1
|
Crevenna AH, Arciniega M, Dupont A, Mizuno N, Kowalska K, Lange OF, Wedlich-Söldner R, Lamb DC. Side-binding proteins modulate actin filament dynamics. eLife 2015; 4. [PMID: 25706231 PMCID: PMC4375888 DOI: 10.7554/elife.04599] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/20/2015] [Indexed: 01/10/2023] Open
Abstract
Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. DOI:http://dx.doi.org/10.7554/eLife.04599.001 Actin is one of the most abundant proteins in cells. It forms networks of filaments that provide structural support and generate the forces needed for cell movement, division, and many other processes in cells. Filaments of actin continuously change in length as actin molecules are added or removed at the ends. One end of an actin filament—called the barbed-end—grows much faster than the other, known as the pointed-end. Many other proteins also help the actin filaments to form. Some of these proteins bind to the ends of the filaments, where they directly control the growth of the filaments. Other proteins bind along the length of the filaments, but how these ‘side-binding’ proteins influence the growth of filaments is not clear. In this study, Crevenna et al. used a technique called ‘total internal reflection fluorescence (TIRF) microscopy’ to study how several side-binding proteins affect the growth of actin filaments in an artificial system. The growth of the barbed-ends was strongly influenced by which side-binding protein was interacting with the filament. For example, the barbed-end grew rapidly when a protein called VASP was present but grew more slowly in the presence of the protein α-actinin. Although the growth at the pointed-end was generally slow and sporadic, the side-binding proteins also had noticeable effects. Crevenna et al. found that when the side-binding proteins were present at low levels, filament growth was similar for all proteins studied. It was only when the proteins were present at higher levels that the growth of the actin filaments was altered depending on the specific side-binding protein present. One side-binding protein called α-actinin also altered the shape of the actin filament so that when it was present at high levels, the filaments curved in a particular direction. Together, these results suggest that the growth, structure, and flexibility of actin filaments can be strongly influenced by the various proteins that bind along the length of the filaments. The next challenges are to understand the precise details of how these side-binding proteins are able to alter the growth and shape of actin and investigate how they influence other processes that control the structure of actin networks in cells. DOI:http://dx.doi.org/10.7554/eLife.04599.002
Collapse
Affiliation(s)
- Alvaro H Crevenna
- Physical Chemistry, Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.,Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marcelino Arciniega
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Chemistry, Technische Universität München, Garching, Germany
| | - Aurélie Dupont
- Physical Chemistry, Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.,NanoSystems Initiative Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Naoko Mizuno
- Cellular and Membrane Trafficking, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kaja Kowalska
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver F Lange
- Department of Chemistry, Technische Universität München, Garching, Germany.,Biomolecular NMR and Munich Center for Integrated Protein Science, Technische Universität München, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Roland Wedlich-Söldner
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Cell Dynamics and Imaging, Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.,NanoSystems Initiative Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 2014; 94:235-63. [PMID: 24382887 DOI: 10.1152/physrev.00018.2013] [Citation(s) in RCA: 870] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.
Collapse
|