1
|
Sun R, Zhang X, Gong T, Zhang Y, Wang Q, He C, Ju J, Jin C, Ding W, Gao J, Shen J, Li Q, Shan Z. Knockdown H19 Accelerated iPSCs Reprogramming through Epigenetic Modifications and Mesenchymal-to-Epithelial Transition. Biomolecules 2024; 14:509. [PMID: 38785917 PMCID: PMC11118134 DOI: 10.3390/biom14050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
H19 is an essential imprinted gene that is expressed to govern normal embryonic development. During reprogramming, the parental pronuclei have asymmetric reprogramming capacities and the critical reprogramming factors predominantly reside in the male pronucleus. After inhibiting the expression of H19 and Gtl2, androgenetic haploid ESCs (AG-haESCs) can efficiently and stably support the generation of healthy SC pups at a rate of ~20%, and double-knockout parthenogenetic haESCs can also produce efficiently. Induced pluripotent stem (iPS) cell reprogramming is thought to have a characteristic epigenetic pattern that is the reverse of its developmental potential; however, it is unclear how H19 participates in iPS cell reprogramming. Here, we showed that the expression of H19 was transiently increased during iPSC reprogramming. H19 knockdown resulted in greater reprogramming efficiency. The genes associated with pluripotency showed enhanced expression during the early reprogramming process, and the Oct4 promoter was demethylated by bisulfite genomic sequencing analysis. Moreover, expression analysis revealed that the mesenchymal master regulators associated with epithelial-to-mesenchymal transition (EMT) were downregulated during reprogramming in H19 knockdown. These findings provide functional insight into the role of H19 as a barrier to the early reprogramming process.
Collapse
Affiliation(s)
- Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Ximei Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Tiantian Gong
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Yue Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Qi Wang
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Chenyao He
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Jielan Ju
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Chunmiao Jin
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Wenxin Ding
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Jingnan Gao
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Qiuming Li
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China; (R.S.); (X.Z.); (T.G.); (Y.Z.); (Q.W.); (C.H.); (J.J.); (C.J.); (W.D.); (J.G.)
| |
Collapse
|
2
|
Belcheva KT, Chaudhuri J. Maintenance of Lineage Identity: Lessons from a B Cell. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2073-2081. [PMID: 36426973 DOI: 10.4049/jimmunol.2200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023]
Abstract
The maintenance of B cell identity requires active transcriptional control that enforces a B cell-specific program and suppresses alternative lineage genes. Accordingly, disrupting the B cell identity regulatory network compromises B cell function and induces cell fate plasticity by allowing derepression of alternative lineage-specific transcriptional programs. Although the B lineage is incredibly resistant to most differentiating factors, loss of just a single B lineage-specific transcription factor or the forced expression of individual non-B cell lineage transcription factors can radically disrupt B cell maintenance and allow dedifferentiation or transdifferentiation into entirely distinct lineages. B lymphocytes thereby offer an insightful and useful case study of how a specific cell lineage can maintain a stable identity throughout life and how perturbations of a single master regulator can induce cellular plasticity. In this article, we review the regulatory mechanisms that safeguard B cell identity, and we discuss how dysregulation of the B cell maintenance program can drive malignant transformation and enable therapeutic resistance.
