1
|
Butryn A, Greiwe JF, Costa A. Unidirectional MCM translocation away from ORC drives origin licensing. Nat Commun 2025; 16:782. [PMID: 39824870 PMCID: PMC11748629 DOI: 10.1038/s41467-025-56143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown. Here, we used cryo-EM to characterise helicase loading with ATPase-dead Arginine Finger variants of the six MCM subunits. We report the structure of two MCM complexes with different DNA grips, stalled as they mature to loaded MCM. The Mcm2 Arginine Finger-variant stabilises DNA binding by Mcm2 away from ORC/Cdc6. The Arginine Finger-variant of the neighbouring Mcm5 subunit stabilises DNA engagement by Mcm5 downstream of the Mcm2 binding site. Cdc6 and Orc1 progressively disengage from ORC as MCM translocates along DNA. We observe that duplex DNA translocation by MCM involves a set of leading-strand contacts by the pre-sensor 1 ATPase hairpins and lagging-strand contacts by the helix-2-insert hairpins. Mutating any of the MCM residues involved impairs high-salt resistant DNA binding in vitro and double-hexamer formation assessed by electron microscopy. Thus, ATPase-powered duplex DNA translocation away from ORC underlies MCM loading.
Collapse
Affiliation(s)
- Agata Butryn
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park Milton Rd, Milton, Cambridge, CB4 0QA, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple pathways for licensing human replication origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588796. [PMID: 38645015 PMCID: PMC11030351 DOI: 10.1101/2024.04.10.588796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The loading of replicative helicases constitutes an obligatory step in the assembly of DNA replication machineries. In eukaryotes, the MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head MCM double hexamer to license replication origins. Although extensively studied in the budding yeast model system, the mechanisms of origin licensing in higher eukaryotes remain poorly defined. Here, we use biochemical reconstitution and electron microscopy (EM) to reconstruct the human MCM loading pathway. Unexpectedly, we find that, unlike in yeast, ORC's Orc6 subunit is not essential for human MCM loading but can enhance loading efficiency. EM analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of Orc6, including an abundant DNA-loaded, closed-ring single MCM hexamer intermediate that can mature into a head-to-head double hexamer through different pathways. In an Orc6-facilitated pathway, ORC and a second MCM2-7 hexamer are recruited to the dimerization interface of the first hexamer through an MCM-ORC intermediate that is architecturally distinct from an analogous intermediate in yeast. In an alternative, Orc6-independent pathway, MCM double hexamer formation proceeds through dimerization of two independently loaded single MCM2-7 hexamers, promoted by a propensity of human MCM2-7 hexamers to dimerize without the help of other loading factors. This redundancy in human MCM loading pathways likely provides resilience against replication stress under cellular conditions by ensuring that enough origins are licensed for efficient DNA replication. Additionally, the biochemical reconstitution of human origin licensing paves the way to address many outstanding questions regarding DNA replication initiation and replication-coupled events in higher eukaryotes in the future.
Collapse
Affiliation(s)
| | | | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Ujfalusi-Pozsonyi K, Bódis E, Nyitrai M, Kengyel A, Telek E, Pécsi I, Fekete Z, Varnyuné Kis-Bicskei N, Mas C, Moussaoui D, Pernot P, Tully MD, Weik M, Schirò G, Kapetanaki SM, Lukács A. ATP-dependent conformational dynamics in a photoactivated adenylate cyclase revealed by fluorescence spectroscopy and small-angle X-ray scattering. Commun Biol 2024; 7:147. [PMID: 38307988 PMCID: PMC10837130 DOI: 10.1038/s42003-024-05842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Structural insights into the photoactivated adenylate cyclases can be used to develop new ways of controlling cellular cyclic adenosine monophosphate (cAMP) levels for optogenetic and other applications. In this work, we use an integrative approach that combines biophysical and structural biology methods to provide insight on the interaction of adenosine triphosphate (ATP) with the dark-adapted state of the photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata (OaPAC). A moderate affinity of the nucleotide for the enzyme was calculated and the thermodynamic parameters of the interaction have been obtained. Stopped-flow fluorescence spectroscopy and small-angle solution scattering have revealed significant conformational changes in the enzyme, presumably in the adenylate cyclase (AC) domain during the allosteric mechanism of ATP binding to OaPAC with small and large-scale movements observed to the best of our knowledge for the first time in the enzyme in solution upon ATP binding. These results are in line with previously reported drastic conformational changes taking place in several class III AC domains upon nucleotide binding.
Collapse
Affiliation(s)
- K Ujfalusi-Pozsonyi
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - E Bódis
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - M Nyitrai
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - A Kengyel
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - E Telek
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - I Pécsi
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Z Fekete
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | | | - C Mas
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France
| | - D Moussaoui
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - P Pernot
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - M D Tully
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - M Weik
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - G Schirò
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - S M Kapetanaki
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary.
| | - A Lukács
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary.
| |
Collapse
|
4
|
Bocanegra R, Ortíz-Rodríguez M, Zumeta L, Plaza-G A I, Faro E, Ibarra B. DNA replication machineries: Structural insights from crystallography and electron microscopy. Enzymes 2023; 54:249-271. [PMID: 37945174 DOI: 10.1016/bs.enz.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Since the discovery of DNA as the genetic material, scientists have been investigating how the information contained in this biological polymer is transmitted from generation to generation. X-ray crystallography, and more recently, cryo-electron microscopy techniques have been instrumental in providing essential information about the structure, functions and interactions of the DNA and the protein machinery (replisome) responsible for its replication. In this chapter, we highlight several works that describe the structure and structure-function relationships of the core components of the prokaryotic and eukaryotic replisomes. We also discuss the most recent studies on the structural organization of full replisomes.
Collapse
Affiliation(s)
| | | | - Lyra Zumeta
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | | | - Elías Faro
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
5
|
Bohmer M, Bhullar AS, Weitao T, Zhang L, Lee JH, Guo P. Revolving hexameric ATPases as asymmetric motors to translocate double-stranded DNA genome along one strand. iScience 2023; 26:106922. [PMID: 37305704 PMCID: PMC10250835 DOI: 10.1016/j.isci.2023.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
DsDNA translocation through nanoscale pores is generally accomplished by ATPase biomotors. The discovery of the revolving dsDNA translocation mechanism, as opposed to rotation, in bacteriophage phi29 elucidated how ATPase motors move dsDNA. Revolution-driven, hexameric dsDNA motors have been reported in herpesvirus, bacterial FtsK, Streptomyces TraB, and T7 phage. This review explores the common relationship between their structure and mechanisms. Commonalities include moving along the 5'→3' strand, inchworm sequential action leading to an asymmetrical structure, channel chirality, channel size, and 3-step channel gating for controlling motion direction. The revolving mechanism and contact with one of the dsDNA strands addresses the historic controversy of dsDNA packaging using nicked, gapped, hybrid, or chemically modified DNA. These controversies surrounding dsDNA packaging activity using modified materials can be answered by whether the modification was introduced into the 3'→5' or 5'→3' strand. Perspectives concerning solutions to the controversy of motor structure and stoichiometry are also discussed.
