1
|
Chen J, Liu T, Wang M, Lu B, Bai D, Shang J, Chen Y, Zhang J. Supramolecular oral delivery technologies for polypeptide-based drugs. J Control Release 2025; 381:113549. [PMID: 40058501 DOI: 10.1016/j.jconrel.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
Oral supramolecular drug delivery systems (SDDSs) have shown promising potential, along with a rapid increase in the development of polypeptide-based drugs. Biofriendly, biocompatible, and multistimulation-responsive SDDSs achieve their unique deliverability via noncovalent bonds, which can encapsulate drugs and release them at the target site along the oral tract. In this review, we analyze the oral tract from an anatomical perspective and explain the potential physical, microenvironmental, and systematic barriers, as well as the properties of drug delivery. After understanding the specific environment at different oral sites, the application of SDDSs to the mouth, stomach, small intestine, and cell targeting is summarized. Finally, this review summarizes the application of SDDSs for the successful delivery of drugs and describes how to overcome the barriers of SDDSs in drug delivery using a more biofriendly approach.
Collapse
Affiliation(s)
- Jiawen Chen
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Tianqi Liu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Mi Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Beibei Lu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Jiaqi Shang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Yingjun Chen
- Shenzhen JC innovation (Lazylab) Co., LTD., Shenzhen 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China.
| |
Collapse
|
2
|
Kovács A, Tancsics P, Palotai M, Bagosi Z. The effects of corticotropin-releasing factor (CRF) and urocortins on the serotonin (hydroxytryptamine, 5HT) released from the raphe nuclei (RN). Neuropeptides 2025; 110:102503. [PMID: 39798539 DOI: 10.1016/j.npep.2025.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Corticotropin-releasing factor (CRF) and urocortins (UCN1, UCN2 and UCN3) belong to the same CRF family of neuropeptides. They regulate the neuroendocrine, autonomic and behavioral responses to stress via two CRF receptors (CRF1 and CRF2). Stress, anxiety and depression affects the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the serotoninergic neurotransmission, both being regulated by CRF and CRF-related peptides. However, the exact action of CRF and urocortins on the serotonin (5-hydroxytryptamine, 5HT) release was not fully elucidated yet. Therefore, the aim of the present study was to investigate the actions of CRF and urocortins on the 5HT released from the rat raphe nuclei (RN), the most important brain regions producing 5HT, and the participation of CRF receptors in these actions. In order to do so, male Wistar rats were used, their RN were isolated and dissected, and the RN slices were incubated with tritium-labelled 5HT, superfused and stimulated electrically. During superfusion, the RN slices were treated with CRF, UCN1, UCN2 or UCN3, and, when significant effect was observed, pretreated with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B. The release of tritium-labelled 5HT from the RN was determined by liquid scintillation counting. CRF and UCN1 decreased significantly the tritium-labelled 5HT release from the RN, and these effects were reversed by antalarmin, but not by astressin2B. In addition, UCN3, but not UCN2, increased significantly the tritium-labelled 5HT release from the RN, and this effect was reduced by astressin2B, but not antalarmin. Our results indicate the existence of two apparently opposing CRF systems in the RN: activation of CRF1 by CRF and UCN1 may inhibit, whereas activation of CRF2 by UCN3 may stimulate the 5HT release. The dysbalance between CRF1 and CRF2 activation and, consequently, alteration of serotoninergic signalling may result in anxiety and depression, associated with hyperactivity of the HPA axis.
Collapse
Affiliation(s)
- Aliz Kovács
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary.
| | - Patrícia Tancsics
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Miklós Palotai
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zsolt Bagosi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| |
Collapse
|
3
|
Tancsics P, Kovács A, Palotai M, Bagosi Z. The effects of corticotropin-releasing factor (CRF) and urocortins on the noradrenaline (NA) released from the locus coeruleus (LC). Peptides 2024; 182:171322. [PMID: 39581268 DOI: 10.1016/j.peptides.2024.171322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Corticotropin-releasing factor (CRF) activates the hypothalamic-pituitary-adrenal (HPA) axis and stimulates the noradrenergic neurotransmission, both processes being implicated in the pathogenesis of anxiety and depression, but the intimate site and mechanism of interaction of CRF and CRF-related peptides, named urocortins (UCN1, UCN2, UCN3), with noradrenaline (NA) was not fully elucidated yet. Therefore, the aim of the present study was to investigate the actions of CRF and urocortins on the NA released from the rat locus coeruleus (LC), the primary source of NA in the brain, and the participation of CRF receptors (CRF1 and CRF2) in these actions. In order to do so, male Wistar rats were used, their LC were isolated and dissected, and the LC slices were incubated with tritium-labelled NA, superfused and stimulated electrically. During superfusion, the LC slices were treated with CRF, UCN1, UCN2 or UCN3, and, when significant effect was observed, pretreated with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B. The release of tritium-labelled NA from the LC was determined by liquid scintillation counting. CRF and UCN1 increased significantly the tritium-labelled NA release from the LC, and these effects were reduced by antalarmin, but not by astressin2B. In addition, UCN2, but not UCN3, decreased significantly the tritium-labelled NA release from the LC, and this effect was reversed by astressin2B, but not antalarmin. Our results indicate the existence of two apparently opposing CRF systems in the LC, since activation of CRF1 by CRF and UCN1 stimulated, whereas activation of CRF2 by UCN2 inhibited the NA release.
Collapse
Affiliation(s)
- Patrícia Tancsics
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary.
| | - Aliz Kovács
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Miklós Palotai
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zsolt Bagosi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| |
Collapse
|
4
|
Franck MCM, Weman HM, Ceder MM, Ahemaiti A, Henriksson K, Bengtsson E, Magnusson KA, Koning HK, Öhman-Mägi C, Lagerström MC. Spinal lumbar Urocortin 3-expressing neurons are associated with both scratching and Compound 48/80-induced sensations. Pain 2024:00006396-990000000-00740. [PMID: 39432740 DOI: 10.1097/j.pain.0000000000003435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Urocortin 3 is a neuropeptide that belongs to the corticotropin-releasing hormone family and is involved in mechanosensation and stress regulation. In this study, we show that Urocortin 3 marks a population of excitatory neurons in the mouse spinal cord, divided into 2 nonoverlapping subpopulations expressing protein kinase C gamma or calretinin/calbindin 2, populations previously associated with mechanosensation. Electrophysiological experiments demonstrated that lumbar spinal Urocortin 3 neurons receive both glycinergic and GABAergic local tonic inhibition, and monosynaptic inputs from both Aβ and C fibers, which could be confirmed by retrograde trans-synaptic rabies tracing. Furthermore, fos analyses showed that subpopulations of lumbar Urocortin 3 neurons are activated by artificial scratching or Compound 48/80-induced sensations. Chemogenetic activation of lumbar Urocortin 3-Cre neurons evoked a targeted biting/licking behavior towards the corresponding dermatome and chemogenetic inhibition decreased Compound 48/80-induced behavior. Hence, spinal lumbar Urocortin 3 neurons represent a mechanically associated population with roles in both scratching and Compound 48/80-induced sensations.
Collapse
Affiliation(s)
- Marina C M Franck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hannah M Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Aikeremu Ahemaiti
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Erica Bengtsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Harmen K Koning
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Domin H, Śmiałowska M. The diverse role of corticotropin-releasing factor (CRF) and its CRF1 and CRF2 receptors under pathophysiological conditions: Insights into stress/anxiety, depression, and brain injury processes. Neurosci Biobehav Rev 2024; 163:105748. [PMID: 38857667 DOI: 10.1016/j.neubiorev.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury. It seems interesting to draw particular attention to the fact that CRF and its receptor ligands exert different effects depending on the brain structures or subregions, likely stemming from the varied distribution of CRFRs in these regions and interactions with other neurotransmitters. CRFR-mediated region-specific effects might also be related to brain site-specific ligand binding and the associated activated signaling pathways. Intriguingly, different types of CRF molecules can also influence the diverse actions of CRF in the CNS.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland.