Collapse
Affiliation(s)
- Kalina T Belcheva
- Biochemistry, Cellular and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY; and
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
3
|
Li W, Bi C, Han Y, Tian T, Wang X, Bao H, Xu X, Zhang X, Liu L, Zhang W, Gao H, Wang H, Zhang H, Meng B, Wang X, Fu K. Targeting EZH1/2 induces cell cycle arrest and inhibits cell proliferation through reactivation of p57 CDKN1C and TP53INP1 in mantle cell lymphoma. Cancer Biol Med 2019; 16:530-541. [PMID: 31565482 PMCID: PMC6743615 DOI: 10.20892/j.issn.2095-3941.2018.0380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To explore the effect of dysregulation of epigenetic regulator EZH1 and EZH2 on the proliferation in MCL and the underlying mechanisms. Methods In this study, we elucidated the role of EZH1 and EZH2 overexpression by immunohistochemistry and correlated them to clinical outcome in 41 MCL patients. Quantitative real-time PCR and Western blot were applied to confirm the level of EZH1 and EZH2 in well-characterized MCL cell lines which were compared to those of naïve B cells. Then we manipulated the expression of EZH1 and EZH2 in MCL cells using CRISPR/Cas9 system to directly investigate their functional roles in MCL. We also evaluated the effect of two small molecule selective inhibitors, EPZ005687 and UNC1999, on MCL cell proliferation, cell cycle distribution and apoptosis in vitro. Finally, we performed RNA-sequencing (RNA-Seq) and Chromatin immunoprecipitation (ChIP) assay to further gain insight into the underlying molecular mechanisms. Results We found that EZH2 protein is overexpressed in approximately half of this cohort of MCL cases. More importantly, the overexpression of EZH2 is associated with poor OS in the patients. Nevertheless, simple EZH2 depletion in vitro has little impact on the viability of MCL cells, predominantly because of the consequent up-regulation of EZH1. Consistently, UNC1999, a dual EZH1/2 inhibitor, unlike the EZH2 selective inhibitor EPZ005687, exerts a potent inhibitory effect on MCL cells. Furthermore, we discover CDKN1C and TP53INP1 as the two important cell cycle regulators, the expression of which are repressed by EZH1/2 mediated epigenetic regulation and are restored by EZH1/2 dual inhibition. Conclusions Our study suggests that EZH2 participates in the pathogenesis of MCL which may serve as a potential biomarker for prognosis prediction. The dual inhibition of EZH1/2 is a promising therapeutic strategy for MCL.
Collapse
Affiliation(s)
- Wei Li
- Department of Lymphoma.,Department of Pathology, Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198, USA
| | - Chengfeng Bi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198, USA
| | - Yating Han
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Tian Tian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198, USA
| | | | - Huijing Bao
- Department of Laboratory Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoying Xu
- Department of Pathology, Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | | | | | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198, USA
| | - Hai Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Huaqing Wang
- Cancer Center, Tianjin Union Hospital, Tianjin 300121, China
| | | | - Bin Meng
- Department of Pathology, Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xi Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kai Fu
- Department of Lymphoma.,Department of Pathology, Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198, USA
| |
Collapse
|
4
|
Abstract
IgE are absolutely required for initiation of allergy reactions, which affect over 20% of the world's population. IgE are the least prevalent immunoglobulins in circulation with 12-h and 2-day half-lives in mouse and human serum, respectively, but an extended tissue half-life of 3-weeks bound to the surface of mast cells by the high affinity IgE receptor, FcεRI (Gould and Sutton 2008). Although the importance of glycosylation to IgG biology is well established, less is known regarding the contribution of IgE glycosylation to allergic inflammation. IgE has seven and nine N-linked glycosylation sites distributed across human and murine constant chains, respectively. Here we discuss studies that have analyzed IgE glycosylation and its function, and how IgE glycosylation contributions to health and disease.
Collapse
|
5
|
Shah HB, Smith K, Wren JD, Webb CF, Ballard JD, Bourn RL, James JA, Lang ML. Insights From Analysis of Human Antigen-Specific Memory B Cell Repertoires. Front Immunol 2019; 9:3064. [PMID: 30697210 PMCID: PMC6340933 DOI: 10.3389/fimmu.2018.03064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
Memory B cells that are generated during an infection or following vaccination act as sentinels to guard against future infections. Upon repeat antigen exposure memory B cells differentiate into new antibody-secreting plasma cells to provide rapid and sustained protection. Some pathogens evade or suppress the humoral immune system, or induce memory B cells with a diminished ability to differentiate into new plasma cells. This leaves the host vulnerable to chronic or recurrent infections. Single cell approaches coupled with next generation antibody gene sequencing facilitate a detailed analysis of the pathogen-specific memory B cell repertoire. Monoclonal antibodies that are generated from antibody gene sequences allow a functional analysis of the repertoire. This review discusses what has been learned thus far from analysis of diverse pathogen-specific memory B cell compartments and describes major differences in their repertoires. Such information may illuminate ways to advance the goal of improving vaccine and therapeutic antibody design.