Collapse
Affiliation(s)
- Margaret Bohmer
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Abhjeet S. Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Weitao
- Center for the Genetics of Host Defense UT Southwestern Medical Center, Dallas, TX, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating lengthy dsDNA via conformational changes and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. EXPLORATION (BEIJING, CHINA) 2023; 3:20210056. [PMID: 37324034 PMCID: PMC10191066 DOI: 10.1002/exp.20210056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the parallel architectures of biomotors in both prokaryotic and eukaryotic systems suggest a similar revolving mechanism in the use of ATP to drive translocation of the lengthy double-stranded (ds)DNA genomes. This mechanism is exemplified by the dsDNA packaging motor of bacteriophage phi29 that operates through revolving but not rotating dsDNA to "Push through a one-way valve". This unique and novel revolving mechanism discovered in phi29 DNA packaging motor was recently reported in other systems including the dsDNA packaging motor of herpesvirus, the dsDNA ejecting motor of bacteriophage T7, the plasmid conjugation machine TraB in Streptomyces, the dsDNA translocase FtsK of gram-negative bacteria, and the genome-packaging motor in mimivirus. These motors exhibit an asymmetrical hexameric structure for transporting the genome via an inch-worm sequential action. This review intends to delineate the revolving mechanism from a perspective of conformational changes and electrostatic interactions. In phi29, the positively charged residues Arg-Lys-Arg in the N-terminus of the connector bind the negatively charged interlocking domain of pRNA. ATP binding to an ATPase subunit induces the closed conformation of the ATPase. The ATPase associates with an adjacent subunit to form a dimer facilitated by the positively charged arginine finger. The ATP-binding induces a positive charging on its DNA binding surface via an allostery mechanism and thus the higher affinity for the negatively charged dsDNA. ATP hydrolysis induces an expanded conformation of the ATPase with a lower affinity for dsDNA due to the change of the surface charge, but the (ADP+Pi)-bound subunit in the dimer undergoes a conformational change that repels dsDNA. The positively charged lysine rings of the connector attract dsDNA stepwise and periodically to keep its revolving motion along the channel wall, thus maintaining the one-way translocation of dsDNA without reversal and sliding out. The finding of the presence of the asymmetrical hexameric architectures of many ATPases that use the revolving mechanism may provide insights into the understanding of translocation of the gigantic genomes including chromosomes in complicated systems without coiling and tangling to speed up dsDNA translocation and save energy.
Collapse
Affiliation(s)
- Tao Weitao
- UT Southwestern Medical CenterCenter for the Genetics of Host DefenseDallasTXUSA
- College of Science and MathematicsSouthwest Baptist UniversityBolivarMOUSA
| | - Giovanna Grandinetti
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOHUSA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and NanomedicineDivision of Pharmaceutics and Pharmacology, College of PharmacyDorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of MedicineThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
7
|
Cryo-EM structure of human hexameric MCM2-7 complex. iScience 2022; 25:104976. [PMID: 36117988 PMCID: PMC9475327 DOI: 10.1016/j.isci.2022.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
The central step in the initiation of eukaryotic DNA replication is the loading of the minichromosome maintenance 2–7 (MCM2-7) complex, the core of the replicative DNA helicase, onto chromatin at replication origin. Here, we reported the cryo-EM structure of endogenous human single hexameric MCM2-7 complex with a resolution at 4.4 Å, typically an open-ring hexamer with a gap between Mcm2 and Mcm5. Strikingly, further analysis revealed that human MCM2-7 can self-associate to form a loose double hexamer which potentially implies a novel mechanism underlying the MCM2-7 loading in eukaryote. The high-resolution cryo-EM structure of human MCM2-7 is critical for understanding the molecular mechanisms governing human DNA replication, especially the MCM2-7 chromatin loading and pre-replicative complex assembly. A Twin-Strep-Tag II tag was fused to Mcm4 by using CRISPR-Cas9 technique The endogenous human MCM2-7 complex was successfully purified The high-resolution cryo-EM structure of human hexameric MCM2-7 complex The human single MCM2-7 hexamer can self-associate to form a double hexamer
Collapse
|
8
|
Abstract
Ring-shaped hexameric helicases are essential motor proteins that separate duplex nucleic acid strands for DNA replication, recombination, and transcriptional regulation. Two evolutionarily distinct lineages of these enzymes, predicated on RecA and AAA+ ATPase folds, have been identified and characterized to date. Hexameric helicases couple NTP hydrolysis with conformational changes that move nucleic acid substrates through a central pore in the enzyme. How hexameric helicases productively engage client DNA or RNA segments and use successive rounds of NTPase activity to power translocation and unwinding have been longstanding questions in the field. Recent structural and biophysical findings are beginning to reveal commonalities in NTP hydrolysis and substrate translocation by diverse hexameric helicase families. Here, we review these molecular mechanisms and highlight aspects of their function that are yet to be understood.
Collapse
|
9
|
Yuxi Z, Yanchao Y, Zejun L, Tao Z, Feng L, Chunying L, Shupeng G. GA 3 is superior to GA 4 in promoting bud endodormancy release in tree peony (Paeonia suffruticosa) and their potential working mechanism. BMC PLANT BIOLOGY 2021; 21:323. [PMID: 34225663 PMCID: PMC8256580 DOI: 10.1186/s12870-021-03106-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/16/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Sufficient low temperature accumulation is the key strategy to break bud dormancy and promote subsequent flowering in tree peony anti-season culturing production. Exogenous gibberellins (GAs) could partially replace chilling to accelerate dormancy release, and different kinds of GAs showed inconsistent effects in various plants. To understand the effects of exogenous GA3 and GA4 on dormancy release and subsequent growth, the morphological changes were observed after exogenous GAs applications, the differentially expressed genes (DEGs) were identified, and the contents of endogenous phytohormones, starch and sugar were measured, respectively. RESULTS Morphological observation and photosynthesis measurements indicated that both GA3 and GA4 applications accelerated bud dormancy release, but GA3 feeding induced faster bud burst, higher shoot and more flowers per plant. Full-length transcriptome of dormant bud was used as the reference genome. Totally 124 110 459, 124 015 148 and 126 239 836 reads by illumina transcriptome sequencing were obtained in mock, GA3 and GA4 groups, respectively. Compared with the mock, there were 879 DEGs and 2 595 DEGs in GA3 and GA4 group, 1 179 DEGs in GA3 vs GA4, and 849 DEGs were common in these comparison groups. The significant enrichment KEGG pathways of 849 DEGs highlighted plant hormone signal transduction, starch and sucrose metabolism, cell cycle, DNA replication, etc. Interestingly, the contents of endogenous GA1, GA3, GA4, GA7 and IAA significantly increased, ABA decreased after GA3 and GA4 treatments by LC-MS/MS. Additionally, the soluble glucose, fructose and trehalose increased after exogenous GAs applications. Compared to GA4 treatment, GA3 induced higher GA1, GA3 and IAA level, more starch degradation to generate more monosaccharide for use, and promoted cell cycle and photosynthesis. Higher expression levels of dormancy-related genes, TFL, FT, EBB1, EBB3 and CYCD, and lower of SVP by GA3 treatment implied more efficiency of GA3. CONCLUSIONS Exogenous GA3 and GA4 significantly accelerated bud dormancy release and subsequent growth by increasing the contents of endogenous bioactive GAs, IAA, and soluble glucose such as fructose and trehalose, and accelerated cell cycle process, accompanied by decreasing ABA contents. GA3 was superior to GA4 in tree peony forcing culture, which might because tree peony was more sensitive to GA3 than GA4, and GA3 had a more effective ability to induce cell division and starch hydrolysis. These results provided the value data for understanding the mechanism of dormancy release in tree peony.