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland
| |
Collapse
|
6
|
Noguchi GM, Castillo VC, Donaldson CJ, Flisher MR, Momen AT, Saghatelian A, Huising MO. Urocortin 3 contributes to paracrine inhibition of islet alpha cells in mice. J Endocrinol 2024; 261:e240018. [PMID: 38593829 PMCID: PMC11095665 DOI: 10.1530/joe-24-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Pancreatic alpha cell activity and glucagon secretion lower as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose. Additionally, urocortin 3 (UCN3) is a hormone that is co-released from beta cells with insulin and acts locally to potentiate somatostatin secretion from delta cells. UCN3 thus inhibits insulin secretion via a negative feedback loop with delta cells, but its role with respect to alpha cells and glucagon secretion is not understood. We hypothesize that the somatostatin-driven glucagon inhibition at high glucose is regulated in part by UCN3 from beta cells. Here, we use a combination of live functional Ca2+ and cAMP imaging as well as direct glucagon secretion measurement, all from alpha cells in intact mouse islets, to determine the contributions of UCN3 to alpha cell behavior. Exogenous UCN3 treatment decreased alpha cell Ca2+ and cAMP levels and inhibited glucagon release. Blocking endogenous UCN3 signaling increased alpha cell Ca2+ by 26.8 ± 7.6%, but this did not result in increased glucagon release at high glucose. Furthermore, constitutive deletion of Ucn3 did not increase Ca2+ activity or glucagon secretion relative to controls. UCN3 is thus capable of inhibiting mouse alpha cells, but, given the subtle effects of endogenous UCN3 signaling on alpha cells, we propose that UCN3-driven somatostatin may serve to regulate local paracrine glucagon levels in the islet instead of inhibiting gross systemic glucagon release.
Collapse
Affiliation(s)
- Glyn M. Noguchi
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Vincent C. Castillo
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | | | - Marcus R. Flisher
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Ariana T. Momen
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | | | - Mark O. Huising
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
7
|
Oka A, Hadano S, Ueda MT, Nakagawa S, Komaki G, Ando T. Rare CRHR2 and GRM8 variants identified as candidate factors associated with eating disorders in Japanese patients by whole exome sequencing. Heliyon 2024; 10:e28643. [PMID: 38644811 PMCID: PMC11031761 DOI: 10.1016/j.heliyon.2024.e28643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Eating disorders (EDs) are a type of psychiatric disorder characterized by pathological eating and related behavior and considered to be highly heritable. The purpose of this study was to explore rare variants expected to display biological functions associated with the etiology of EDs. We performed whole exome sequencing (WES) of affected sib-pairs corresponding to disease subtype through their lifetime and their parents. From those results, rare single nucleotide variants (SNVs) concordant with sib-pairs were extracted and estimated to be most deleterious in the examined families. Two non-synonymous SNVs located on corticotropin-releasing hormone receptor 2 (CRHR2) and glutamate metabotropic receptor 8 (GRM8) were identified as candidate disease susceptibility factors. The SNV of CRHR2 was included within the cholesterol binding motif of the transmembrane helix region, while the SNV of GRM8 was found to contribute to hydrogen bonds for an α-helix structure. CRHR2 plays important roles in the serotoninergic system of dorsal raphe nuclei, which is involved with feeding and stress-coping behavior, whereas GRM8 modulates glutamatergic neurotransmission. Moreover, GRM8 modulates glutamatergic neurotransmission, and is also considered to have effects on dopaminergic and adrenergic neurotransmission. Thus, identification of rare and deleterious variants in this study is expected to increase understanding and treatment of affected individuals. Further investigation regarding the biological function of these variants may provide an opportunity to elucidate the pathogenesis of EDs.
Collapse
Affiliation(s)
- Akira Oka
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Shinji Hadano
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - So Nakagawa
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Gen Komaki
- Faculty of Medical Science, Fukuoka International University of Health and Welfare, Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan
| | - Tetsuya Ando
- Department of Psychosomatic Medicine, Faculty of Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8553, Japan
| |
Collapse
|
8
|
Granton E, Brown L, Defaye M, Moazen P, Almblad H, Randall TE, Rich JD, Geppert A, Abdullah NS, Hassanabad MF, Hiroki CH, Farias R, Nguyen AP, Schubert C, Lou Y, Andonegui G, Iftinca M, Raju D, Vargas MA, Howell PL, Füzesi T, Bains J, Kurrasch D, Harrison JJ, Altier C, Yipp BG. Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection. Cell 2024; 187:1874-1888.e14. [PMID: 38518773 DOI: 10.1016/j.cell.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.
Collapse
Affiliation(s)
- Elise Granton
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luke Brown
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manon Defaye
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Parisa Moazen
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Trevor E Randall
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jacquelyn D Rich
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew Geppert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Nasser S Abdullah
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mortaza F Hassanabad
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carlos H Hiroki
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Courtney Schubert
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graciela Andonegui
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mircea Iftinca
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deepa Raju
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mario A Vargas
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamás Füzesi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Deborah Kurrasch
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Joe Jonathan Harrison
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Christophe Altier
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Bryan G Yipp
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Matsoukas MT, Panagiotopoulos V, Karageorgos V, Chrousos GP, Venihaki M, Liapakis G. Structural and Functional Insights into CRF Peptides and Their Receptors. BIOLOGY 2024; 13:120. [PMID: 38392338 PMCID: PMC10886364 DOI: 10.3390/biology13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Corticotropin-releasing factor or hormone (CRF or CRH) and the urocortins regulate a plethora of physiological functions and are involved in many pathophysiological processes. CRF and urocortins belong to the family of CRF peptides (CRF family), which includes sauvagine, urotensin, and many synthetic peptide and non-peptide CRF analogs. Several of the CRF analogs have shown considerable therapeutic potential in the treatment of various diseases. The CRF peptide family act by interacting with two types of plasma membrane proteins, type 1 (CRF1R) and type 2 (CRF2R), which belong to subfamily B1 of the family B G-protein-coupled receptors (GPCRs). This work describes the structure of CRF peptides and their receptors and the activation mechanism of the latter, which is compared with that of other GPCRs. It also discusses recent structural information that rationalizes the selective binding of various ligands to the two CRF receptor types and the activation of receptors by different agonists.
Collapse
Affiliation(s)
- Minos-Timotheos Matsoukas
- Department of Biomedical Engineering, School of Engineering, University of West Attica, 12243 Athens, Greece
| | - Vasilis Panagiotopoulos
- Department of Biomedical Engineering, School of Engineering, University of West Attica, 12243 Athens, Greece
| | - Vlasios Karageorgos
- Department of Pharmacology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO, National and Kapodistrian University of Athens, Livadias 8, 11527 Athens, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Liapakis
- Department of Pharmacology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
10
|
Rousseau K, Girardot F, Parmentier C, Tostivint H. The Caudal Neurosecretory System: A Still Enigmatic Second Neuroendocrine Complex in Fish. Neuroendocrinology 2024; 115:154-194. [PMID: 38228127 DOI: 10.1159/000536270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
The caudal neurosecretory system (CNSS) is a neuroendocrine complex, whose existence is specific to fishes. In teleosts, it consists of neurosecretory cells (Dahlgren cells) whose fibers are associated with a neurohemal terminal tissue (urophysis). In other actinopterygians as well as in chondrichthyes, the system is devoid of urophysis, so that Dahlgren cells end in a diffuse neurohemal region. Structurally, it has many similarities with the hypothalamic-neurohypophysial system. However, it differs regarding its position at the caudal end of the spinal cord and the nature of the hormones it secretes, the most notable ones being urotensins. The CNSS was first described more than 60 years ago, but its embryological origin is still hypothetical, and its role is poorly understood. Observations and experimental data gave some evidences of a possible involvement in osmoregulation, stress, and reproduction. But one may question the benefit for fish to possess this second neurosecretory system, while the central hypothalamic-pituitary complex already controls such functions. As an introduction of our review, a brief report on the discovery of the CNSS is given. A description of its organization follows, and our review then focuses on the neuroendocrinology of the CNSS with the different factors it produces and secretes. The current knowledge on the ontogenesis and developmental origin of the CNSS is also reported, as well as its evolution. A special focus is finally given on what is known on its potential physiological roles.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, Paris, France
| | - Fabrice Girardot
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR8246, INSERM U1130, IBPS, Neuroscience Paris Seine, Neuroplasticité des comportements de reproduction, Paris, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, Paris, France
| |
Collapse
|
11
|
Horii-Hayashi N, Masuda K, Kato T, Kobayashi K, Inutsuka A, Nambu MF, Tanaka KZ, Inoue K, Nishi M. Entrance-sealing behavior in the home cage: a defensive response to potential threats linked to the serotonergic system and manifestation of repetitive/stereotypic behavior in mice. Front Behav Neurosci 2024; 17:1289520. [PMID: 38249128 PMCID: PMC10799337 DOI: 10.3389/fnbeh.2023.1289520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