Collapse
Affiliation(s)
- Hemangi B Shah
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kenneth Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jonathan D Wren
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Biochemistry and Molecular Biology and Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Carol F Webb
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Division of Rheumatology, Immunology and Allergy, Department of Cell Biology and Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebecka L Bourn
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
He JS, Subramaniam S, Narang V, Srinivasan K, Saunders SP, Carbajo D, Wen-Shan T, Hidayah Hamadee N, Lum J, Lee A, Chen J, Poidinger M, Zolezzi F, Lafaille JJ, Curotto de Lafaille MA. IgG1 memory B cells keep the memory of IgE responses. Nat Commun 2017; 8:641. [PMID: 28935935 PMCID: PMC5608722 DOI: 10.1038/s41467-017-00723-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 07/23/2017] [Indexed: 02/03/2023] Open
Abstract
The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80+CD73+ and CD80-CD73-, contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80+CD73+ high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.
Collapse
Affiliation(s)
- Jin-Shu He
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Sharrada Subramaniam
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | | | - Sean P Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University School of Medicine, 550 First Ave, New York, 10016, USA
| | - Daniel Carbajo
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Tsao Wen-Shan
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Nur Hidayah Hamadee
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Andrea Lee
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
- Galderma R&D, Les Templiers, 2400 route des Colles, Sophia Antipolis, 06410, Biot, France
| | - Juan J Lafaille
- Skirball Institute and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, 10016, USA
| | - Maria A Curotto de Lafaille
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore.
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University School of Medicine, 550 First Ave, New York, 10016, USA.
| |
Collapse
|
7
|
IgH isotype-specific B cell receptor expression influences B cell fate. Proc Natl Acad Sci U S A 2017; 114:E8411-E8420. [PMID: 28923960 DOI: 10.1073/pnas.1704962114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ig heavy chain (IgH) isotypes (e.g., IgM, IgG, and IgE) are generated as secreted/soluble antibodies (sIg) or as membrane-bound (mIg) B cell receptors (BCRs) through alternative RNA splicing. IgH isotype dictates soluble antibody function, but how mIg isotype influences B cell behavior is not well defined. We examined IgH isotype-specific BCR function by analyzing naturally switched B cells from wild-type mice, as well as by engineering polyclonal Ighγ1/γ1 and Ighε/ε mice, which initially produce IgG1 or IgE from their respective native genomic configurations. We found that B cells from wild-type mice, as well as Ighγ1/γ1 and Ighε/ε mice, produce transcripts that generate IgM, IgG1, and IgE in an alternative splice form bias hierarchy, regardless of cell stage. In this regard, we found that mIgμ > mIgγ1 > mIgε, and that these BCR expression differences influence respective developmental fitness. Restrained B cell development from Ighγ1/γ1 and Ighε/ε mice was proportional to sIg/mIg ratios and was rescued by enforced expression of the respective mIgs. In addition, artificially enhancing BCR signal strength permitted IgE+ memory B cells-which essentially do not exist under normal conditions-to provide long-lived memory function, suggesting that quantitative BCR signal weakness contributes to restraint of IgE B cell responses. Our results indicate that IgH isotype-specific mIg/BCR dosage may play a larger role in B cell fate than previously anticipated.