Collapse
Affiliation(s)
- Zhang Yuxi
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yuan Yanchao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Liu Zejun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Zhang Tao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Li Feng
- College of Landscape Architecture and Forestry, Qingdao Agriculture University, Qingdao, 266109 Shandong China
| | - Liu Chunying
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Gai Shupeng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| |
Collapse
|
10
|
Abstract
The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
Collapse
Affiliation(s)
- Ilan Attali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
11
|
Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, Locke J, Tamberg N, Nans A, Berger JM, Botchan MR, Yardimci H, Costa A. Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic Replisome. Cell Rep 2020; 28:2673-2688.e8. [PMID: 31484077 PMCID: PMC6737378 DOI: 10.1016/j.celrep.2019.07.104] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement. Morphing between different helicase states leads us to suggest a non-symmetric hand-over-hand rotary mechanism, explaining the asymmetric requirements of ATPase function around the MCM ring of the CMG. By imaging of a higher-order replisome assembly, we find that the Mrc1-Csm3-Tof1 fork-stabilization complex strengthens the interaction between parental duplex DNA and the CMG at the fork, which might support the coupling between DNA translocation and fork unwinding. Vertical DNA movement through the MCM ring requires rotation inside the pore Structural asymmetries in MCM-DNA are captured during ATPase-powered translocation Asymmetric rotation explains selective ATPase site requirements for translocation The fork-stabilization complex strengthens parental-DNA engagement by the MCM
Collapse
Affiliation(s)
- Patrik Eickhoff
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Fabrizio Martino
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tatjana Petojevic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Nele Tamberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
12
|
Abstract
The loading of the core Mcm2-7 helicase onto origin DNA is essential for the formation of replication forks and genomic stability. Here, we report two cryo-electron microscopy (cryo-EM) structures that capture helicase loader–helicase complexes just prior to DNA insertion. These pre-loading structures, combined with a computational simulation of the dynamic transition from the pre-loading state to the loaded state, provide crucial insights into the mechanism required for topologically linking the helicase to DNA. The helicase loading system is highly conserved from yeast to human, which means that the molecular principles described here for the yeast system are likely applicable to the human system. DNA replication origins serve as sites of replicative helicase loading. In all eukaryotes, the six-subunit origin recognition complex (Orc1-6; ORC) recognizes the replication origin. During late M-phase of the cell-cycle, Cdc6 binds to ORC and the ORC–Cdc6 complex loads in a multistep reaction and, with the help of Cdt1, the core Mcm2-7 helicase onto DNA. A key intermediate is the ORC–Cdc6–Cdt1–Mcm2-7 (OCCM) complex in which DNA has been already inserted into the central channel of Mcm2-7. Until now, it has been unclear how the origin DNA is guided by ORC–Cdc6 and inserted into the Mcm2-7 hexamer. Here, we truncated the C-terminal winged-helix-domain (WHD) of Mcm6 to slow down the loading reaction, thereby capturing two loading intermediates prior to DNA insertion in budding yeast. In “semi-attached OCCM,” the Mcm3 and Mcm7 WHDs latch onto ORC–Cdc6 while the main body of the Mcm2-7 hexamer is not connected. In “pre-insertion OCCM,” the main body of Mcm2-7 docks onto ORC–Cdc6, and the origin DNA is bent and positioned adjacent to the open DNA entry gate, poised for insertion, at the Mcm2–Mcm5 interface. We used molecular simulations to reveal the dynamic transition from preloading conformers to the loaded conformers in which the loading of Mcm2-7 on DNA is complete and the DNA entry gate is fully closed. Our work provides multiple molecular insights into a key event of eukaryotic DNA replication.
Collapse
|
13
|
Guo P. High resolution structure of hexameric herpesvirus DNA-packaging motor elucidates revolving mechanism and ends 20-year fervent debate. Protein Cell 2020; 11:311-315. [PMID: 32314326 PMCID: PMC7196596 DOI: 10.1007/s13238-020-00714-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Peixuan Guo
- College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
15
|
Bleichert F. Mechanisms of replication origin licensing: a structural perspective. Curr Opin Struct Biol 2019; 59:195-204. [PMID: 31630057 DOI: 10.1016/j.sbi.2019.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022]
Abstract
The duplication of chromosomal DNA is a key cell cycle event that involves the controlled, bidirectional assembly of the replicative machinery. In a tightly regulated, multi-step reaction, replicative helicases and other components of the DNA synthesis apparatus are recruited to replication start sites. Although the molecular approaches for assembling this machinery vary between the different domains of life, a common theme revolves around the use of ATP-dependent initiation factors to recognize and remodel origins and to load replicative helicases in a bidirectional manner onto DNA. This review summarizes recent advances in understanding the mechanisms of replication initiation in eukaryotes, focusing on how the replicative helicase is loaded in this system.
Collapse
|
16
|
Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X. Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality. ACS NANO 2019; 13:6207-6223. [PMID: 31067030 PMCID: PMC6595433 DOI: 10.1021/acsnano.8b08849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanomotors in nanotechnology are as important as engines in daily life. Many ATPases are nanoscale biomotors classified into three categories based on the motion mechanisms in transporting substrates: linear, rotating, and the recently discovered revolving motion. Most biomotors adopt a multisubunit ring-shaped structure that hydrolyzes ATP to generate force. How these biomotors control the motion direction and regulate the sequential action of their multiple subunits is intriguing. Many ATPases are hexameric with each monomer containing a conserved arginine finger. This review focuses on recent findings on how the arginine finger controls motion direction and coordinates adjacent subunit interactions in both revolving and rotating biomotors. Mechanisms of intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms. Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor fabrication in nanotechnology.
Collapse
Affiliation(s)
- Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
- E-mail:
| | - Dana Driver
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhengyi Zhao
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhen Zheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Chun Chan
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Xiaolin Cheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
17
|
Arias-Palomo E, Puri N, O'Shea Murray VL, Yan Q, Berger JM. Physical Basis for the Loading of a Bacterial Replicative Helicase onto DNA. Mol Cell 2019; 74:173-184.e4. [PMID: 30797687 DOI: 10.1016/j.molcel.2019.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 02/02/2023]
Abstract
In cells, dedicated AAA+ ATPases deposit hexameric, ring-shaped helicases onto DNA to initiate chromosomal replication. To better understand the mechanisms by which helicase loading can occur, we used cryo-EM to determine sub-4-Å-resolution structures of the E. coli DnaB⋅DnaC helicase⋅loader complex with nucleotide in pre- and post-DNA engagement states. In the absence of DNA, six DnaC protomers latch onto and crack open a DnaB hexamer using an extended N-terminal domain, stabilizing this conformation through nucleotide-dependent ATPase interactions. Upon binding DNA, DnaC hydrolyzes ATP, allowing DnaB to isomerize into a topologically closed, pre-translocation state competent to bind primase. Our data show how DnaC opens the DnaB ring and represses the helicase prior to DNA binding and how DnaC ATPase activity is reciprocally regulated by DnaB and DNA. Comparative analyses reveal how the helicase loading mechanism of DnaC parallels and diverges from homologous AAA+ systems involved in DNA replication and transposition.
Collapse
Affiliation(s)
- Ernesto Arias-Palomo
- Department of Structural & Chemical Biology, Centro de Investigaciones Biológicas, CIB-CSIC 28040 Madrid, Spain.
| | - Neha Puri
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valerie L O'Shea Murray
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qianyun Yan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Goswami P, Abid Ali F, Douglas ME, Locke J, Purkiss A, Janska A, Eickhoff P, Early A, Nans A, Cheung AMC, Diffley JFX, Costa A. Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nat Commun 2018; 9:5061. [PMID: 30498216 PMCID: PMC6265327 DOI: 10.1038/s41467-018-07417-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase. A key step is the recruitment of GINS that requires the leading-strand polymerase Pol epsilon, composed of Pol2, Dpb2, Dpb3, Dpb4. While a truncation of the catalytic N-terminal Pol2 supports cell division, Dpb2 and C-terminal Pol2 (C-Pol2) are essential for viability. Dpb2 and C-Pol2 are non-catalytic modules, shown or predicted to be related to an exonuclease and DNA polymerase, respectively. Here, we present the cryo-EM structure of the isolated C-Pol2/Dpb2 heterodimer, revealing that C-Pol2 contains a DNA polymerase fold. We also present the structure of CMG/C-Pol2/Dpb2 on a DNA fork, and find that polymerase binding changes both the helicase structure and fork-junction engagement. Inter-subunit contacts that keep the helicase-polymerase complex together explain several cellular phenotypes. At least some of these contacts are preserved during Pol epsilon-dependent CMG assembly on path to origin firing, as observed with DNA replication reconstituted in vitro. Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase, which requires the leading-strand polymerase Pol ɛ. Here the authors present a structural analysis of a CMG Pol ɛ on a DNA fork, providing insight on the steps leading productive helicase engagement to the DNA junction.