The security of animal habitats, such as burrows and nests, is vital for their survival and essential activities, including eating, mating, and raising offspring. Animals instinctively exhibit defensive behaviors to protect themselves from imminent and potential threats. In 1963, researchers reported wild rats sealing the entrances to their burrows from the inside using materials such as mud, sand, and vegetation. This behavior, known as "entrance sealing (ES)," involves repetitive movements of their nose/mouth and forepaws and is likely a proactive measure against potential intruders, which enhances burrow security. These observations provide important insights into the animals' ability to anticipate potential threats that have not yet occurred and take proactive actions. However, this behavior lacks comprehensive investigation, and the neural mechanisms underpinning it remain unclear. Hypothalamic perifornical neurons expressing urocortin-3 respond to novel objects/potential threats and modulate defensive responses to the objects in mice, including risk assessment and burying. In this study, we further revealed that chemogenetic activation of these neurons elicited ES-like behavior in the home-cage. Furthermore, behavioral changes caused by activating these neurons, including manifestations of ES-like behavior, marble-burying, and risk assessment/burying of a novel object, were effectively suppressed by selective serotonin-reuptake inhibitors. The c-Fos analysis indicated that ES-like behavior was potentially mediated through GABAergic neurons in the lateral septum. These findings underscore the involvement of hypothalamic neurons in the anticipation of potential threats and proactive defense against them. The links of this security system with the manifestation of repetitive/stereotypic behaviors and the serotonergic system provide valuable insights into the mechanisms underlying the symptoms of obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Noriko Horii-Hayashi
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuya Masuda
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Taika Kato
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, Shimono, Japan
| | - Miyu F. Nambu
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Japan
| | - Kazumasa Z. Tanaka
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Japan
| | - Koichi Inoue
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Mayumi Nishi
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
12
|
Du R, Shi X, Chen F, Wang L, Liang H, Hu G. Corticotropin-Releasing Hormone: A Novel Stimulator of Somatolactin in Teleost Pituitary Cells. Cells 2023; 12:2770. [PMID: 38132090 PMCID: PMC10741825 DOI: 10.3390/cells12242770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) is known for its crucial role in the stress response system, which could induce pituitary adrenocorticotropic hormone (ACTH) secretion to promote glucocorticoid release in the adrenal gland. However, little is known about other pituitary actions of CRH in teleosts. Somatolactin is a fish-specific hormone released from the neurointermediate lobe (NIL) of the posterior pituitary. A previous study has reported that ACTH was also located in the pituitary NIL region. Interestingly, our present study found that CRH could significantly induce two somatolactin isoforms' (SLα and SLβ) secretion and synthesis in primary cultured grass carp pituitary cells. Pharmacological analysis further demonstrated that CRH-induced pituitary somatolactin expression was mediated by the AC/cAMP/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways. Finally, transcriptomic analysis showed that both SLα and SLβ should play an important role in the regulation of lipid metabolism in primary cultured hepatocytes. These results indicate that CRH is a novel stimulator of somatolactins in teleost pituitary cells, and somatolactins may participate in the stress response by regulating energy metabolism.
Collapse
Affiliation(s)
- Ruixin Du
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| | - Xuetao Shi
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| | - Feng Chen
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| | - Li Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| | - Hongwei Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China
| | - Guangfu Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| |
Collapse
|
13
|
Hafenbreidel M, Pandey S, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral amygdala corticotropin releasing factor receptor 2 interacts with nonmuscle myosin II to destabilize memory in males. Neurobiol Learn Mem 2023; 206:107865. [PMID: 37995804 DOI: 10.1016/j.nlm.2023.107865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Preclinical studies show that inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory in male and female adult and adolescent rodents. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g., dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To understand the mechanisms responsible for drug specific selectivity we began by investigating, in male mice, the pharmacokinetic differences in METH and COC brain exposure . Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, we next assessed transcriptional differences. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotropin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility. Pretreatment with AS2B prevented the ability of Blebb to disrupt an established METH-associated memory. Alternatively, combining CRF2 overexpression and agonist treatment, urocortin 3 (UCN3), in the BLA during conditioning rendered COC-associated memory susceptible to disruption by NMII inhibition, mimicking the Blebb-induced, retrieval-independent memory disruption seen with METH. These results suggest that BLA CRF2 receptor activation during memory formation in male mice can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption by NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Surya Pandey
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
14
|
Chen D, Rehfeld JF, Watts AG, Rorsman P, Gundlach AL. History of key regulatory peptide systems and perspectives for future research. J Neuroendocrinol 2023; 35:e13251. [PMID: 37053148 DOI: 10.1111/jne.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Throughout the 20th Century, regulatory peptide discovery advanced from the identification of gut hormones to the extraction and characterization of hypothalamic hypophysiotropic factors, and to the isolation and cloning of multiple brain neuropeptides. These discoveries were followed by the discovery of G-protein-coupled and other membrane receptors for these peptides. Subsequently, the systems physiology associated with some of these multiple regulatory peptides and receptors has been comprehensively elucidated and has led to improved therapeutics and diagnostics and their approval by the US Food and Drug Administration. In light of this wealth of information and further potential, it is truly a time of renaissance for regulatory peptides. In this perspective, we review what we have learned from the pioneers in exemplified fields of gut peptides, such as cholecystokinin, enterochromaffin-like-cell peptides, and glucagon, from the trailblazing studies on the key stress hormone, corticotropin-releasing factor, as well as from more recently characterized relaxin-family peptides and receptors. The historical viewpoints are based on our understanding of these topics in light of the earliest phases of research and on subsequent studies and the evolution of knowledge, aiming to sharpen our vision of the current state-of-the-art and those studies that should be prioritized in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
García MT, Tran DN, Peterson RE, Stegmann SK, Hanson SM, Reid CM, Xie Y, Vu S, Harwell CC. A developmentally defined population of neurons in the lateral septum controls responses to aversive stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.24.559205. [PMID: 37873286 PMCID: PMC10592641 DOI: 10.1101/2023.09.24.559205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
When interacting with their environment, animals must balance exploratory and defensive behavior to evaluate and respond to potential threats. The lateral septum (LS) is a structure in the ventral forebrain that calibrates the magnitude of behavioral responses to stress-related external stimuli, including the regulation of threat avoidance. The complex connectivity between the LS and other parts of the brain, together with its largely unexplored neuronal diversity, makes it difficult to understand how defined LS circuits control specific behaviors. Here, we describe a mouse model in which a population of neurons with a common developmental origin (Nkx2.1-lineage neurons) are absent from the LS. Using a combination of circuit tracing and behavioral analyses, we found that these neurons receive inputs from the perifornical area of the anterior hypothalamus (PeFAH) and are specifically activated in stressful contexts. Mice lacking Nkx2.1-lineage LS neurons display increased exploratory behavior even under stressful conditions. Our study extends the current knowledge about how defined neuronal populations within the LS can evaluate contextual information to select appropriate behavioral responses. This is a necessary step towards understanding the crucial role that the LS plays in neuropsychiatric conditions where defensive behavior is dysregulated, such as anxiety and aggression disorders.
Collapse
Affiliation(s)
- Miguel Turrero García
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Diana N. Tran
- Department of Neurobiology, Harvard Medical School; Boston, MA
| | | | | | - Sarah M. Hanson
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Christopher M. Reid
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
- Ph.D. Program in Neuroscience, Harvard University; Boston, MA
| | - Yajun Xie
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Steve Vu
- Department of Neurobiology, Harvard Medical School; Boston, MA
| | - Corey C. Harwell
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
- Chan Zuckerberg Biohub San Francisco; San Francisco, CA
- Lead contact
| |
Collapse
|
16
|
Bagosi Z, Megyesi K, Ayman J, Rudersdorf H, Ayaz MK, Csabafi K. The Role of Corticotropin-Releasing Factor (CRF) and CRF-Related Peptides in the Social Behavior of Rodents. Biomedicines 2023; 11:2217. [PMID: 37626714 PMCID: PMC10452353 DOI: 10.3390/biomedicines11082217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Since the corticotropin-releasing factor (CRF) was isolated from an ovine brain, a growing family of CRF-related peptides has been discovered. Today, the mammalian CRF system consists of four ligands (CRF, urocortin 1 (Ucn1), urocortin 2 (Ucn2), and urocortin 3 (Ucn3)); two receptors (CRF receptor type 1 (CRF1) and CRF receptor type 2 (CRF2)); and a CRF-binding protein (CRF-BP). Besides the regulation of the neuroendocrine, autonomic, and behavioral responses to stress, CRF and CRF-related peptides are also involved in different aspects of social behavior. In the present study, we review the experiments that investigated the role of CRF and the urocortins involved in the social behavior of rats, mice, and voles, with a special focus on sociability and preference for social novelty, as well as the ability for social recognition, discrimination, and memory. In general, these experiments demonstrate that CRF, Ucn1, Ucn2, and Ucn3 play important, but distinct roles in the social behavior of rodents, and that they are mediated by CRF1 and/or CRF2. In addition, we suggest the possible brain regions and pathways that express CRF and CRF-related peptides and that might be involved in social interactions. Furthermore, we also emphasize the differences between the species, strains, and sexes that make translation of these roles from rodents to humans difficult.
