(s)
- Muralidhar Tata
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Anna Konovalova
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
27
|
Hart EM, Gupta M, Wühr M, Silhavy TJ. The Synthetic Phenotype of Δ bamB Δ bamE Double Mutants Results from a Lethal Jamming of the Bam Complex by the Lipoprotein RcsF. mBio 2019; 10:e00662-19. [PMID: 31113901 PMCID: PMC6529638 DOI: 10.1128/mbio.00662-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 01/23/2023] Open
Abstract
The selective permeability of the Gram-negative outer membrane (OM) is maintained by integral β-barrel outer membrane proteins (OMPs). The heteropentomeric β-barrel assembly machine (Bam) folds and inserts OMPs into the OM. Coordination of the essential proteins BamA and BamD is critical for OMP assembly and therefore the viability of the cell. The role of the nonessential lipoproteins BamBCE has yet to be characterized; however, genetic evidence suggests that they have nonoverlapping roles in OMP assembly. In this work, we quantify changes of the proteome in the conditional lethal ΔbamB ΔbamE double mutant. We show that cells lacking BamB and BamE have a global OMP defect that is a result of a lethal obstruction of an assembly-competent Bam complex by the lipoprotein RcsF. RcsF is a stress-sensing lipoprotein that is threaded through the lumen of abundant β-barrel OMPs by the Bam complex to expose the amino terminus on the cell surface. We demonstrate that simply removing this lipoprotein corrects the severe OMP assembly defect of the double mutant nearly as efficiently as a previously isolated suppressor mutation in bamA We propose that BamB and BamE play crucial, nonoverlapping roles to coordinate the activities of BamA and BamD during OMP biogenesis.IMPORTANCE Protein assembly into lipid bilayers is an essential process that ensures the viability of diverse organisms. In Gram-negative bacteria, the heteropentomeric β-barrel assembly machine (Bam) folds and inserts proteins into the outer membrane. Due to its essentiality, outer membrane protein (OMP) assembly by the Bam complex is an attractive target for antibiotic development. Here, we show that the conditional lethal phenotype of a mutant lacking two of the three nonessential lipoproteins, BamB and BamE, is caused by lethal jamming of the stripped-down Bam complex by a normally surface-exposed lipoprotein, RcsF. The heterotrimeric Bam complex (BamA, BamD, BamC) is nearly as efficient as the wild-type complex in OMP assembly if RcsF is removed. Our study highlights the importance of BamB and BamE in regulating the interaction between BamA and BamD and expands our understanding of the role of the Bam complex in outer membrane biogenesis.
Collapse
Affiliation(s)
- Elizabeth M Hart
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Meera Gupta
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
28
|
Ricci DP, Silhavy TJ. Outer Membrane Protein Insertion by the β-barrel Assembly Machine. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0035-2018. [PMID: 30869065 PMCID: PMC6419762 DOI: 10.1128/ecosalplus.esp-0035-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Like all outer membrane (OM) constituents, integral OM β-barrel proteins in Gram-negative bacteria are synthesized in the cytoplasm and trafficked to the OM, where they are locally assembled into the growing OM by the ubiquitous β-barrel assembly machine (Bam). While the identities and structures of all essential and accessory Bam components have been determined, the basic mechanism of Bam-assisted OM protein integration remains elusive. Here we review mechanistic analyses of OM β-barrel protein folding and Bam dynamics and summarize recent insights that inform a general model for OM protein recognition and assembly by the Bam complex.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Early Research, Achaogen, Inc., South San Francisco, CA 94080
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
29
|
Formation of the β-barrel assembly machinery complex in lipid bilayers as seen by solid-state NMR. Nat Commun 2018; 9:4135. [PMID: 30297837 PMCID: PMC6175958 DOI: 10.1038/s41467-018-06466-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/04/2018] [Indexed: 11/27/2022] Open
Abstract
The β-barrel assembly machinery (BAM) is a pentameric complex (BamA–E), which catalyzes the essential process of β-barrel protein insertion into the outer membrane of E. coli. Thus far, a detailed understanding of the insertion mechanism has been elusive but recent results suggest that local protein motion, in addition to the surrounding membrane environment, may be of critical relevance. We have devised a high-sensitivity solid-state NMR approach to directly probe protein motion and the structural changes associated with BAM complex assembly in lipid bilayers. Our results reveal how essential BamA domains, such as the interface formed by the polypeptide transport associated domains P4 and P5 become stabilized after complex formation and suggest that BamA β-barrel opening and P5 reorientation is directly related to complex formation in membranes. Both the lateral gate, as well as P5, exhibit local dynamics, a property that could play an integral role in substrate recognition and insertion. The β-barrel assembly machinery (BAM) catalyzes β-barrel protein insertion into the outer membrane of E.coli. Here authors employ high-sensitivity solid-state NMR to reveal how the lipid environment and formation of the BamA-BamCDE complex affect BamA structure and dynamics with regards to the lateral gate and the β-barrel associated domains.