Collapse
Affiliation(s)
- Panchali Goswami
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Max E Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrew Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Agnieszka Janska
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Patrik Eickhoff
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Anne Early
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alan M C Cheung
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, WC1E 7HX, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
19
|
Xu AY, Melton LD, Ryan TM, Mata JP, Rekas A, Williams MA, McGillivray DJ. Effects of polysaccharide charge pattern on the microstructures of β-lactoglobulin-pectin complex coacervates, studied by SAXS and SANS. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Seo YS, Kang YH. The Human Replicative Helicase, the CMG Complex, as a Target for Anti-cancer Therapy. Front Mol Biosci 2018; 5:26. [PMID: 29651420 PMCID: PMC5885281 DOI: 10.3389/fmolb.2018.00026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA helicases unwind or rearrange duplex DNA during replication, recombination and repair. Helicases of many pathogenic organisms such as viruses, bacteria, and protozoa have been studied as potential therapeutic targets to treat infectious diseases, and human DNA helicases as potential targets for anti-cancer therapy. DNA replication machineries perform essential tasks duplicating genome in every cell cycle, and one of the important functions of these machineries are played by DNA helicases. Replicative helicases are usually multi-subunit protein complexes, and the minimal complex active as eukaryotic replicative helicase is composed of 11 subunits, requiring a functional assembly of two subcomplexes and one protein. The hetero-hexameric MCM2-7 helicase is activated by forming a complex with Cdc45 and the hetero-tetrameric GINS complex; the Cdc45-Mcm2-7-GINS (CMG) complex. The CMG complex can be a potential target for a treatment of cancer and the feasibility of this replicative helicase as a therapeutic target has been tested recently. Several different strategies have been implemented and are under active investigations to interfere with helicase activity of the CMG complex. This review focuses on the molecular function of the CMG helicase during DNA replication and its relevance to cancers based on data published in the literature. In addition, current efforts made to identify small molecules inhibiting the CMG helicase to develop anti-cancer therapeutic strategies were summarized, with new perspectives to advance the discovery of the CMG-targeting drugs.
Collapse
Affiliation(s)
- Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Young-Hoon Kang
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
21
|
Li H, O'Donnell ME. The Eukaryotic CMG Helicase at the Replication Fork: Emerging Architecture Reveals an Unexpected Mechanism. Bioessays 2018; 40. [PMID: 29405332 DOI: 10.1002/bies.201700208] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Indexed: 01/12/2023]
Abstract
The eukaryotic helicase is an 11-subunit machine containing an Mcm2-7 motor ring that encircles DNA, Cdc45 and the GINS tetramer, referred to as CMG (Cdc45, Mcm2-7, GINS). CMG is "built" on DNA at origins in two steps. First, two Mcm2-7 rings are assembled around duplex DNA at origins in G1 phase, forming the Mcm2-7 "double hexamer." In a second step, in S phase Cdc45 and GINS are assembled onto each Mcm2-7 ring, hence producing two CMGs that ultimately form two replication forks that travel in opposite directions. Here, we review recent findings about CMG structure and function. The CMG unwinds the parental duplex and is also the organizing center of the replisome: it binds DNA polymerases and other factors. EM studies reveal a 20-subunit core replisome with the leading Pol ϵ and lagging Pol α-primase on opposite faces of CMG, forming a fundamentally asymmetric architecture. Structural studies of CMG at a replication fork reveal unexpected details of how CMG engages the DNA fork. The structures of CMG and the Mcm2-7 double hexamer on DNA suggest a completely unanticipated process for formation of bidirectional replication forks at origins.
Collapse
Affiliation(s)
- Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Michael E O'Donnell
- Department of DNA Replication, Rockefeller University and HHMI, New York, NY 10065, USA
| |
Collapse
|
22
|
Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev 2017; 31:1073-1088. [PMID: 28717046 PMCID: PMC5538431 DOI: 10.1101/gad.298232.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this Review, Riera et al. review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marta Barbon
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| | - Yasunori Noguchi
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Sarah Schneider
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| |
Collapse
|
23
|
Cryo-EM structures of the ATP-bound Vps4 E233Q hexamer and its complex with Vta1 at near-atomic resolution. Nat Commun 2017; 8:16064. [PMID: 28714467 PMCID: PMC5520056 DOI: 10.1038/ncomms16064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 05/25/2017] [Indexed: 11/08/2022] Open
Abstract
The cellular ESCRT-III (endosomal sorting complex required for transport-III) and Vps4 (vacuolar protein sorting 4) comprise a common machinery that mediates a variety of membrane remodelling events. Vps4 is essential for the machinery function by using the energy from ATP hydrolysis to disassemble the ESCRT-III polymer into individual proteins. Here, we report the structures of the ATP-bound Vps4E233Q hexamer and its complex with the cofactor Vta1 (vps twenty associated 1) at resolutions of 3.9 and 4.2 Å, respectively, determined by electron cryo-microscopy. Six Vps4E233Q subunits in both assemblies exhibit a spiral-shaped ring-like arrangement. Locating at the periphery of the hexameric ring, Vta1 dimer bridges two adjacent Vps4 subunits by two different interaction modes to promote the formation of the active Vps4 hexamer during ESCRT-III filament disassembly. The structural findings, together with the structure-guided biochemical and single-molecule analyses, provide important insights into the process of the ESCRT-III polymer disassembly by Vps4. The ESCRT-III and Vps4 complexes mediate a variety of membrane remodelling events. Here the authors describe the structure of the Vps4 hexamer complexed to its cofactor Vta1, and show that Vta1 bridges adjacent Vps4 subunits to promote formation of the active hexamer during ESCRT-III filament disassembly.
Collapse
|
24
|
Frigola J, He J, Kinkelin K, Pye VE, Renault L, Douglas ME, Remus D, Cherepanov P, Costa A, Diffley JFX. Cdt1 stabilizes an open MCM ring for helicase loading. Nat Commun 2017; 8:15720. [PMID: 28643783 PMCID: PMC5490006 DOI: 10.1038/ncomms15720] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/24/2017] [Indexed: 11/09/2022] Open
Abstract
ORC, Cdc6 and Cdt1 act together to load hexameric MCM, the motor of the eukaryotic replicative helicase, into double hexamers at replication origins. Here we show that Cdt1 interacts with MCM subunits Mcm2, 4 and 6, which both destabilizes the Mcm2-5 interface and inhibits MCM ATPase activity. Using X-ray crystallography, we show that Cdt1 contains two winged-helix domains in the C-terminal half of the protein and a catalytically inactive dioxygenase-related N-terminal domain, which is important for MCM loading, but not for subsequent replication. We used these structures together with single-particle electron microscopy to generate three-dimensional models of MCM complexes. These show that Cdt1 stabilizes MCM in a left-handed spiral open at the Mcm2-5 gate. We propose that Cdt1 acts as a brace, holding MCM open for DNA entry and bound to ATP until ORC-Cdc6 triggers ATP hydrolysis by MCM, promoting both Cdt1 ejection and MCM ring closure.