Collapse
Affiliation(s)
- Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Kíra Megyesi
- Interdisciplinary Center for Excellence, Clinical Research Competence Center, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Albert School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Hanna Rudersdorf
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Maieda Khan Ayaz
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| |
Collapse
|
17
|
Flaherty SE, Bezy O, Zheng W, Yan D, Li X, Jagarlapudi S, Albuquerque B, Esquejo RM, Peloquin M, Semache M, Mancini A, Kang L, Drujan D, Breitkopf SB, Griffin JD, Jean Beltran PM, Xue L, Stansfield J, Pashos E, Shakey Q, Pehmøller C, Monetti M, Birnbaum MJ, Fortin JP, Wu Z. Chronic UCN2 treatment desensitizes CRHR2 and improves insulin sensitivity. Nat Commun 2023; 14:3953. [PMID: 37402735 DOI: 10.1038/s41467-023-39597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Urocortin 2 (UCN2) acts as a ligand for the G protein-coupled receptor corticotropin-releasing hormone receptor 2 (CRHR2). UCN2 has been reported to improve or worsen insulin sensitivity and glucose tolerance in vivo. Here we show that acute dosing of UCN2 induces systemic insulin resistance in male mice and skeletal muscle. Inversely, chronic elevation of UCN2 by injection with adenovirus encoding UCN2 resolves metabolic complications, improving glucose tolerance. CRHR2 recruits Gs in response to low concentrations of UCN2, as well as Gi and β-Arrestin at high concentrations of UCN2. Pre-treating cells and skeletal muscle ex vivo with UCN2 leads to internalization of CRHR2, dampened ligand-dependent increases in cAMP, and blunted reductions in insulin signaling. These results provide mechanistic insights into how UCN2 regulates insulin sensitivity and glucose metabolism in skeletal muscle and in vivo. Importantly, a working model was derived from these results that unifies the contradictory metabolic effects of UCN2.
Collapse
Affiliation(s)
- Stephen E Flaherty
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Olivier Bezy
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Wei Zheng
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Dong Yan
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Xiangping Li
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Srinath Jagarlapudi
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Bina Albuquerque
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Matthew Peloquin
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | | | | | - Liya Kang
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Doreen Drujan
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Susanne B Breitkopf
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - John D Griffin
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Pierre M Jean Beltran
- Machine Learning and Computational Sciences, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Liang Xue
- Machine Learning and Computational Sciences, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - John Stansfield
- Biostatistics, Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Evanthia Pashos
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Quazi Shakey
- Biomedicine design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Mara Monetti
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Jean-Philippe Fortin
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA.
| |
Collapse
|
18
|
Hafenbreidel M, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral Amygdala Corticotrophin Releasing Factor Receptor 2 Interacts with Nonmuscle Myosin II to Destabilize Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541732. [PMID: 37292925 PMCID: PMC10245849 DOI: 10.1101/2023.05.22.541732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g. dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To investigate a potential source of this specificity, pharmacokinetic differences in METH and COC brain exposure were examined. Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, transcriptional differences were next assessed. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotrophin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility after METH conditioning. Pretreatment with AS2B occluded the ability of Blebb to disrupt an established METH-associated memory. Alternatively, the Blebb-induced, retrieval-independent memory disruption seen with METH was mimicked for COC when combined with CRF2 overexpression in the BLA and its ligand, UCN3 during conditioning. These results indicate that BLA CRF2 receptor activation during learning can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption via NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
- Present address: Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC, 29464
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| |
Collapse
|
19
|
Kovács DK, Eitmann S, Berta G, Kormos V, Gaszner B, Pétervári E, Balaskó M. Aging Changes the Efficacy of Central Urocortin 2 to Induce Weight Loss in Rats. Int J Mol Sci 2023; 24:8992. [PMID: 37240340 PMCID: PMC10219457 DOI: 10.3390/ijms24108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Middle-aged obesity and aging cachexia present healthcare challenges. Central responsiveness to body-weight-reducing mediators, e.g., to leptin, changes during aging in a way, which may promote middle-aged obesity and aging cachexia. Leptin is connected to urocortin 2 (Ucn2), an anorexigenic and hypermetabolic member of the corticotropin family. We aimed to study the role of Ucn2 in middle-aged obesity and aging cachexia. The food intake, body weight and hypermetabolic responses (oxygen consumption, core temperature) of male Wistar rats (3, 6, 12 and 18 months) were tested following intracerebroventricular injections of Ucn2. Following one central injection, Ucn2-induced anorexia lasted for 9 days in the 3-month, 14 days in the 6-month and 2 days in the 18-month group. Middle-aged 12-month rats failed to show anorexia or weight loss. Weight loss was transient (4 days) in the 3-month, 14 days in the 6-month and slight but long-lasting in the 18-month rats. Ucn2-induced hypermetabolism and hyperthermia increased with aging. The age-dependent changes in the mRNA expression of Ucn2 detected by RNAscope in the paraventricular nucleus correlated with the anorexigenic responsiveness. Our results show that age-dependent changes in Ucn2 may contribute to middle-aged obesity and aging cachexia. Ucn2 shows potential in the prevention of middle-aged obesity.
Collapse
Affiliation(s)
- Dóra K. Kovács
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Szimonetta Eitmann
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| |
Collapse
|
20
|
Ismail OM, El-Omar OM, Said UN. Exploring the Role of Urocortin in Osteoporosis. Cureus 2023; 15:e38978. [PMID: 37313093 PMCID: PMC10259878 DOI: 10.7759/cureus.38978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/15/2023] Open
Abstract
Osteoporosis is a debilitating disease that affects over 200 million people worldwide. Overactive osteoclast activity leads to micro-architectural defects and low bone mass. This culminates in fragility fractures, such as femoral neck fractures. Treatments currently available either are not completely effective or have considerable side effects; thus, there is a need for more effective treatments. The urocortin (Ucn) family, composed of urocortin 1 (Ucn1), urocortin 2 (Ucn2), urocortin 3 (Ucn3), corticotropin-releasing factor (CRF) and corticotropin-releasing factor-binding protein (CRF-BP), exerts a wide range of effects throughout the body. Ucn1 has been shown to inhibit murine osteoclast activity. This review article will aim to bridge the gap between existing knowledge of Ucn and whether it can affect human osteoclasts.
Collapse
Affiliation(s)
- Omar M Ismail
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Omar M El-Omar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Umar N Said
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| |
Collapse
|
21
|
Montanucci P, Pescara T, Greco A, Basta G, Calafiore R. Human induced pluripotent stem cells (hiPSC), enveloped in elastin-like recombinamers for cell therapy of type 1 diabetes mellitus (T1D): preliminary data. Front Bioeng Biotechnol 2023; 11:1046206. [PMID: 37180045 PMCID: PMC10166868 DOI: 10.3389/fbioe.2023.1046206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Therapeutic application and study of type 1 diabetes disease could benefit from the use of functional β islet-like cells derived from human induced pluripotent stem cells (hiPSCs). Considerable efforts have been made to develop increasingly effective hiPSC differentiation protocols, although critical issues related to cost, the percentage of differentiated cells that are obtained, and reproducibility remain open. In addition, transplantation of hiPSC would require immunoprotection within encapsulation devices, to make the construct invisible to the host's immune system and consequently avoid the recipient's general pharmacologic immunosuppression. Methods: For this work, a microencapsulation system based on the use of "human elastin-like recombinamers" (ELRs) was tested to envelop hiPSC. Special attention was devoted to in vitro and in vivo characterization of the hiPSCs upon coating with ERLs. Results and Discussion: We observed that ELRs coating did not interfere with viability and function and other biological properties of differentiated hiPSCs, while in vivo, ELRs seemed to afford immunoprotection to the cell grafts in preliminary in vivo study. The construct ability to correct hyperglycemia in vivo is in actual progress.