Collapse
|
8
|
Rodríguez Preciado SY, Barros-Núñez P. El estado mutacional de las inmunoglobulinas en pacientes con leucemia linfocítica crónica: significado y pronóstico. GACETA MEXICANA DE ONCOLOGÍA 2016. [DOI: 10.1016/j.gamo.2016.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Modali SD, Parekh VI, Kebebew E, Agarwal SK. Epigenetic regulation of the lncRNA MEG3 and its target c-MET in pancreatic neuroendocrine tumors. Mol Endocrinol 2015; 29:224-37. [PMID: 25565142 DOI: 10.1210/me.2014-1304] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biallelic inactivation of MEN1 encoding menin in pancreatic neuroendocrine tumors (PNETs) associated with the multiple endocrine neoplasia type 1 (MEN1) syndrome is well established, but how menin loss/inactivation initiates tumorigenesis is not well understood. We show that menin activates the long noncoding RNA maternally expressed gene 3 (Meg3) by histone-H3 lysine-4 trimethylation and CpG hypomethylation at the Meg3 promoter CRE site, to allow binding of the transcription factor cAMP response element-binding protein. We found that Meg3 has tumor-suppressor activity in PNET cells because the overexpression of Meg3 in MIN6 cells (insulin-secreting mouse PNET cell line) blocked cell proliferation and delayed cell cycle progression. Gene expression microarray analysis showed that Meg3 overexpression in MIN6 mouse insulinoma cells down-regulated the expression of the protooncogene c-Met (hepatocyte growth factor receptor), and these cells showed significantly reduced cell migration/invasion. Compared with normal islets, mouse or human MEN1-associated PNETs expressed less MEG3 and more c-MET. Therefore, a tumor-suppressor long noncoding RNA (MEG3) and suppressed protooncogene (c-MET) combination could elicit menin's tumor-suppressor activity. Interestingly, MEG3 and c-MET expression was also altered in human sporadic insulinomas (insulin secreting PNETs) with hypermethylation at the MEG3 promoter CRE-site coinciding with reduced MEG3 expression. These data provide insights into the β-cell proliferation mechanisms that could retain their functional status. Furthermore, in MIN6 mouse insulinoma cells, DNA-demethylating drugs blocked cell proliferation and activated Meg3 expression. Our data suggest that the epigenetic activation of lncRNA MEG3 and/or inactivation of c-MET could be therapeutic for treating PNETs and insulinomas.
Collapse
Affiliation(s)
- Sita D Modali
- Metabolic Diseases Branch (S.D.M., V.I.P., S.K.A.), National Institute of Diabetes and Digestive and Kidney Diseases, and Endocrine Oncology Branch (E.K.), National Cancer Institute, National Institutes of Health, Bethesda Maryland 20892
| | | | | | | |
Collapse
|
10
|
Gallagher MP, Shrestha A, Magee JM, Wesemann DR. Detection of true IgE-expressing mouse B lineage cells. J Vis Exp 2014:52264. [PMID: 25490087 PMCID: PMC4354474 DOI: 10.3791/52264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
B lymphocyte immunoglobulin heavy chain (IgH) class switch recombination (CSR) is a process wherein initially expressed IgM switches to other IgH isotypes, such as IgA, IgE and IgG. Measurement of IgH CSR in vitro is a key method for the study of a number of biologic processes ranging from DNA recombination and repair to aspects of molecular and cellular immunology. In vitro CSR assay involves the flow cytometric measurement surface Ig expression on activated B cells. While measurement of IgA and IgG subclasses is straightforward, measurement of IgE by this method is problematic due to soluble IgE binding to FcεRII/CD23 expressed on the surface of activated B cells. Here we describe a unique procedure for accurate measurement of IgE-producing mouse B cells that have undergone CSR in culture. The method is based on trypsin-mediated cleavage of IgE-CD23 complexes on cell surfaces, allowing for detection of IgE-producing B lineage cells by cytoplasmic staining. This procedure offers a convenient solution for flow cytometric analysis of CSR to IgE.