Collapse
Affiliation(s)
- Jordi Frigola
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Jun He
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Kerstin Kinkelin
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Ludovic Renault
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Max E. Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
10065, USA
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - John F. X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| |
Collapse
|
25
|
Gates SN, Yokom AL, Lin J, Jackrel ME, Rizo AN, Kendsersky NM, Buell CE, Sweeny EA, Mack KL, Chuang E, Torrente MP, Su M, Shorter J, Southworth DR. Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science 2017; 357:273-279. [PMID: 28619716 DOI: 10.1126/science.aan1052] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022]
Abstract
Hsp100 polypeptide translocases are conserved members of the AAA+ family (adenosine triphosphatases associated with diverse cellular activities) that maintain proteostasis by unfolding aberrant and toxic proteins for refolding or proteolytic degradation. The Hsp104 disaggregase from Saccharomyces cerevisiae solubilizes stress-induced amorphous aggregates and amyloids. The structural basis for substrate recognition and translocation is unknown. Using a model substrate (casein), we report cryo-electron microscopy structures at near-atomic resolution of Hsp104 in different translocation states. Substrate interactions are mediated by conserved, pore-loop tyrosines that contact an 80-angstrom-long unfolded polypeptide along the axial channel. Two protomers undergo a ratchet-like conformational change that advances pore loop-substrate interactions by two amino acids. These changes are coupled to activation of specific nucleotide hydrolysis sites and, when transmitted around the hexamer, reveal a processive rotary translocation mechanism and substrate-responsive flexibility during Hsp104-catalyzed disaggregation.
Collapse
Affiliation(s)
- Stephanie N Gates
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Graduate Program in Chemical Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam L Yokom
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Graduate Program in Chemical Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandrea N Rizo
- Graduate Program in Chemical Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathan M Kendsersky
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Courtney E Buell
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariana P Torrente
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Chemistry Department of Brooklyn College and Ph.D. Programs in Chemistry, Biochemistry, and Biology, Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Min Su
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel R Southworth
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA. .,Graduate Program in Chemical Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Abstract
Cellular DNA replication factories depend on ring-shaped hexameric helicases to aid DNA synthesis by processively unzipping the parental DNA helix. Replicative helicases are loaded onto DNA by dedicated initiator, loader, and accessory proteins during the initiation of DNA replication in a tightly regulated, multistep process. We discuss here the molecular choreography of DNA replication initiation across the three domains of life, highlighting similarities and differences in the strategies used to deposit replicative helicases onto DNA and to melt the DNA helix in preparation for replisome assembly. Although initiators and loaders are phylogenetically related, the mechanisms they use for accomplishing similar tasks have diverged considerably and in an unpredictable manner.
Collapse
Affiliation(s)
- Franziska Bleichert
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Ticau S, Friedman LJ, Champasa K, Corrêa IR, Gelles J, Bell SP. Mechanism and timing of Mcm2-7 ring closure during DNA replication origin licensing. Nat Struct Mol Biol 2017; 24:309-315. [PMID: 28191892 PMCID: PMC5336523 DOI: 10.1038/nsmb.3375] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
The opening and closing of two ring-shaped Mcm2-7 DNA helicases is necessary to license eukaryotic origins of replication, although the mechanisms controlling these events are unclear. The origin-recognition complex (ORC), Cdc6 and Cdt1 facilitate this process by establishing a topological link between each Mcm2-7 hexamer and origin DNA. Using colocalization single-molecule spectroscopy and single-molecule Förster resonance energy transfer (FRET), we monitored ring opening and closing of Saccharomyces cerevisiae Mcm2-7 during origin licensing. The two Mcm2-7 rings were open during initial DNA association and closed sequentially, concomitant with the release of their associated Cdt1. We observed that ATP hydrolysis by Mcm2-7 was coupled to ring closure and Cdt1 release, and failure to load the first Mcm2-7 prevented recruitment of the second Mcm2-7. Our findings identify key mechanisms controlling the Mcm2-7 DNA-entry gate during origin licensing, and reveal that the two Mcm2-7 complexes are loaded via a coordinated series of events with implications for bidirectional replication initiation and quality control.
Collapse
Affiliation(s)
- Simina Ticau
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Kanokwan Champasa
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Zhai Y, Cheng E, Wu H, Li N, Yung PYK, Gao N, Tye BK. Open-ringed structure of the Cdt1-Mcm2-7 complex as a precursor of the MCM double hexamer. Nat Struct Mol Biol 2017; 24:300-308. [PMID: 28191894 DOI: 10.1038/nsmb.3374] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance complex (MCM) hexameric complex (Mcm2-7) forms the core of the eukaryotic replicative helicase. During G1 phase, two Cdt1-Mcm2-7 heptamers are loaded onto each replication origin by the origin-recognition complex (ORC) and Cdc6 to form an inactive MCM double hexamer (DH), but the detailed loading mechanism remains unclear. Here we examine the structures of the yeast MCM hexamer and Cdt1-MCM heptamer from Saccharomyces cerevisiae. Both complexes form left-handed coil structures with a 10-15-Å gap between Mcm5 and Mcm2, and a central channel that is occluded by the C-terminal domain winged-helix motif of Mcm5. Cdt1 wraps around the N-terminal regions of Mcm2, Mcm6 and Mcm4 to stabilize the whole complex. The intrinsic coiled structures of the precursors provide insights into the DH formation, and suggest a spring-action model for the MCM during the initial origin melting and the subsequent DNA unwinding.
Collapse
Affiliation(s)
- Yuanliang Zhai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Erchao Cheng
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Wu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ningning Li
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Philip Yuk Kwong Yung
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bik-Kwoon Tye
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
29
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
30
|
Zhao Z, Zhang H, Shu D, Montemagno C, Ding B, Li J, Guo P. Construction of Asymmetrical Hexameric Biomimetic Motors with Continuous Single-Directional Motion by Sequential Coordination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201601600. [PMID: 27709780 PMCID: PMC5217803 DOI: 10.1002/smll.201601600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/12/2016] [Indexed: 05/21/2023]
Abstract
The significance of bionanomotors in nanotechnology is analogous to mechanical motors in daily life. Here the principle and approach for designing and constructing biomimetic nanomotors with continuous single-directional motion are reported. This bionanomotor is composed of a dodecameric protein channel, a six-pRNA ring, and an ATPase hexamer. Based on recent elucidations of the one-way revolving mechanisms of the phi29 double-stranded DNA (dsDNA) motor, various RNA and protein elements are designed and tested by single-molecule imaging and biochemical assays, with which the motor with active components has been constructed. The motor motion direction is controlled by three operation elements: (1) Asymmetrical ATPase with ATP-interacting domains for alternative DNA binding/pushing regulated by an arginine finger in a sequential action manner. The arginine finger bridges two adjacent ATPase subunits into a non-covalent dimer, resulting in an asymmetrical hexameric complex containing one dimer and four monomers. (2) The dsDNA translocation channel as a one-way valve. (3) The hexameric pRNA ring geared with left-/right-handed loops. Assessments of these constructs reveal that one inactive subunit of pRNA/ATPase is sufficient to completely block motor function (defined as K = 1), implying that these components work sequentially based on the principle of binomial distribution and Yang Hui's triangle.