Collapse
|
22
|
Genome-Wide Identification of G Protein-Coupled Receptors in Ciliated Eukaryotes. Int J Mol Sci 2023; 24:ijms24043869. [PMID: 36835283 PMCID: PMC9960496 DOI: 10.3390/ijms24043869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and play important roles in many physiological processes. As a representative group of protozoa, ciliates represent the highest stage of eukaryotic cell differentiation and evolution in terms of their reproductive mode, two-state karyotype, and extremely diverse cytogenesis patterns. GPCRs have been poorly reported in ciliates. In this study, we identified 492 GPCRs in 24 ciliates. Using the existing classification system for animals, GPCRs in ciliates can be assigned to four families, including families A, B, E, and F. Most (377 members) belong to family A. The number of GPCRs is extremely different in different ciliates; the Heterotrichea ciliates usually have more GPCRs than other ciliates. Parasitic or symbiotic ciliates usually have only a few GPCRs. Gene/genome duplication events seem to play important roles in the expansion of the GPCR superfamily in ciliates. GPCRs in ciliates displayed seven typical domain organizations. GPCRs in an ortholog group are common and conserved in all ciliates. The gene expression analysis of the members in this conserved ortholog group in the model ciliate, Tetrahymena thermophila, suggested that these GPCRs play important roles in the life cycle of ciliates. In summary, this study provides the first comprehensive genome-wide identification of GPCRs in ciliates, improving our understanding of the evolution and function of GPCR in ciliates.
Collapse
|
23
|
Cai W, Egertová M, Zampronio CG, Jones AM, Elphick MR. Molecular Identification and Cellular Localization of a Corticotropin-Releasing Hormone-Type Neuropeptide in an Echinoderm. Neuroendocrinology 2023; 113:231-250. [PMID: 33965952 DOI: 10.1159/000517087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) mediates physiological responses to stressors in mammals by triggering pituitary secretion of adrenocorticotropic hormone, which stimulates adrenal release of cortisol. CRH belongs to a family of related neuropeptides that include sauvagine, urotensin-I, and urocortins in vertebrates and the diuretic hormone DH44 in insects, indicating that the evolutionary origin of this neuropeptide family can be traced to the common ancestor of the Bilateria. However, little is known about CRH-type neuropeptides in deuterostome invertebrates. METHODS Here, we used mass spectrometry, mRNA in situ hybridization, and immunohistochemistry to investigate the structure and expression of a CRH-type neuropeptide (ArCRH) in the starfish Asterias rubens (phylum Echinodermata). RESULTS ArCRH is a 40-residue peptide with N-terminal pyroglutamylation and C-terminal amidation, and it has a widespread pattern of expression in A. rubens. In the central nervous system comprising the circumoral nerve ring and 5 radial nerve cords, ArCRH-expressing cells and fibres were revealed in both the ectoneural region and the hyponeural region, which contains the cell bodies of motoneurons. Accordingly, ArCRH immunoreactivity was detected in innervation of the ampulla and podium of locomotory organs (tube feet), and ArCRH is the first neuropeptide to be identified as a marker for nerve fibres located in the muscle layer of these organs. ArCRH immunoreactivity was also revealed in protractile organs that mediate gas exchange (papulae), the apical muscle, and the digestive system. CONCLUSIONS Our findings provide the first insights into CRH-type neuropeptide expression and function in the unique context of the pentaradially symmetrical body plan of an echinoderm.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Alghamdi NJ, Burns CT, Valdes R. The urocortin peptides: biological relevance and laboratory aspects of UCN3 and its receptor. Crit Rev Clin Lab Sci 2022; 59:573-585. [PMID: 35738909 DOI: 10.1080/10408363.2022.2080175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The urocortins are polypeptides belonging to the corticotropin-releasing hormone family, known to modulate stress responses in mammals. Stress, whether induced physically or psychologically, is an underlying cause or consequence of numerous clinical syndromes. Identifying biological markers associated with the homeostatic regulation of stress could provide a clinical laboratory approach for the management of stress-related disorders. The neuropeptide, urocortin 3 (UCN3), and the corticotropin-releasing hormone receptor 2 (CRHR2) constitute a regulatory axis known to mediate stress homeostasis. Dysregulation of this peptide/receptor axis is believed to play a role in several clinical conditions including post-traumatic stress, sleep apnea, cardiovascular disease, and other health problems related to stress. Understanding the physiology and measurement of the UCN3/CRHR2 axis is important for establishing a viable clinical laboratory diagnostic. In this article, we focus on evidence supporting the role of UCN3 and its receptor in stress-related clinical syndromes. We also provide insight into the measurements of UCN3 in blood and urine. These potential biomarkers provide new opportunities for clinical research and applications of laboratory medicine diagnostics in stress management.
Collapse
Affiliation(s)
- Norah J Alghamdi
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Roland Valdes
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
25
|
Hogg DW, Casatti CC, Belsham DD, Baršytė-Lovejoy D, Lovejoy DA. Distal extracellular teneurin region (teneurin C-terminal associated peptide; TCAP) possesses independent intracellular calcium regulating actions, in vitro: A potential antagonist of corticotropin-releasing factor (CRF). Biochem Biophys Rep 2022; 32:101397. [DOI: 10.1016/j.bbrep.2022.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
|
26
|
Kadhim HJ, Kuenzel WJ. Interaction between the hypothalamo-pituitary-adrenal and thyroid axes during immobilization stress. Front Physiol 2022; 13:972171. [PMID: 36330212 PMCID: PMC9623009 DOI: 10.3389/fphys.2022.972171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/06/2022] [Indexed: 12/21/2024] Open
Abstract
The location of corticotropin-releasing hormone receptor 2 (CRH-R2) on thyrotropes within the avian anterior pituitary (APit) and its activation by different stressors indicate a possible communication between hypothalamo-pituitary-adrenal (HPA) and thyroid (HPT) axes. Therefore, an experiment was designed to 1) compare the timing of major components of the HPT axis to those of the HPA axis; 2) address whether stressors activating the HPA axis may simultaneously upregulate components of the HPT axis. Blood, brain, and APit were sampled from chicks prior to stress (control) and 15, 30, 60, 90, and 120 min following immobilization (IM) stress. The nucleus of the hippocampal commissure (NHpC) and paraventricular nucleus (PVN) were cryo-dissected from brains for RT-qPCR. Gene expression of thyrotropin-releasing hormone (TRH) and its receptors (TRH-R1 and TRH-R3), urocortin3 (UCN3), deiodinase 2 (D2), and the second type of corticotropin-releasing hormone (CRH2) within the NHpC and PVN was measured. Additionally, gene expression of TRH receptors, thyroid stimulating hormone subunit beta (TSHβ), and D2 was determined in the APit and corticosterone assayed in blood. In brains, a significant upregulation in examined genes occurred at different times of IM. Specifically, UCN3 and CRH2 which have a high affinity to CRH-R2 showed a rapid increase in their mRNA levels that were accompanied by an early upregulation of TRHR1 in the NHpC. In the APit, a significant increase in gene expression of TSHβ and TRH receptors was observed. Therefore, results supported concurrent activation of major brain and APit genes associated with the HPA and HPT axes following IM. The initial neural gene expression originating within the NHpC resulted in the increase of TSHβ mRNA in the APit. Specifically, the rapid upregulation of UCN3 in the NHpC appeared responsible for the early activation of TSHβ in the APit. While sustaining TSHβ activation appeared to be due to both CRH2 and TRH. Therefore, data indicate that CRH-producing neurons and corticotropes as well as CRH- and TRH-producing neurons and thyrotropes are activated to produce the necessary energy required to maintain homeostasis in birds undergoing stress. Overall, data support the inclusion of the NHpC in the classical avian HPA axis and for the first time show the concurrent activation of the HPA axis and components of the HPT axis following a psychogenic stressor.
Collapse
Affiliation(s)
- Hakeem J. Kadhim
- Veterinary Medicine College, University of Thi-Qar, Nasiriyah, Iraq
| | - Wayne J. Kuenzel
- Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
27
|
Maugars G, Mauvois X, Martin P, Aroua S, Rousseau K, Dufour S. New Insights Into the Evolution of Corticotropin-Releasing Hormone Family With a Special Focus on Teleosts. Front Endocrinol (Lausanne) 2022; 13:937218. [PMID: 35937826 PMCID: PMC9353778 DOI: 10.3389/fendo.2022.937218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) was discovered for its role as a brain neurohormone controlling the corticotropic axis in vertebrates. An additional crh gene, crh2, paralog of crh (crh1), and likely resulting from the second round (2R) of vertebrate whole genome duplication (WGD), was identified in a holocephalan chondrichthyan, in basal mammals, various sauropsids and a non-teleost actinopterygian holostean. It was suggested that crh2 has been recurrently lost in some vertebrate groups including teleosts. We further investigated the fate of crh1 and crh2 in vertebrates with a special focus on teleosts. Phylogenetic and synteny analyses showed the presence of duplicated crh1 paralogs, crh1a and crh1b, in most teleosts, resulting from the teleost-specific WGD (3R). Crh1b is conserved in all teleosts studied, while crh1a has been lost independently in some species. Additional crh1 paralogs are present in carps and salmonids, resulting from specific WGD in these lineages. We identified crh2 gene in additional vertebrate groups such as chondrichthyan elasmobranchs, sarcopterygians including dipnoans and amphibians, and basal actinoperygians, Polypteridae and Chondrostei. We also revealed the presence of crh2 in teleosts, including elopomorphs, osteoglossomorphs, clupeiforms, and ostariophysians, while it would have been lost in Euteleostei along with some other groups. To get some insights on the functional evolution of the crh paralogs, we compared their primary and 3D structure, and by qPCR their tissue distribution, in two representative species, the European eel, which possesses three crh paralogs (crh1a, crh1b, crh2), and the Atlantic salmon, which possesses four crh paralogs of the crh1-type. All peptides conserved the structural characteristics of human CRH. Eel crh1b and both salmon crh1b genes were mainly expressed in the brain, supporting the major role of crh1b paralogs in controlling the corticotropic axis in teleosts. In contrast, crh1a paralogs were mainly expressed in peripheral tissues such as muscle and heart, in eel and salmon, reflecting a striking subfunctionalization between crh1a and b paralogs. Eel crh2 was weakly expressed in the brain and peripheral tissues. These results revisit the repertoire of crh in teleosts and highlight functional divergences that may have contributed to the differential conservation of various crh paralogs in teleosts.