Collapse
|
30
|
Hartmann JB, Zahn M, Burmann IM, Bibow S, Hiller S. Sequence-Specific Solution NMR Assignments of the β-Barrel Insertase BamA to Monitor Its Conformational Ensemble at the Atomic Level. J Am Chem Soc 2018; 140:11252-11260. [PMID: 30125090 DOI: 10.1021/jacs.8b03220] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-barrel outer membrane proteins (Omps) are key functional components of the outer membranes of Gram-negative bacteria, mitochondria, and plastids. In bacteria, their biogenesis requires the β-barrel-assembly machinery (Bam) with the central insertase BamA, but the exact translocation and insertion mechanism remains elusive. The BamA insertase features a loosely closed gating region between the first and last β-strand 16. Here, we describe ∼70% complete sequence-specific NMR resonance assignments of the transmembrane region of the BamA β-barrel in detergent micelles. On the basis of the assignments, NMR spectra show that the BamA barrel populates a conformational ensemble in slow exchange equilibrium, both in detergent micelles and lipid bilayer nanodiscs. Individual conformers can be selected from the ensemble by the introduction of a C-terminal strand extension, single-point mutations, or specific disulfide cross-linkings, and these modifications at the barrel seam are found to be allosterically coupled to sites at the entire barrel circumference. The resonance assignment provides a platform for mechanistic studies of BamA at atomic resolution, as well as for investigating interactions with potential antibiotic drugs and partner proteins.
Collapse
Affiliation(s)
| | - Michael Zahn
- Biozentrum , University of Basel , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | | | - Stefan Bibow
- Biozentrum , University of Basel , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | - Sebastian Hiller
- Biozentrum , University of Basel , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| |
Collapse
|
31
|
Cyclic Enterobacterial Common Antigen Maintains the Outer Membrane Permeability Barrier of Escherichia coli in a Manner Controlled by YhdP. mBio 2018; 9:mBio.01321-18. [PMID: 30087168 PMCID: PMC6083912 DOI: 10.1128/mbio.01321-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria have an outer membrane (OM) impermeable to many toxic compounds that can be further strengthened during stress. In Enterobacteriaceae, the envelope contains enterobacterial common antigen (ECA), a carbohydrate-derived moiety conserved throughout Enterobacteriaceae, the function of which is poorly understood. Previously, we identified several genes in Escherichia coli K-12 responsible for an RpoS-dependent decrease in envelope permeability during carbon-limited stationary phase. For one of these, yhdP, a gene of unknown function, deletion causes high levels of both vancomycin and detergent sensitivity, independent of growth phase. We isolated spontaneous suppressor mutants of yhdP with loss-of-function mutations in the ECA biosynthesis operon. ECA biosynthesis gene deletions suppressed envelope permeability from yhdP deletion independently of envelope stress responses and interactions with other biosynthesis pathways, demonstrating suppression is caused directly by removing ECA. Furthermore, yhdP deletion changed cellular ECA levels and yhdP was found to co-occur phylogenetically with the ECA biosynthesis operon. Cells make three forms of ECA: ECA lipopolysaccharide (LPS), an ECA chain linked to LPS core; ECA phosphatidylglycerol, a surface-exposed ECA chain linked to phosphatidylglycerol; and cyclic ECA, a cyclized soluble ECA molecule found in the periplasm. We determined that the suppression of envelope permeability with yhdP deletion is caused specifically by the loss of cyclic ECA, despite lowered levels of this molecule found with yhdP deletion. Furthermore, removing cyclic ECA from wild-type cells also caused changes to OM permeability. Our data demonstrate cyclic ECA acts to maintain the OM permeability barrier in a manner controlled by YhdP. Enterobacterial common antigen (ECA) is a surface antigen made by all members of Enterobacteriaceae, including many clinically relevant genera (e.g., Escherichia, Klebsiella, Yersinia). Although this surface-exposed molecule is conserved throughout Enterobacteriaceae, very few functions have been ascribed to it. Here, we have determined that the periplasmic form of ECA, cyclic ECA, plays a role in maintaining the outer membrane permeability barrier. This activity is controlled by a protein of unknown function, YhdP, and deletion of yhdP damages the OM permeability barrier in a cyclic ECA-dependent manner, allowing harmful molecules such as antibiotics into the cell. This role in maintenance of the envelope permeability barrier is the first time a phenotype has been described for cyclic ECA. As the Gram-negative envelope is generally impermeable to antibiotics, understanding the mechanisms through which the barrier is maintained and antibiotics are excluded may lead to improved antibiotic delivery.