Collapse
Affiliation(s)
- Zhengyi Zhao
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hui Zhang
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Dan Shu
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Carlo Montemagno
- Chemical and Materials Engineering and Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jingyuan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Beijing, China
| | - Peixuan Guo
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
31
|
Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. Proc Natl Acad Sci U S A 2016; 113:E7691-E7700. [PMID: 27856760 PMCID: PMC5137716 DOI: 10.1073/pnas.1616745113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ring-shaped hexameric helicases and translocases support essential DNA-, RNA-, and protein-dependent transactions in all cells and many viruses. How such systems coordinate ATPase activity between multiple subunits to power conformational changes that drive the engagement and movement of client substrates is a fundamental question. Using the Escherichia coli Rho transcription termination factor as a model system, we have used solution and crystallographic structural methods to delineate the range of conformational changes that accompany distinct substrate and nucleotide cofactor binding events. Small-angle X-ray scattering data show that Rho preferentially adopts an open-ring state in solution and that RNA and ATP are both required to cooperatively promote ring closure. Multiple closed-ring structures with different RNA substrates and nucleotide occupancies capture distinct catalytic intermediates accessed during translocation. Our data reveal how RNA-induced ring closure templates a sequential ATP-hydrolysis mechanism, provide a molecular rationale for how the Rho ATPase domains distinguishes between distinct RNA sequences, and establish structural snapshots of substepping events in a hexameric helicase/translocase.
Collapse
|
32
|
Schaffitzel C. MCM2-7 conformational changes in the presence of DNA. Cell Cycle 2016; 15:2391-2. [PMID: 27485286 DOI: 10.1080/15384101.2016.1214046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
33
|
An Arginine Finger Regulates the Sequential Action of Asymmetrical Hexameric ATPase in the Double-Stranded DNA Translocation Motor. Mol Cell Biol 2016; 36:2514-23. [PMID: 27457616 PMCID: PMC5021374 DOI: 10.1128/mcb.00142-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/30/2016] [Indexed: 11/30/2022] Open
Abstract
Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation and virion assembly assays indicated that the ATPase was presenting as monomers and dimer mixtures. The isolated dimer alone was inactive in DNA translocation, but the addition of monomer could restore the activity, suggesting that the hexameric ATPase ring contained both dimer and monomers. Moreover, ATP binding or hydrolysis resulted in conformation and entropy changes of the ATPase with high or low DNA affinity. Taking these observations together, we concluded that the arginine finger regulates sequential action of the motor ATPase subunit by promoting the formation of the dimer inside the hexamer. The finding of asymmetrical hexameric organization is supported by structural evidence of many other ATPase systems showing the presence of one noncovalent dimer and four monomer subunits. All of these provide clues for why the asymmetrical hexameric ATPase gp16 of ϕ29 was previously reported as a pentameric configuration by cryo-electron microscopy (cryo-EM) since the contact by the arginine finger renders two adjacent ATPase subunits closer than other subunits. Thus, the asymmetrical hexamer would appear as a pentamer by cryo-EM, a technology that acquires the average of many images.
Collapse
|
34
|
Boskovic J, Bragado-Nilsson E, Saligram Prabhakar B, Yefimenko I, Martínez-Gago J, Muñoz S, Méndez J, Montoya G. Molecular architecture of the recombinant human MCM2-7 helicase in complex with nucleotides and DNA. Cell Cycle 2016; 15:2431-40. [PMID: 27249176 DOI: 10.1080/15384101.2016.1191712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
DNA replication is a key biological process that involves different protein complexes whose assembly is rigorously regulated in a successive order. One of these complexes is a replicative hexameric helicase, the MCM complex, which is essential for the initiation and elongation phases of replication. After the assembly of a double heterohexameric MCM2-7 complex at replication origins in G1, the 2 heterohexamers separate from each other and associate with Cdc45 and GINS proteins in a CMG complex that is capable of unwinding dsDNA during S phase. Here, we have reconstituted and characterized the purified human MCM2-7 (hMCM2-7) hexameric complex by co-expression of its 6 different subunits in insect cells. The conformational variability of the complex has been analyzed by single particle electron microscopy in the presence of different nucleotide analogs and DNA. The interaction with nucleotide stabilizes the complex while DNA introduces conformational changes in the hexamer inducing a cylindrical shape. Our studies suggest that the assembly of GINS and Cdc45 to the hMCM2-7 hexamer would favor conformational changes on the hexamer bound to ssDNA shifting the cylindrical shape of the complex into a right-handed spiral conformation as observed in the CMG complex bound to DNA.
Collapse
Affiliation(s)
- Jasminka Boskovic
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Elisabeth Bragado-Nilsson
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| | - Bhargrav Saligram Prabhakar
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| | - Igor Yefimenko
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Jaime Martínez-Gago
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Sergio Muñoz
- c DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Juan Méndez
- c DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Guillermo Montoya
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| |
Collapse
|
35
|
Abid Ali F, Costa A. The MCM Helicase Motor of the Eukaryotic Replisome. J Mol Biol 2016; 428:1822-32. [PMID: 26829220 DOI: 10.1016/j.jmb.2016.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom
| | - Alessandro Costa
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom.
| |
Collapse
|
36
|
Abstract
The cellular replicating machine, or "replisome," is composed of numerous different proteins. The core replication proteins in all cell types include a helicase, primase, DNA polymerases, sliding clamp, clamp loader, and single-strand binding (SSB) protein. The core eukaryotic replisome proteins evolved independently from those of bacteria and thus have distinct architectures and mechanisms of action. The core replisome proteins of the eukaryote include: an 11-subunit CMG helicase, DNA polymerase alpha-primase, leading strand DNA polymerase epsilon, lagging strand DNA polymerase delta, PCNA clamp, RFC clamp loader, and the RPA SSB protein. There are numerous other proteins that travel with eukaryotic replication forks, some of which are known to be involved in checkpoint regulation or nucleosome handling, but most have unknown functions and no bacterial analogue. Recent studies have revealed many structural and functional insights into replisome action. Also, the first structure of a replisome from any cell type has been elucidated for a eukaryote, consisting of 20 distinct proteins, with quite unexpected results. This review summarizes the current state of knowledge of the eukaryotic core replisome proteins, their structure, individual functions, and how they are organized at the replication fork as a machine.
Collapse
Affiliation(s)
- D Zhang
- The Rockefeller University, New York, NY, United States
| | - M O'Donnell
- The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
37
|
Structure and mechanism of the phage T4 recombination mediator protein UvsY. Proc Natl Acad Sci U S A 2016; 113:3275-80. [PMID: 26951671 DOI: 10.1073/pnas.1519154113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY-ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA-gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA-UvsX filament.