Collapse
Affiliation(s)
- Gersende Maugars
- Muséum National d’Histoire Naturelle, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Sorbonne Université, Paris, France
- Université Le Havre Normandie - Stress Environnementaux et Biosurveillance des milieux aquatiques UMR-I 02SEBIO -FR CNRS 3730 SCALE, Le Havre, France
| | - Xavier Mauvois
- Muséum National d’Histoire Naturelle, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Sorbonne Université, Paris, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage (CNSS), Chanteuges, France
| | - Salima Aroua
- Université Le Havre Normandie - Stress Environnementaux et Biosurveillance des milieux aquatiques UMR-I 02SEBIO -FR CNRS 3730 SCALE, Le Havre, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Sorbonne Université, Paris, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Sorbonne Université, Paris, France
| |
Collapse
|
28
|
Grunddal KV, Trammell SAJ, Bæch-Laursen C, Andersen DB, Xu SFS, Andersen H, Gillum MP, Ghiasi SM, Novak I, Tyrberg B, Li C, Rosenkilde MM, Hartmann B, Holst JJ, Kuhre RE. Opposing roles of the entero-pancreatic hormone urocortin-3 in glucose metabolism in rats. Diabetologia 2022; 65:1018-1031. [PMID: 35325259 PMCID: PMC9076751 DOI: 10.1007/s00125-022-05675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
AIM/HYPOTHESIS Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.
Collapse
Affiliation(s)
- Kaare V Grunddal
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel A J Trammell
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Bæch-Laursen
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stella F S Xu
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Andersen
- Global Obesity and Liver Disease Research, Novo Nordisk, Måløv, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed M Ghiasi
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK
| | - Ivana Novak
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Björn Tyrberg
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chien Li
- Global Obesity and Liver Disease Research, Novo Nordisk, Seattle, WA, USA
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark.
- Global Obesity and Liver Disease Research, Novo Nordisk, Måløv, Denmark.
| |
Collapse
|
29
|
Flisher MF, Shin D, Huising MO. Urocortin3: Local inducer of somatostatin release and bellwether of beta cell maturity. Peptides 2022; 151:170748. [PMID: 35065098 PMCID: PMC10881066 DOI: 10.1016/j.peptides.2022.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Urocortin 3 (UCN3) is a peptide hormone expressed in pancreatic islets of Langerhans of both human alpha and human beta cells and solely in murine beta cells. UCN3 signaling acts locally within the islet to activate its cognate receptor, corticotropin releasing hormone receptor 2 (CRHR2), which is expressed by delta cells, to potentiate somatostatin (SST) negative feedback to reduce islet cell hormone output. The functional importance of UCN3 signaling in the islet is to modulate the amount of SST tone allowing for finely tuned regulation of insulin and glucagon secretion. UCN3 signaling is a hallmark of functional beta cell maturation, increasing the beta cell glucose threshold for insulin secretion. In doing so, UCN3 plays a relevant functional role in accurately maintaining blood glucose homeostasis. Additionally, UCN3 acts as an indicator of beta cell maturation and health, as UCN3 is not expressed in immature beta cells and is downregulated in dedifferentiated and dysfunctional beta cell states. Here, we review the mechanistic underpinnings of UCN3 signaling, its net effect on islet cell hormone output, as well as its value as a marker for beta cell maturation and functional status.
Collapse
Affiliation(s)
- Marcus F Flisher
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States
| | - Donghan Shin
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
30
|
Taofeek N, Chimbetete N, Ceron-Romero N, Vizcarra F, Verghese M, Vizcarra J. Systemic infusion of exogenous ghrelin in male broiler chickens (Gallus gallus domesticus). The effect of pulse frequency, doses, and ghrelin forms on feed intake, average daily gain, corticosterone, and growth hormone concentrations. Poult Sci 2022; 101:101945. [PMID: 35688030 PMCID: PMC9190007 DOI: 10.1016/j.psj.2022.101945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
There is limited information on the effect of exogenous ghrelin infusion on feed intake (FI) in chickens. Therefore, male broilers were used in 3 factorial experiments to determine the relationships between doses (0, 1, or 4 nM; Dose), frequency (once every two h; 2 h), once every 4th h (4 h) or continuous infusion, and ghrelin forms including acylated-ghrelin (AG) and desacylated-ghrelin (DAG) on FI, ADG, and concentrations of corticosterone and Growth Hormone (GH). Treatments were delivered via a jugular cannula, using programmable pumps for 11 consecutive days. FI and ADG were recorded, and plasma was collected. Data were analyzed using a factorial design. In Experiment 1 the effect of AG pulse frequency and doses were evaluated. There was a linear decrease in FI (P = 0.002) and a linear increase in corticosterone (P = 0.033) and GH (P = 0.011) concentrations when AG was infused. However, ADG decreased with doses (P = 0.011) only when AG was given at 2 h. In Experiment 2 the effect of ghrelin forms and doses given at 2 h was evaluated. There was a linear decrease in FI when AG was infused and a linear increase in FI when DAG was infused (P < 0.05). Birds infused with DAG gained more weight than those infused with AG. There was a linear increase in corticosterone and GH concentrations only when AG was infused (P < 0.01). In Experiment 3 the effect of continuous infusion of 2 doses (0 and 1 nM) of AG and DAG were evaluated. There was a linear decrease in FI and ADG when AG (P < 0.001) was infused and a linear increase in FI and ADG when DAG was infused (P < 0.05). There was an increase in corticosterone concentrations only when AG was infused (P = 0.022). However, GH concentrations were not affected by treatments. We concluded that AG and DAG pulse frequency and doses had a differential effect on FI, ADG, corticosterone, and GH concentrations in broiler chickens.
Collapse
|
31
|
Balogh B, Vecsernyés M, Veres-Székely A, Berta G, Stayer-Harci A, Tarjányi O, Sétáló G. Urocortin stimulates ERK1/2 phosphorylation and proliferation but reduces ATP production of MCF7 breast cancer cells. Mol Cell Endocrinol 2022; 547:111610. [PMID: 35219718 DOI: 10.1016/j.mce.2022.111610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Urocortins are members of the stress-related corticotropin-releasing factor family. Small amounts of them are present in the circulation and they are produced locally in various tissues of higher vertebrates. Aside from regulating circulation, or food uptake they also influence, via auto- and paracrine mechanisms, cell proliferation. In the present study we investigated in MCF7 human breast cancer cells the effect of urocortin onto mitogenic signaling via ERK1/2. Our results revealed that already 10 nM urocortin could stimulate the phosphorylation of these kinases and cell proliferation of MCF7 cells while ATP production was reduced when kept in the presence of the peptide up to two days. We examined the expression and contribution of the specific receptors of urocortin to the activation of ERK1/2 and to cell proliferation, the intracellular distribution of phosphorylated ERK1/2, and the involvement of additional proteins like PKA, PKB/Akt, MEK, p53, Rb and E2F-1 behind the observed phenomena.
Collapse
Affiliation(s)
- Bálint Balogh
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary.
| | - Mónika Vecsernyés
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| | - Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, Budapest, H-1083, Budapest, 53-54. Bókay Street, Hungary; ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary.