Collapse
Affiliation(s)
- Michael P Gallagher
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School
| | - Akritee Shrestha
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School
| | - Jennifer M Magee
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School
| | - Duane R Wesemann
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School;
| |
Collapse
|
11
|
Benetatos L, Vartholomatos G, Hatzimichael E. DLK1-DIO3 imprinted cluster in induced pluripotency: landscape in the mist. Cell Mol Life Sci 2014; 71:4421-30. [PMID: 25098353 PMCID: PMC11113449 DOI: 10.1007/s00018-014-1698-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022]
Abstract
DLK1-DIO3 represents an imprinted cluster which genes are involved in physiological cell biology as early as the stem cell level and in the pathogenesis of several diseases. Transcription factor-mediated induced pluripotent cells (iPSCs) are considered an unlimited source of patient-specific hematopoietic stem cells for clinical application in patient-tailored regenerative medicine. However, to date there is no marker established able to distinguish embryonic stem cell-equivalent iPSCs or safe human iPSCs. Recent findings suggest that the DLK1-DIO3 locus possesses the potential to represent such a marker but there are also contradictory data. This review aims to report the current data on the topic describing both sides of the coin.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Blood Bank, Selefkeias 2, Preveza General Hospital, 48100, Preveza, Greece,
| | | | | |
Collapse
|
12
|
Neunkirchner A, Schmetterer KG, Pickl WF. Lymphocyte-based model systems for allergy research: a historic overview. Int Arch Allergy Immunol 2014; 163:259-91. [PMID: 24777172 PMCID: PMC7617143 DOI: 10.1159/000360163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the last decades, a multitude of studies applying distinct in vitro and in vivo model systems have contributed greatly to our better understanding of the initiation and regulation of inflammatory processes leading to allergic diseases. Over the years, it has become evident that among lymphocytes, not only IgE-producing B cells and allergy-orchestrating CD4(+) helper cells but also cytotoxic CD8(+) T cells, γδ-T cells and innate lymphoid cells, as well as regulatory lymphocytes, might critically shape the immune response towards usually innocuous allergens. In this review, we provide a historic overview of pioneering work leading to the establishment of important lymphocyte-based model systems for allergy research. Moreover, we contrast the original findings with our currently more refined knowledge to appreciate the actual validity of the respective models and to reassess the conclusions obtained from them. Conflicting studies and interpretations are identified and discussed. The tables are intended to provide an easy overview of the field not only for scientists newly entering the field but also for the broader readership interested in updating their knowledge. Along those lines, herein we discuss in vitro and in vivo approaches to the investigation of lymphocyte effector cell activation, polarization and regulation, and describe depletion and adoptive transfer models along with gene knockout and transgenic (tg) methodologies. In addition, novel attempts to establish humanized T cell antigen receptor tg mouse models for allergy research are described and discussed.
Collapse
Affiliation(s)
- Alina Neunkirchner
- Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
13
|
He JS, Meyer-Hermann M, Xiangying D, Zuan LY, Jones LA, Ramakrishna L, de Vries VC, Dolpady J, Aina H, Joseph S, Narayanan S, Subramaniam S, Puthia M, Wong G, Xiong H, Poidinger M, Urban JF, Lafaille JJ, Curotto de Lafaille MA. The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response. ACTA ACUST UNITED AC 2013; 210:2755-71. [PMID: 24218137 PMCID: PMC3832920 DOI: 10.1084/jem.20131539] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Direct class switching to IgE generates IgE+ GC cells that are highly apoptotic and do not contribute to the memory compartment, while sequential switching through an IgG+ intermediate results in the generation of long-lived IgE+ plasma cells. The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE+ cells in memory responses is particularly unclear. IgE+ B cell differentiation is characterized by a transient GC phase, a bias toward the plasma cell (PC) fate, and dependence on sequential switching for the production of high-affinity IgE. We show here that IgE+ GC B cells are unfit to undergo the conventional GC differentiation program due to impaired B cell receptor function and increased apoptosis. IgE+ GC cells fail to populate the GC light zone and are unable to contribute to the memory and long-lived PC compartments. Furthermore, we demonstrate that direct and sequential switching are linked to distinct B cell differentiation fates: direct switching generates IgE+ GC cells, whereas sequential switching gives rise to IgE+ PCs. We propose a comprehensive model for the generation and memory of IgE responses.
Collapse
Affiliation(s)
- Jin-Shu He
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao H, Sun N, Young SR, Nolley R, Santos J, Wu JC, Peehl DM. Induced pluripotency of human prostatic epithelial cells. PLoS One 2013; 8:e64503. [PMID: 23717621 PMCID: PMC3661502 DOI: 10.1371/journal.pone.0064503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/15/2013] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that iPS-like cells derived from prostatic epithelial cells are pluripotent and capable of prostatic differentiation; therefore, provide a novel model for investigating epigenetic changes involved in prostate cell lineage specification.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ning Sun
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sarah R. Young
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jennifer Santos
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Joseph C. Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|