Collapse
|
38
|
Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 2016; 7:10708. [PMID: 26888060 PMCID: PMC4759635 DOI: 10.1038/ncomms10708] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Ludovic Renault
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
- National Institute for Biological Standards and Control, Microscopy and Imaging, Blanche Lane, South Mimms EN6 3QG, UK
| | - Julian Gannon
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Hailey L. Gahlon
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jin Chuan Zhou
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - David Rueda
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Alessandro Costa
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| |
Collapse
|
39
|
Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O'Donnell ME, Li H. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol 2016; 23:217-24. [PMID: 26854665 PMCID: PMC4812828 DOI: 10.1038/nsmb.3170] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
The CMG helicase is composed of Cdc45, Mcm2-7 and GINS. Here we report the structure of the Saccharomyces cerevisiae CMG, determined by cryo-EM at a resolution of 3.7-4.8 Å. The structure reveals that GINS and Cdc45 scaffold the N tier of the helicase while enabling motion of the AAA+ C tier. CMG exists in two alternating conformations, compact and extended, thus suggesting that the helicase moves like an inchworm. The N-terminal regions of Mcm2-7, braced by Cdc45-GINS, form a rigid platform upon which the AAA+ C domains make longitudinal motions, nodding up and down like an oil-rig pumpjack attached to a stable platform. The Mcm ring is remodeled in CMG relative to the inactive Mcm2-7 double hexamer. The Mcm5 winged-helix domain is inserted into the central channel, thus blocking entry of double-stranded DNA and supporting a steric-exclusion DNA-unwinding model.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Biochemistry &Cell Biology, Stony Brook University, Stony Brook, New York, USA.,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Lin Bai
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Jingchuan Sun
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Roxana Georgescu
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Huilin Li
- Department of Biochemistry &Cell Biology, Stony Brook University, Stony Brook, New York, USA.,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
40
|
Abstract
Hexameric helicases control both the initiation and the elongation phase of DNA replication. The toroidal structure of these enzymes provides an inherent challenge in the opening and loading onto DNA at origins, as well as the conformational changes required to exclude one strand from the central channel and activate DNA unwinding. Recently, high-resolution structures have not only revealed the architecture of various hexameric helicases but also detailed the interactions of DNA within the central channel, as well as conformational changes that occur during loading. This structural information coupled with advanced biochemical reconstitutions and biophysical methods have transformed our understanding of the dynamics of both the helicase structure and the DNA interactions required for efficient unwinding at the replisome.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
41
|
Meinke G, Phelan PJ, Shin J, Gagnon D, Archambault J, Bohm A, Bullock PA. Structural Based Analyses of the JC Virus T-Antigen F258L Mutant Provides Evidence for DNA Dependent Conformational Changes in the C-Termini of Polyomavirus Origin Binding Domains. PLoS Pathog 2016; 12:e1005362. [PMID: 26735515 PMCID: PMC4703215 DOI: 10.1371/journal.ppat.1005362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 11/21/2022] Open
Abstract
The replication of human polyomavirus JCV, which causes Progressive Multifocal Leukoencephalopathy, is initiated by the virally encoded T-antigen (T-ag). The structure of the JC virus T-ag origin-binding domain (OBD) was recently solved by X-ray crystallography. This structure revealed that the OBD contains a C-terminal pocket, and that residues from the multifunctional A1 and B2 motifs situated on a neighboring OBD molecule dock into the pocket. Related studies established that a mutation in a pocket residue (F258L) rendered JCV T-ag unable to support JCV DNA replication. To establish why this mutation inactivated JCV T-ag, we have solved the structure of the F258L JCV T-ag OBD mutant. Based on this structure, it is concluded that the structural consequences of the F258L mutation are limited to the pocket region. Further analyses, utilizing the available polyomavirus OBD structures, indicate that the F258 region is highly dynamic and that the relative positions of F258 are governed by DNA binding. The possible functional consequences of the DNA dependent rearrangements, including promotion of OBD cycling at the replication fork, are discussed.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul J. Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, United States of America
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Andrew Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter A. Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
42
|
Hesketh EL, Knight JRP, Wilson RHC, Chong JPJ, Coverley D. Transient association of MCM complex proteins with the nuclear matrix during initiation of mammalian DNA replication. Cell Cycle 2015; 14:333-41. [PMID: 25659032 DOI: 10.4161/15384101.2014.980647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The minichromosome maintenance complex (MCM2-7) is the putative DNA helicase in eukaryotes, and essential for DNA replication. By applying serial extractions to mammalian cells synchronized by release from quiescence, we reveal dynamic changes to the sub-nuclear compartmentalization of MCM2 as cells pass through late G1 and early S phase, identifying a brief window when MCM2 becomes transiently attached to the nuclear-matrix. The data distinguish 3 states that correspond to loose association with chromatin prior to DNA replication, transient highly stable binding to the nuclear-matrix coincident with initiation, and a post-initiation phase when MCM2 remains tightly associated with chromatin but not the nuclear-matrix. The data suggests that functional MCM complex loading takes place at the nuclear-matrix.
Collapse
Affiliation(s)
- Emma L Hesketh
- a Department of Biology ; University of York ; York , UK
| | | | | | | | | |
Collapse
|
43
|
Recent Advances in Deciphering the Structure and Molecular Mechanism of the AAA+ ATPase N-Ethylmaleimide-Sensitive Factor (NSF). J Mol Biol 2015; 428:1912-26. [PMID: 26546278 DOI: 10.1016/j.jmb.2015.10.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
Abstract
N-ethylmaleimide-sensitive factor (NSF), first discovered in 1988, is a key factor for eukaryotic trafficking, including protein and hormone secretion and neurotransmitter release. It is a member of the AAA+ family (ATPases associated with diverse cellular activities). NSF disassembles soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes in conjunction with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP). Structural studies of NSF and its complex with SNAREs and SNAPs (known as 20S supercomplex) started about 20years ago. Crystal structures of individual N and D2 domains of NSF and low-resolution electron microscopy structures of full-length NSF and 20S supercomplex have been reported over the years. Nevertheless, the molecular architecture of the 20S supercomplex and the molecular mechanism of NSF-mediated SNARE complex disassembly remained unclear until recently. Here we review recent atomic-resolution or near-atomic resolution structures of NSF and of the 20S supercomplex, as well as recent insights into the molecular mechanism and energy requirements of NSF. We also compare NSF with other known AAA+ family members.
Collapse
|
44
|
Bazin A, Cherrier MV, Gutsche I, Timmins J, Terradot L. Structure and primase-mediated activation of a bacterial dodecameric replicative helicase. Nucleic Acids Res 2015; 43:8564-76. [PMID: 26264665 PMCID: PMC4787810 DOI: 10.1093/nar/gkv792] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/22/2015] [Indexed: 01/29/2023] Open
Abstract
Replicative helicases are essential ATPases that unwind DNA to initiate chromosomal replication. While bacterial replicative DnaB helicases are hexameric, Helicobacter pylori DnaB (HpDnaB) was found to form double hexamers, similar to some archaeal and eukaryotic replicative helicases. Here we present a structural and functional analysis of HpDnaB protein during primosome formation. The crystal structure of the HpDnaB at 6.7 Å resolution reveals a dodecameric organization consisting of two hexamers assembled via their N-terminal rings in a stack-twisted mode. Using fluorescence anisotropy we show that HpDnaB dodecamer interacts with single-stranded DNA in the presence of ATP but has a low DNA unwinding activity. Multi-angle light scattering and small angle X-ray scattering demonstrate that interaction with the DnaG primase helicase-binding domain dissociates the helicase dodecamer into single ringed primosomes. Functional assays on the proteins and associated complexes indicate that these single ringed primosomes are the most active form of the helicase for ATP hydrolysis, DNA binding and unwinding. These findings shed light onto an activation mechanism of HpDnaB by the primase that might be relevant in other bacteria and possibly other organisms exploiting dodecameric helicases for DNA replication.
Collapse
Affiliation(s)
- Alexandre Bazin
- CNRS, UMR 5086 Bases Moléculaires et Structurales de Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367, Lyon, France. Université de Lyon, F-69622, Lyon, France; Université Claude Bernard Lyon 1, F-69622, Villeurbanne, France
| | - Mickaël V Cherrier
- CNRS, UMR 5086 Bases Moléculaires et Structurales de Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367, Lyon, France. Université de Lyon, F-69622, Lyon, France; Université Claude Bernard Lyon 1, F-69622, Villeurbanne, France
| | - Irina Gutsche
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI3265, F-38044 Grenoble Cedex 9, France
| | - Joanna Timmins
- Univ. Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Laurent Terradot
- CNRS, UMR 5086 Bases Moléculaires et Structurales de Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367, Lyon, France. Université de Lyon, F-69622, Lyon, France; Université Claude Bernard Lyon 1, F-69622, Villeurbanne, France
| |
Collapse
|
45
|
Hesketh EL, Parker-Manuel RP, Chaban Y, Satti R, Coverley D, Orlova EV, Chong JPJ. DNA induces conformational changes in a recombinant human minichromosome maintenance complex. J Biol Chem 2015; 290:7973-9. [PMID: 25648893 PMCID: PMC4367295 DOI: 10.1074/jbc.m114.622738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/02/2015] [Indexed: 11/30/2022] Open
Abstract
ATP-dependent DNA unwinding activity has been demonstrated for recombinant archaeal homohexameric minichromosome maintenance (MCM) complexes and their yeast heterohexameric counterparts, but in higher eukaryotes such as Drosophila, MCM-associated DNA helicase activity has been observed only in the context of a co-purified Cdc45-MCM-GINS complex. Here, we describe the production of the recombinant human MCM (hMCM) complex in Escherichia coli. This protein displays ATP hydrolysis activity and is capable of unwinding duplex DNA. Using single-particle asymmetric EM reconstruction, we demonstrate that recombinant hMCM forms a hexamer that undergoes a conformational change when bound to DNA. Recombinant hMCM produced without post-translational modifications is functional in vitro and provides an important tool for biochemical reconstitution of the human replicative helicase.