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| | - Alexandra Stayer-Harci
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| | - Oktávia Tarjányi
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| | - György Sétáló
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| |
Collapse
|
32
|
Urocortins as biomarkers in cardiovascular disease. Clin Sci (Lond) 2022; 136:1-14. [PMID: 34939089 DOI: 10.1042/cs20210732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The urocortins (Ucns) belong to the corticotropin-releasing factor (CRF) family of peptides and have multiple effects within the central nervous and the cardiovascular systems. With growing evidence indicating significant cardioprotective properties and cardiovascular actions of these peptides, the question arises as to whether the plasma profiles of the Ucns are altered in pathologic settings. While reports have shown conflicting results and findings have not been corroborated in multiple independent cohorts, it seems likely that plasma Ucn concentrations are elevated in multiple cardiovascular conditions. The degree of increase and accurate determination of circulating values of the Ucns requires further validation.
Collapse
|
33
|
Yu X, Yan H, Li W. Recent advances in neuropeptide-related omics and gene editing: Spotlight on NPY and somatostatin and their roles in growth and food intake of fish. Front Endocrinol (Lausanne) 2022; 13:1023842. [PMID: 36267563 PMCID: PMC9576932 DOI: 10.3389/fendo.2022.1023842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Feeding and growth are two closely related and important physiological processes in living organisms. Studies in mammals have provided us with a series of characterizations of neuropeptides and their receptors as well as their roles in appetite control and growth. The central nervous system, especially the hypothalamus, plays an important role in the regulation of appetite. Based on their role in the regulation of feeding, neuropeptides can be classified as orexigenic peptide and anorexigenic peptide. To date, the regulation mechanism of neuropeptide on feeding and growth has been explored mainly from mammalian models, however, as a lower and diverse vertebrate, little is known in fish regarding the knowledge of regulatory roles of neuropeptides and their receptors. In recent years, the development of omics and gene editing technology has accelerated the speed and depth of research on neuropeptides and their receptors. These powerful techniques and tools allow a more precise and comprehensive perspective to explore the functional mechanisms of neuropeptides. This paper reviews the recent advance of omics and gene editing technologies in neuropeptides and receptors and their progresses in the regulation of feeding and growth of fish. The purpose of this review is to contribute to a comparative understanding of the functional mechanisms of neuropeptides in non-mammalians, especially fish.
Collapse
|
34
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
35
|
Pagella S, Deussing JM, Kopp-Scheinpflug C. Expression Patterns of the Neuropeptide Urocortin 3 and Its Receptor CRFR2 in the Mouse Central Auditory System. Front Neural Circuits 2021; 15:747472. [PMID: 34867212 PMCID: PMC8633543 DOI: 10.3389/fncir.2021.747472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory systems have to be malleable to context-dependent modulations occurring over different time scales, in order to serve their evolutionary function of informing about the external world while also eliciting survival-promoting behaviors. Stress is a major context-dependent signal that can have fast and delayed effects on sensory systems, especially on the auditory system. Urocortin 3 (UCN3) is a member of the corticotropin-releasing factor family. As a neuropeptide, UCN3 regulates synaptic activity much faster than the classic steroid hormones of the hypothalamic-pituitary-adrenal axis. Moreover, due to the lack of synaptic re-uptake mechanisms, UCN3 can have more long-lasting and far-reaching effects. To date, a modest number of studies have reported the presence of UCN3 or its receptor CRFR2 in the auditory system, particularly in the cochlea and the superior olivary complex, and have highlighted the importance of this stress neuropeptide for protecting auditory function. However, a comprehensive map of all neurons synthesizing UCN3 or CRFR2 within the auditory pathway is lacking. Here, we utilize two reporter mouse lines to elucidate the expression patterns of UCN3 and CRFR2 in the auditory system. Additional immunolabelling enables further characterization of the neurons that synthesize UCN3 or CRFR2. Surprisingly, our results indicate that within the auditory system, UCN3 is expressed predominantly in principal cells, whereas CRFR2 expression is strongest in non-principal, presumably multisensory, cell types. Based on the presence or absence of overlap between UCN3 and CRFR2 labeling, our data suggest unusual modes of neuromodulation by UCN3, involving volume transmission and autocrine signaling.
Collapse
Affiliation(s)
- Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
36
|
Ivanova D, Li XF, McIntyre C, Liu Y, Kong L, O’Byrne KT. Urocortin3 in the Posterodorsal Medial Amygdala Mediates Stress-induced Suppression of LH Pulsatility in Female Mice. Endocrinology 2021; 162:6383454. [PMID: 34618891 PMCID: PMC8547342 DOI: 10.1210/endocr/bqab206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/09/2023]
Abstract
Psychosocial stress disrupts reproduction and interferes with pulsatile LH secretion. The posterodorsal medial amygdala (MePD) is an upstream modulator of the reproductive axis and stress. Corticotropin-releasing factor type 2 receptors (CRFR2s) are activated in the presence of psychosocial stress together with increased expression of the CRFR2 ligand Urocortin3 (Ucn3) in the MePD of rodents. We investigate whether Ucn3 signalling in the MePD is involved in mediating the suppressive effect of psychosocial stress on LH pulsatility. First, we administered Ucn3 into the MePD and monitored the effect on LH pulses in ovariectomized mice. Next, we delivered Astressin2B, a selective CRFR2 antagonist, intra-MePD in the presence of predator odor, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Subsequently, we virally infected Ucn3-cre-tdTomato mice with inhibitory designer receptor exclusively activated by designer drugs (DREADDs) targeting MePD Ucn3 neurons while exposing mice to TMT or restraint stress and examined the effect on LH pulsatility as well as corticosterone release. Administration of Ucn3 into the MePD dose-dependently inhibited LH pulses and administration of Astressin2B blocked the suppressive effect of TMT on LH pulsatility. Additionally, DREADDs inhibition of MePD Ucn3 neurons blocked TMT and restraint stress-induced inhibition of LH pulses and corticosterone release. These results demonstrate for the first time that Ucn3 neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator and corticosterone secretion. Ucn3 signalling in the MePD plays a role in modulating the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, and this brain locus may represent a nodal center in the interaction between the reproductive and stress axes.
Collapse
Affiliation(s)
- Deyana Ivanova
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
- Correspondence: Deyana Ivanova, PhD, Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, 2.92W Hodgkin Building, Guy’s Campus, London SE1 1UL, UK.
| | - Xiao-Feng Li
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Caitlin McIntyre
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Lingsi Kong
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Kevin T O’Byrne
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
- Correspondence: Kevin T. O’Byrne, Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, 2.92W Hodgkin Building, Guy’s Campus, London SE1 1UL, UK.
| |
Collapse
|
37
|
Kageyama K, Iwasaki Y, Daimon M. Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress and Stress Resilience. Int J Mol Sci 2021; 22:ijms222212242. [PMID: 34830130 PMCID: PMC8621508 DOI: 10.3390/ijms222212242] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis. The activated hypothalamic-pituitary-adrenal axis is suppressed by the negative feedback from glucocorticoids. Glucocorticoid-dependent repression of cAMP-stimulated Crf promoter activity is mediated by both the negative glucocorticoid response element and the serum response element. Conversely, the inducible cAMP-early repressor can suppress the stress response via inhibition of the cAMP-dependent Crf gene, as can the suppressor of cytokine signaling-3 in the hypothalamus. CRF receptor type 1 is mainly involved in a stress response, depression, anorexia, and seizure, while CRF receptor type 2 mediates “stress coping” mechanisms such as anxiolysis in the brain. Differential effects of FK506-binding immunophilins, FKBP4 and FKBP5, contribute to the efficiency of glucocorticoids under stress resilience. Together, a variety of factors contribute to stress resilience. All these factors would have the differential roles under stress resilience.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
- Correspondence: ; Tel.: +81-172-39-5062
| | - Yasumasa Iwasaki
- Department of Clinical Nutrition Management Nutrition Course, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka 510-0293, Mie, Japan;
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| |
Collapse
|
38
|
Urocortin Role in Ischemia Cardioprotection and the Adverse Cardiac Remodeling. Int J Mol Sci 2021; 22:ijms222212115. [PMID: 34829997 PMCID: PMC8622004 DOI: 10.3390/ijms222212115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Despite the considerable progress in strategies of myocardial protection, ischemic heart diseases (IHD) and consequent heart failure (HF) remain the main cause of mortality worldwide. Several procedures are used routinely to guarantee the prompt and successful reestablishment of blood flow to preserve the myocardial viability of infarcted hearts from ischemia injuries. However, ischemic heart reperfusion/revascularization triggers additional damages that occur when oxygen-rich blood re-enters the vulnerable myocardial tissue, which is a phenomenon known as ischemia and reperfusion (I/R) syndrome. Complications of I/R injuries provoke the adverse cardiac remodeling, involving inflammation, mishandling of Ca2+ homeostasis, apoptotic genes activation, cardiac myocytes loss, etc., which often progress toward HF. Therefore, there is an urgent need to develop new cardioprotective therapies for IHD and HF. Compelling evidence from animal studies and pilot clinical trials in HF patients suggest that urocortin (Ucn) isoforms, which are peptides associated with stress and belonging to the corticotropin releasing factor family, have promising potential to improve cardiovascular functions by targeting many signaling pathways at different molecular levels. This review highlights the current knowledge on the role of urocortin isoforms in cardioprotection, focusing on its acute and long-term effects.