Collapse
|
32
|
Arguijo-Hernández ES, Hernandez-Sanchez J, Briones-Peña SJ, Oviedo N, Mendoza-Hernández G, Guarneros G, Kameyama L. Cor interacts with outer membrane proteins to exclude FhuA-dependent phages. Arch Virol 2018; 163:2959-2969. [PMID: 30043202 DOI: 10.1007/s00705-018-3954-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 05/16/2018] [Indexed: 12/01/2022]
Abstract
Superinfection exclusion (Sie) of FhuA-dependent phages is carried out by Cor in the Escherichia coli mEp167 prophage lysogenic strain. In this work, we present evidence that Cor is an outer membrane (OM) lipoprotein that requires the participation of additional outer membrane proteins (OMPs) to exclude FhuA-dependent phages. Two Cor species of ~13 and ~8.5 kDa, corresponding to the preprolipoprotein/prolipoprotein and lipoprotein, were observed by Western blot. Cell mutants for CorC17F, CorA18D and CorA57E lost the Sie phenotype for FhuA-dependent phages. A copurification affinity binding assay combined with LC_ESI_MS/MS showed that Cor bound to OMPs: OmpA, OmpC, OmpF, OmpW, LamB, and Slp. Interestingly, Sie for FhuA-dependent phages was reduced on Cor overexpressing FhuA+ mutant strains, where ompA, ompC, ompF, ompW, lamB, fhuE, genes were knocked out. The exclusion was restored when these strains were supplemented with plasmids expressing these genes. Sie was not lost in other Cor overexpressing FhuA+ null mutant strains JW3938(btuB-), JW5100(tolB-), JW3474(slp-). These results indicate that Cor interacts and requires some OMPs to exclude FhuA-dependent phages.
Collapse
Affiliation(s)
- Emma S Arguijo-Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México
| | - Javier Hernandez-Sanchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México
| | - Saida J Briones-Peña
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México
| | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional la Raza, IMSS, 02990, Mexico City (CDMX), México
| | - Guillermo Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City (CDMX), México
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México
| | - Luis Kameyama
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México.
| |
Collapse
|
33
|
Inhibitor of intramembrane protease RseP blocks the σ E response causing lethal accumulation of unfolded outer membrane proteins. Proc Natl Acad Sci U S A 2018; 115:E6614-E6621. [PMID: 29941590 DOI: 10.1073/pnas.1806107115] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria forms a robust permeability barrier that blocks entry of toxins and antibiotics. Most OM proteins (OMPs) assume a β-barrel fold, and some form aqueous channels for nutrient uptake and efflux of intracellular toxins. The Bam machine catalyzes rapid folding and assembly of OMPs. Fidelity of OMP biogenesis is monitored by the σE stress response. When OMP folding defects arise, the proteases DegS and RseP act sequentially to liberate σE into the cytosol, enabling it to activate transcription of the stress regulon. Here, we identify batimastat as a selective inhibitor of RseP that causes a lethal decrease in σE activity in Escherichia coli, and we further identify RseP mutants that are insensitive to inhibition and confer resistance. Remarkably, batimastat treatment allows the capture of elusive intermediates in the OMP biogenesis pathway and offers opportunities to better understand the underlying basis for σE essentiality.