Collapse
Affiliation(s)
- Emma L Hesketh
- From the Department of Biology, University of York, York YO10 5DD and
| | | | - Yuriy Chaban
- the Department of Crystallography, Birkbeck College London, London WC1E 7HX, United Kingdom
| | - Rabab Satti
- From the Department of Biology, University of York, York YO10 5DD and
| | - Dawn Coverley
- From the Department of Biology, University of York, York YO10 5DD and
| | - Elena V Orlova
- the Department of Crystallography, Birkbeck College London, London WC1E 7HX, United Kingdom
| | - James P J Chong
- From the Department of Biology, University of York, York YO10 5DD and
| |
Collapse
|
46
|
Petojevic T, Pesavento JJ, Costa A, Liang J, Wang Z, Berger JM, Botchan MR. Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement. Proc Natl Acad Sci U S A 2015; 112:E249-58. [PMID: 25561522 PMCID: PMC4311868 DOI: 10.1073/pnas.1422003112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA replication licensing is now understood to be the pathway that leads to the assembly of double hexamers of minichromosome maintenance (Mcm2-7) at origin sites. Cell division control protein 45 (Cdc45) and GINS proteins activate the latent Mcm2-7 helicase by inducing allosteric changes through binding, forming a Cdc45/Mcm2-7/GINS (CMG) complex that is competent to unwind duplex DNA. The CMG has an active gate between subunits Mcm2 and Mcm5 that opens and closes in response to nucleotide binding. The consequences of inappropriate Mcm2/5 gate actuation and the role of a side channel formed between GINS/Cdc45 and the outer edge of the Mcm2-7 ring for unwinding have remained unexplored. Here we uncover a novel function for Cdc45. Cross-linking studies trace the path of the DNA with the CMG complex at a fork junction between duplex and single strands with the bound CMG in an open or closed gate conformation. In the closed state, the lagging strand does not pass through the side channel, but in the open state, the leading strand surprisingly interacts with Cdc45. Mutations in the recombination protein J fold of Cdc45 that ablate this interaction diminish helicase activity. These data indicate that Cdc45 serves as a shield to guard against occasional slippage of the leading strand from the core channel.
Collapse
Affiliation(s)
- Tatjana Petojevic
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720; Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - James J Pesavento
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - Alessandro Costa
- Clare Hall Laboratories, London Research Institute, South Mimms, Herts EN6 3LD, United Kingdom; and
| | - Jingdan Liang
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - Zhijun Wang
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Michael R Botchan
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720;
| |
Collapse
|
47
|
Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 2014; 28:2291-303. [PMID: 25319829 PMCID: PMC4201289 DOI: 10.1101/gad.242313.114] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex (pre-RC) that contains a Mcm2–7 double hexamer. In this study, Sun et al. examined the helicase loading reaction in the presence of ATP, revealing the basic architecture of a number of pre-RC assembly reaction intermediates, including a newly identified ORC–Cdc6–Mcm2–7–Mcm2–7 complex. The detailed architecture of the Mcm2–7 double hexamer was also established. Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex and an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alejandra Fernandez-Cid
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Alberto Riera
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Zuanning Yuan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christian Speck
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom;
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
48
|
Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, MacLellan-Gibson K, Fleck RA, Botchan MR, Berger JM. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. eLife 2014; 3:e03273. [PMID: 25117490 PMCID: PMC4359367 DOI: 10.7554/elife.03273] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/08/2014] [Indexed: 01/29/2023] Open
Abstract
The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3' single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral form highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase.
Collapse
Affiliation(s)
- Alessandro Costa
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Ludovic Renault
- London Research Institute, Cancer Research UK, London, United Kingdom Department of Imaging, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Paolo Swuec
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Tatjana Petojevic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James J Pesavento
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ivar Ilves
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Kirsty MacLellan-Gibson
- Department of Imaging, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Roland A Fleck
- Department of Imaging, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
49
|
Samel SA, Fernández-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, Li H, Speck C. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev 2014; 28:1653-66. [PMID: 25085418 PMCID: PMC4117941 DOI: 10.1101/gad.242404.114] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/25/2014] [Indexed: 01/24/2023]
Abstract
The regulated loading of the replicative helicase minichromosome maintenance proteins 2-7 (MCM2-7) onto replication origins is a prerequisite for replication fork establishment and genomic stability. Origin recognition complex (ORC), Cdc6, and Cdt1 assemble two MCM2-7 hexamers into one double hexamer around dsDNA. Although the MCM2-7 hexamer can adopt a ring shape with a gap between Mcm2 and Mcm5, it is unknown which Mcm interface functions as the DNA entry gate during regulated helicase loading. Here, we establish that the Saccharomyces cerevisiae MCM2-7 hexamer assumes a closed ring structure, suggesting that helicase loading requires active ring opening. Using a chemical biology approach, we show that ORC-Cdc6-Cdt1-dependent helicase loading occurs through a unique DNA entry gate comprised of the Mcm2 and Mcm5 subunits. Controlled inhibition of DNA insertion triggers ATPase-driven complex disassembly in vitro, while in vivo analysis establishes that Mcm2/Mcm5 gate opening is essential for both helicase loading onto chromatin and cell cycle progression. Importantly, we demonstrate that the MCM2-7 helicase becomes loaded onto DNA as a single hexamer during ORC/Cdc6/Cdt1/MCM2-7 complex formation prior to MCM2-7 double hexamer formation. Our study establishes the existence of a unique DNA entry gate for regulated helicase loading, revealing key mechanisms in helicase loading, which has important implications for helicase activation.
Collapse
Affiliation(s)
- Stefan A Samel
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Alejandra Fernández-Cid
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - M Carmen Herrera
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom;
| |
Collapse
|
50
|
Fu Y, Slaymaker IM, Wang J, Wang G, Chen XS. The 1.8-Å crystal structure of the N-terminal domain of an archaeal MCM as a right-handed filament. J Mol Biol 2014; 426:1512-23. [PMID: 24378617 DOI: 10.1016/j.jmb.2013.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/16/2022]
Abstract
Mini-chromosome maintenance (MCM) proteins are the replicative helicase necessary for DNA replication in both eukarya and archaea. Most of archaea only have one MCM gene. Here, we report a 1.8-Å crystal structure of the N-terminal MCM from the archaeon Thermoplasma acidophilum (tapMCM). In the structure, the MCM N-terminus forms a right-handed filament that contains six subunits in each turn, with a diameter of 25Å of the central channel opening. The inner surface is highly positively charged, indicating DNA binding. This filament structure with six subunits per turn may also suggests a potential role for an open-ring structure for hexameric MCM and dynamic conformational changes in initiation and elongation stages of DNA replication.
Collapse
Affiliation(s)
- Yang Fu
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ian M Slaymaker
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Junfeng Wang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ganggang Wang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|