Collapse
|
34
|
Abstract
The hallmark of gram-negative bacteria and organelles such as mitochondria and chloroplasts is the presence of an outer membrane. In bacteria such as Escherichia coli, the outer membrane is a unique asymmetric lipid bilayer with lipopolysaccharide in the outer leaflet. Integral transmembrane proteins assume a β-barrel structure, and their assembly is catalyzed by the heteropentameric Bam complex containing the outer membrane protein BamA and four lipoproteins, BamB-E. How the Bam complex assembles a great diversity of outer membrane proteins into a membrane without an obvious energy source is a particularly challenging problem, because folding intermediates are predicted to be unstable in either an aqueous or a hydrophobic environment. Two models have been put forward: the budding model, based largely on structural data, and the BamA assisted model, based on genetic and biochemical studies. Here we offer a critical discussion of the pros and cons of each.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Daniel E Kahne
- Department of Chemistry and Chemical Biology and.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|
35
|
Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proc Natl Acad Sci U S A 2018; 115:2359-2364. [PMID: 29463713 DOI: 10.1073/pnas.1711727115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The β-barrel assembly machine (Bam) complex folds and inserts integral membrane proteins into the outer membrane of Gram-negative bacteria. The two essential components of the complex, BamA and BamD, both interact with substrates, but how the two coordinate with each other during assembly is not clear. To elucidate aspects of this process we slowed the assembly of an essential β-barrel substrate of the Bam complex, LptD, by changing a conserved residue near the C terminus. This defective substrate is recruited to the Bam complex via BamD but is unable to integrate into the membrane efficiently. Changes in the extracellular loops of BamA partially restore assembly kinetics, implying that BamA fails to engage this defective substrate. We conclude that substrate binding to BamD activates BamA by regulating extracellular loop interactions for folding and membrane integration.
Collapse
|
36
|
Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, Noinaj N. Structural and functional insights into the role of BamD and BamE within the β-barrel assembly machinery in Neisseria gonorrhoeae. J Biol Chem 2018; 293:1106-1119. [PMID: 29229778 PMCID: PMC5787791 DOI: 10.1074/jbc.ra117.000437] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
The β-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within BAM of this clinically relevant human pathogen. We found that the presence of BamD, but not BamE, is essential for gonococcal viability. However, BamE, but not BamD, was cell-surface-displayed under native conditions; however, in the absence of BamE, BamD indeed becomes surface-exposed. Loss of BamE altered cell envelope composition, leading to slower growth and an increase in both antibiotic susceptibility and formation of membrane vesicles containing greater amounts of vaccine antigens. Both BamD and BamE are expressed in diverse gonococcal isolates, under host-relevant conditions, and throughout different phases of growth. The solved structures of Neisseria BamD and BamE share overall folds with Escherichia coli proteins but contain differences that may be important for function. Together, these studies highlight that, although BAM is conserved across Gram-negative bacteria, structural and functional differences do exist across species, which may be leveraged in the development of species-specific therapeutics in the effort to combat multidrug resistance.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330,
| | - Igor H Wierzbicki
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Ryszard A Zielke
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Rachael F Ryner
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Susan K Buchanan
- NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
37
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
38
|
Peterson JH, Plummer AM, Fleming KG, Bernstein HD. Selective pressure for rapid membrane integration constrains the sequence of bacterial outer membrane proteins. Mol Microbiol 2017; 106:777-792. [PMID: 28941249 DOI: 10.1111/mmi.13845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Almost all bacterial outer membrane proteins (OMPs) contain a β barrel domain that serves as a membrane anchor, but the assembly and quality control of these proteins are poorly understood. Here, we show that the introduction of a single lipid-facing arginine residue near the middle of the β barrel of the Escherichia coli OMPs OmpLA and EspP creates an energy barrier that impedes membrane insertion. Although several unintegrated OmpLA mutants remained insertion-competent, they were slowly degraded by the periplasmic protease DegP. Two EspP mutants were also gradually degraded by DegP but were toxic because they first bound to the Bam complex, an essential heteroligomer that catalyzes the membrane insertion of OMPs. Interestingly, another EspP mutant likewise formed a prolonged, deleterious interaction with the Bam complex but was protected from degradation and eventually inserted into the membrane in a native conformation. The different types of interactions between the EspP mutants and the Bam complex that we observed may correspond to distinct stages in OMP assembly. Our results show that sequences that significantly delay assembly are disfavored not only because unintegrated OMPs are subjected to degradation, but also because OMPs that assemble slowly can form dominant-negative interactions with the Bam complex.
Collapse
Affiliation(s)
- Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
McCabe AL, Ricci D, Adetunji M, Silhavy TJ. Conformational Changes That Coordinate the Activity of BamA and BamD Allowing β-Barrel Assembly. J Bacteriol 2017; 199:e00373-17. [PMID: 28760846 PMCID: PMC5637172 DOI: 10.1128/jb.00373-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022] Open
Abstract
Most integral outer membrane proteins (OMPs) of Gram-negative bacteria, such as Escherichia coli, assume a β-barrel structure. The β-barrel assembly machine (Bam), a five-member complex composed of β-barrel OMP BamA and four associated lipoproteins, BamB, BamC, BamD, and BamE, folds and inserts OMPs into the outer membrane. The two essential proteins BamA and BamD interact to stabilize two subcomplexes, BamAB and BamCDE, and genetic and structural evidence suggests that interactions between BamA and BamD occur via an electrostatic interaction between a conserved aspartate residue in a periplasmic domain of BamA and a conserved arginine in BamD. In this work, we characterize charge-change mutations at these key BamA and BamD residues and nearby charged residues in BamA with respect to OMP assembly and Bam complex stability. We show that Bam complex stability does not correlate with function, that BamA and BamD must adopt at least two active conformational states during OMP assembly, and that these charged residues are not required for function. Rather, these charged residues are important for coordinating the activities of BamA and BamD to allow efficient OMP assembly. We present a model of OMP assembly wherein recognition and binding of unfolded OMP substrate by BamA and BamD induce a signaling interaction between the two proteins, causing conformational changes necessary for the assembly reaction to proceed. By analogy to signal sequence recognition by SecYEG, we believe these BamA-BamD interactions ensure that both substrate and complex are competent for OMP assembly before the assembly reaction commences.IMPORTANCE Conformational changes in the proteins of the β-barrel assembly machine (Bam complex) are associated with the folding and assembly of outer membrane proteins (OMPs) in Gram-negative bacteria. We show that electrostatic interactions between the two essential proteins BamA and BamD coordinate conformational changes upon binding of unfolded substrate that allow the assembly reaction to proceed. Mutations affecting this interaction are lethal not because they destabilize the Bam complex but rather because they disrupt this coordination. Our model of BamA-BamD interactions regulating conformation in response to proper substrate interaction is reminiscent of conformational changes the secretory (Sec) machinery undergoes after signal sequence recognition that ensure protein quality control.
Collapse
Affiliation(s)
- Anne L McCabe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Dante Ricci
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Modupe Adetunji
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
40
|
Fleming PJ, Patel DS, Wu EL, Qi Y, Yeom MS, Sousa MC, Fleming KG, Im W. BamA POTRA Domain Interacts with a Native Lipid Membrane Surface. Biophys J 2017; 110:2698-2709. [PMID: 27332128 DOI: 10.1016/j.bpj.2016.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 11/28/2022] Open
Abstract
The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly β-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein β-barrel assembly machine (BAM) catalyzes the insertion and folding of the β-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane β-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate β-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane β-barrel proteins.
Collapse
Affiliation(s)
- Patrick J Fleming
- T. C. Jenkins Department of Biophysics, John Hopkins University, Baltimore, Maryland
| | - Dhilon S Patel
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Emilia L Wu
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Min Sun Yeom
- Korean Institute of Science and Technology Information, Yuseong-gu, Daejeon, Korea
| | - Marcelo Carlos Sousa
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, John Hopkins University, Baltimore, Maryland
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
41
|
Redefining the essential trafficking pathway for outer membrane lipoproteins. Proc Natl Acad Sci U S A 2017; 114:4769-4774. [PMID: 28416660 DOI: 10.1073/pnas.1702248114] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is a permeability barrier and an intrinsic antibiotic resistance factor. Lipoproteins are OM components that function in cell wall synthesis, diverse secretion systems, and antibiotic efflux pumps. Moreover, each of the essential OM machines that assemble the barrier requires one or more lipoproteins. This dependence is thought to explain the essentiality of the periplasmic chaperone LolA and its OM receptor LolB that traffic lipoproteins to the OM. However, we show that in strains lacking substrates that are toxic when mislocalized, both LolA and LolB can be completely bypassed by activating an envelope stress response without compromising trafficking of essential lipoproteins. We identify the Cpx stress response as a monitor of lipoprotein trafficking tasked with protecting the cell from mislocalized lipoproteins. Moreover, our findings reveal that an alternate trafficking pathway exists that can, under certain conditions, bypass the functions of LolA and LolB, implying that these proteins do not perform any truly essential mechanistic steps in lipoprotein trafficking. Instead, these proteins' key function is to prevent lethal accumulation of mislocalized lipoproteins.
Collapse
|
42
|
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins (OMPs) is mediated by the β-barrel assembly machinery (BAM) complex. During the past decade, structural and functional studies have collectively contributed to advancing our understanding of the structure and function of the BAM complex; however, the exact mechanism that is involved remains elusive. In this Progress article, we discuss recent structural studies that have revealed that the accessory proteins may regulate essential unprecedented conformational changes in the core component BamA during function. We also detail the mechanistic insights that have been gained from structural data, mutagenesis studies and molecular dynamics simulations, and explore two emerging models for the BAM-mediated biogenesis of OMPs in bacteria.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Novel RpoS-Dependent Mechanisms Strengthen the Envelope Permeability Barrier during Stationary Phase. J Bacteriol 2016; 199:JB.00708-16. [PMID: 27821607 DOI: 10.1128/jb.00708-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacteria have effective methods of excluding toxic compounds, including a largely impermeable outer membrane (OM) and a range of efflux pumps. Furthermore, when cells become nutrient limited, RpoS enacts a global expression change providing cross-protection against many stresses. Here, we utilized sensitivity to an anionic detergent (sodium dodecyl sulfate [SDS]) to probe changes occurring to the cell's permeability barrier during nutrient limitation. Escherichia coli is resistant to SDS whether cells are actively growing, carbon limited, or nitrogen limited. In actively growing cells, this resistance depends on the AcrAB-TolC efflux pump; however, this pump is not necessary for protection under either carbon-limiting or nitrogen-limiting conditions, suggesting an alternative mechanism(s) of SDS resistance. In carbon-limited cells, RpoS-dependent pathways lessen the permeability of the OM, preventing the necessity for efflux. In nitrogen-limited but not carbon-limited cells, the loss of rpoS can be completely compensated for by the AcrAB-TolC efflux pump. We suggest that this difference simply reflects the fact that nitrogen-limited cells have access to a metabolizable energy (carbon) source that can efficiently power the efflux pump. Using a transposon mutant pool sequencing (Tn-Seq) approach, we identified three genes, sanA, dacA, and yhdP, that are necessary for RpoS-dependent SDS resistance in carbon-limited stationary phase. Using genetic analysis, we determined that these genes are involved in two different envelope-strengthening pathways. These genes have not previously been implicated in stationary-phase stress responses. A third novel RpoS-dependent pathway appears to strengthen the cell's permeability barrier in nitrogen-limited cells. Thus, though cells remain phenotypically SDS resistant, SDS resistance mechanisms differ significantly between growth states. IMPORTANCE Gram-negative bacteria are intrinsically resistant to detergents and many antibiotics due to synergistic activities of a strong outer membrane (OM) permeability barrier and efflux pumps that capture and expel toxic molecules eluding the barrier. When the bacteria are depleted of an essential nutrient, a program of gene expression providing cross-protection against many stresses is induced. Whether this program alters the OM to further strengthen the barrier is unknown. Here, we identify novel pathways dependent on the master regulator of stationary phase that further strengthen the OM permeability barrier during nutrient limitation, circumventing the need for efflux pumps. Decreased permeability of nutrient-limited cells to toxic compounds has important implications for designing new antibiotics capable of targeting Gram-negative bacteria that may be in a growth-limited state.
Collapse
|
44
|
Warner LR, Gatzeva-Topalova PZ, Doerner PA, Pardi A, Sousa MC. Flexibility in the Periplasmic Domain of BamA Is Important for Function. Structure 2016; 25:94-106. [PMID: 27989620 DOI: 10.1016/j.str.2016.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
The β-barrel assembly machine (BAM) mediates the biogenesis of outer membrane proteins (OMPs) in Gram-negative bacteria. BamA, the central BAM subunit composed of a transmembrane β-barrel domain linked to five polypeptide transport-associated (POTRA) periplasmic domains, is thought to bind nascent OMPs and undergo conformational cycling to catalyze OMP folding and insertion. One model is that conformational flexibility between POTRA domains is part of this conformational cycling. Nuclear magnetic resonance (NMR) spectroscopy was used here to study the flexibility of the POTRA domains 1-5 in solution. NMR relaxation studies defined effective rotational correlational times and together with residual dipolar coupling data showed that POTRA1-2 is flexibly linked to POTRA3-5. Mutants of BamA that restrict flexibility between POTRA2 and POTRA3 by disulfide crosslinking displayed impaired function in vivo. Together these data strongly support a model in which conformational cycling of hinge motions between POTRA2 and POTRA3 in BamA is required for biological function.
Collapse
Affiliation(s)
- Lisa R Warner
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Petia Z Gatzeva-Topalova
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Pamela A Doerner
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Arthur Pardi
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA.
| | - Marcelo C Sousa
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
45
|
Bakelar J, Buchanan SK, Noinaj N. Structural snapshots of the β-barrel assembly machinery. FEBS J 2016; 284:1778-1786. [PMID: 27862971 DOI: 10.1111/febs.13960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
The β-barrel assembly machinery (BAM) is a multicomponent complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria, with conserved systems in both mitochondria and chloroplasts. Given its importance in the integrity of the outer membrane and in the assembly of surface exposed virulence factors, BAM is an attractive therapeutic target against pathogenic bacteria, particularly multidrug-resistant strains. While the mechanism for how BAM functions remains elusive, previous structural studies have described each of the individual components of BAM, offering only a few clues to how the complex functions. Recently, a number of structures have been reported of complexes, including that of fully assembled BAM in differing conformational states. These studies have provided the molecular blueprint detailing the atomic interactions between the components and have revealed new details about BAM, which suggest a dynamic mechanism that may use conformational changes to assist in the biogenesis of new OMPs.
Collapse
Affiliation(s)
- Jeremy Bakelar
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
46
|
Stubenrauch C, Grinter R, Lithgow T. The modular nature of the β-barrel assembly machinery, illustrated in Borrelia burgdorferi. Mol Microbiol 2016; 102:753-756. [PMID: 27618357 DOI: 10.1111/mmi.13527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
Diderm bacteria have an outer membrane that provides defense against environmental factors including antibiotics. Understanding the process of outer membrane biogenesis is, therefore, of critical importance in order to envisage new treatments of these bacterial pathogens. Borrelia burgdorferi is the pathogen responsible for Lyme disease. Its outer membrane contains integral, β-barrel proteins as well as swathes of externally exposed lipoproteins. Previous work has demonstrated that the β-barrel assembly machine (BAM complex) in B. burgdorferi and other Spirochetes shares several similarities with the BAM complex in other bacterial lineages, such as the Proteobacteria that includes Escherichia coli. However, Iqbal et al. () have identified the inner membrane protein TamB as a subunit of the BAM complex in Spirochetes. This latest study highlights the modular nature of the BAM complex, and suggests that in some bacterial lineages the BAM complex and translocation and assembly module (the TAM) function as a single unit.
Collapse
Affiliation(s)
- Christopher Stubenrauch
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, 3800, Australia
| | - Rhys Grinter
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, 3800, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, 3800, Australia
| |
Collapse
|
47
|
Fleming KG. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0026. [PMID: 26370938 DOI: 10.1098/rstb.2015.0026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro folding studies of outer membrane beta-barrels have been invaluable in revealing the lipid effects on folding rates and efficiencies as well as folding free energies. Here, the biophysical results are summarized, and these kinetic and thermodynamic findings are considered in terms of the requirements for folding in the context of the cellular environment. Because the periplasm lacks an external energy source the only driving forces for sorting and folding available within this compartment are binding or folding free energies and their associated rates. These values define functions for periplasmic chaperones and suggest a biophysical mechanism for the BAM complex.
Collapse
Affiliation(s)
- Karen G Fleming
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
48
|
Baclayon M, Ulsen PV, Mouhib H, Shabestari MH, Verzijden T, Abeln S, Roos WH, Wuite GJL. Mechanical Unfolding of an Autotransporter Passenger Protein Reveals the Secretion Starting Point and Processive Transport Intermediates. ACS NANO 2016; 10:5710-9. [PMID: 27219538 DOI: 10.1021/acsnano.5b07072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The backbone of secreted autotransporter passenger proteins generally attains a stable β-helical structure. The secretion of passengers across the outer membrane was proposed to be driven by sequential folding of this structure at the cell surface. This mechanism would require a relatively stable intermediate as starting point. Here, we investigated the mechanics of secreted truncated versions of the autotransporter hemoglobin protease (Hbp) of Escherichia coli using atomic force microscopy. The data obtained reveal a β-helical structure at the C terminus that is very stable. In addition, several other distinct metastable intermediates are found which are connected during unfolding by multiroute pathways. Computational analysis indicates that these intermediates correlate to the β-helical rungs in the Hbp structure which are clamped by stacked aromatic residues. Our results suggest a secretion mechanism that is initiated by a stable C-terminal structure and driven forward by several folding intermediates that build up the β-helical backbone.
Collapse
Affiliation(s)
- Marian Baclayon
- Physics of Living Systems & LaserLaB Amsterdam, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Peter van Ulsen
- Molecular Microbiology & Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Halima Mouhib
- Computer Science & Bioinformatics, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
- Institute of Physical Chemistry, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Maryam Hashemi Shabestari
- Physics of Living Systems & LaserLaB Amsterdam, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Timo Verzijden
- Computer Science & Bioinformatics, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Sanne Abeln
- Computer Science & Bioinformatics, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Wouter H Roos
- Physics of Living Systems & LaserLaB Amsterdam, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen , 9712 CP Groningen, The Netherlands
| | - Gijs J L Wuite
- Physics of Living Systems & LaserLaB Amsterdam, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
49
|
Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 2016; 23:192-6. [PMID: 26900875 DOI: 10.1038/nsmb.3181] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 11/09/2022]
Abstract
In Gram-negative bacteria, the assembly of β-barrel outer-membrane proteins (OMPs) requires the β-barrel-assembly machinery (BAM) complex. We determined the crystal structure of the 200-kDa BAM complex from Escherichia coli at 3.55-Å resolution. The structure revealed that the BAM complex assembles into a hat-like shape, in which the BamA β-barrel domain forms the hat's crown embedded in the outer membrane, and its five polypeptide transport-associated (POTRA) domains interact with the four lipoproteins BamB, BamC, BamD and BamE, thus forming the hat's brim in the periplasm. The assembly of the BAM complex creates a ring-like apparatus beneath the BamA β-barrel in the periplasm and a potential substrate-exit pore located at the outer membrane-periplasm interface. The complex structure suggests that the chaperone-bound OMP substrates may feed into the chamber of the ring-like apparatus and insert into the outer membrane via the potential substrate-exit pore in an energy-independent manner.
Collapse
Affiliation(s)
- Long Han
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiangge Zheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xu Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanqing Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanqi Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baohua Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haizhen Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongchun Ni
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongfang Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yihua Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W, Dong C. Structural basis of outer membrane protein insertion by the BAM complex. Nature 2016; 531:64-9. [PMID: 26901871 DOI: 10.1038/nature17199] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the β-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane β-barrel of BamA to induce movement of the β-strands of the barrel and promote insertion of the nascent OMP.
Collapse
Affiliation(s)
- Yinghong Gu
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Huanyu Li
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Haohao Dong
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yi Zeng
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Zhengyu Zhang
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Neil G Paterson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Zhongshan Wang
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, China.,Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yizheng Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Wenjian Wang
- Laboratory of Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Changjiang Dong
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|