Collapse
|
39
|
Phumsatitpong C, Wagenmaker ER, Moenter SM. Neuroendocrine interactions of the stress and reproductive axes. Front Neuroendocrinol 2021; 63:100928. [PMID: 34171353 PMCID: PMC8605987 DOI: 10.1016/j.yfrne.2021.100928] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/27/2023]
Abstract
Reproduction is controlled by a sequential regulation of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis integrates multiple inputs to maintain proper reproductive functions. It has long been demonstrated that stress alters fertility. Nonetheless, the central mechanisms of how stress interacts with the reproductive system are not fully understood. One of the major pathways that is activated during the stress response is the hypothalamo-pituitary-adrenal (HPA) axis. In this review, we discuss several aspects of the interactions between these two neuroendocrine systems to offer insights to mechanisms of how the HPA and HPG axes interact. We have also included discussions of other systems, for example GABA-producing neurons, where they are informative to the overall picture of stress effects on reproduction.
Collapse
Affiliation(s)
- Chayarndorn Phumsatitpong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
40
|
Sobrido-Cameán D, Anadón R, Barreiro-Iglesias A. Expression of Urocortin 3 mRNA in the Central Nervous System of the Sea Lamprey Petromyzon marinus. BIOLOGY 2021; 10:biology10100978. [PMID: 34681077 PMCID: PMC8533218 DOI: 10.3390/biology10100978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023]
Abstract
In this study, we analyzed the organization of urocortin 3 (Ucn3)-expressing neuronal populations in the brain of the adult sea lamprey by means of in situ hybridization. We also studied the brain of larval sea lampreys to establish whether this prosocial neuropeptide is expressed differentially in two widely different phases of the sea lamprey life cycle. In adult sea lampreys, Ucn3 transcript expression was observed in neurons of the striatum, prethalamus, nucleus of the medial longitudinal fascicle, torus semicircularis, isthmic reticular formation, interpeduncular nucleus, posterior rhombencephalic reticular formation and nucleus of the solitary tract. Interestingly, in larval sea lampreys, only three regions showed Ucn3 expression, namely the prethalamus, the nucleus of the medial longitudinal fascicle and the posterior rhombencephalic reticular formation. A comparison with distributions of Ucn3 in other vertebrates revealed poor conservation of Ucn3 expression during vertebrate evolution. The large qualitative differences in Ucn3 expression observed between larval and adult phases suggest that the maturation of neuroregulatory circuits in the striatum, torus semicircularis and hindbrain chemosensory systems is closely related to profound life-style changes occurring after the transformation from larval to adult life.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.S.-C.); (R.A.)
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Ramón Anadón
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.S.-C.); (R.A.)
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.S.-C.); (R.A.)
- Correspondence:
| |
Collapse
|
41
|
Kavalakatt S, Khadir A, Madhu D, Koistinen HA, Al-Mulla F, Tuomilehto J, Abubaker J, Tiss A. Urocortin 3 overexpression reduces ER stress and heat shock response in 3T3-L1 adipocytes. Sci Rep 2021; 11:15666. [PMID: 34341463 PMCID: PMC8329193 DOI: 10.1038/s41598-021-95175-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
The neuropeptide urocortin 3 (UCN3) has a beneficial effect on metabolic disorders, such as obesity, diabetes, and cardiovascular disease. It has been reported that UCN3 regulates insulin secretion and is dysregulated with increasing severity of obesity and diabetes. However, its function in the adipose tissue is unclear. We investigated the overexpression of UCN3 in 3T3-L1 preadipocytes and differentiated adipocytes and its effects on heat shock response, ER stress, inflammatory markers, and glucose uptake in the presence of stress-inducing concentrations of palmitic acid (PA). UCN3 overexpression significantly downregulated heat shock proteins (HSP60, HSP72 and HSP90) and ER stress response markers (GRP78, PERK, ATF6, and IRE1α) and attenuated inflammation (TNFα) and apoptosis (CHOP). Moreover, enhanced glucose uptake was observed in both preadipocytes and mature adipocytes, which is associated with upregulated phosphorylation of AKT and ERK but reduced p-JNK. Moderate effects of UCN3 overexpression were also observed in the presence of 400 μM of PA, and macrophage conditioned medium dramatically decreased the UCN3 mRNA levels in differentiated 3T3-L1 cells. In conclusion, the beneficial effects of UCN3 in adipocytes are reflected, at least partially, by the improvement in cellular stress response and glucose uptake and attenuation of inflammation and apoptosis.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Abdelkrim Khadir
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Dhanya Madhu
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Heikki A Koistinen
- University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Ali Tiss
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
42
|
Pintér D, Balangó B, Simon B, Palotai M, Csabafi K, Dobó É, Ibos KE, Bagosi Z. The effects of CRF and the urocortins on the hippocampal acetylcholine release in rats. Neuropeptides 2021; 88:102147. [PMID: 33932861 DOI: 10.1016/j.npep.2021.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Corticotropin-releasing factor (CRF) and the urocortins (Ucn1, Ucn2 and Ucn3) are structurally related neuropeptides which act via two distinct CRF receptors, CRF1 and CRF2, with putatively antagonistic effects in the brain. CRF and Ucn1 activate both CRF1 and CRF2, while Ucn2 and Ucn3 activate selectively CRF2. The aim of the present study was to investigate the effects of CRF, Ucn1, Ucn2 and Ucn3 on the hippocampal acetylcholine release through which they may modulate cognitive functions, including attention, learning and memory. In this purpose male Wistar rats were used, their hippocampus was isolated, dissected, incubated, superfused and stimulated electrically. The hippocampal slices were first pretreated with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B, and then treated with non-selective CRF1 agonists, CRF or Ucn1, and selective CRF2 agonists, Ucn2 or Ucn3. The hippocampal acetylcholine release was increased significantly by CRF and Ucn1 and decreased significantly by Ucn2 and Ucn3. The increasing effect of CRF and Ucn1 was reduced significantly by antalarmin, but not astressin2B. In contrast, the decreasing effect of Ucn2 and Ucn3 was reversed significantly by the selective CRF2, but not the selective CRF1 antagonist. Our results demonstrate that CRF and Ucn1 stimulate the hippocampal acetylcholine release through CRF1, whereas Ucn2 and Ucn3 inhibit the hippocampal acetylcholine release through CRF2. Therefore, the present study suggests the existence of two apparently opposing CRF systems in the hippocampus, through which CRF and the urocortins might modulate cholinergic activity and thereby cognitive functions.
Collapse
Affiliation(s)
- Dávid Pintér
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary.
| | - Beáta Balangó
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Balázs Simon
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Miklós Palotai
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Krisztina Csabafi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Éva Dobó
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Katalin Eszter Ibos
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| |
Collapse
|
43
|
Cano G, Hernan SL, Sved AF. Centrally Projecting Edinger-Westphal Nucleus in the Control of Sympathetic Outflow and Energy Homeostasis. Brain Sci 2021; 11:1005. [PMID: 34439626 PMCID: PMC8392615 DOI: 10.3390/brainsci11081005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The centrally projecting Edinger-Westphal nucleus (EWcp) is a midbrain neuronal group, adjacent but segregated from the preganglionic Edinger-Westphal nucleus that projects to the ciliary ganglion. The EWcp plays a crucial role in stress responses and in maintaining energy homeostasis under conditions that require an adjustment of energy expenditure, by virtue of modulating heart rate and blood pressure, thermogenesis, food intake, and fat and glucose metabolism. This modulation is ultimately mediated by changes in the sympathetic outflow to several effector organs, including the adrenal gland, heart, kidneys, brown and white adipose tissues and pancreas, in response to environmental conditions and the animal's energy state, providing for appropriate energy utilization. Classic neuroanatomical studies have shown that the EWcp receives inputs from forebrain regions involved in these functions and projects to presympathetic neuronal populations in the brainstem. Transneuronal tracing with pseudorabies virus has demonstrated that the EWcp is connected polysynaptically with central circuits that provide sympathetic innervation to all these effector organs that are critical for stress responses and energy homeostasis. We propose that EWcp integrates multimodal signals (stress, thermal, metabolic, endocrine, etc.) and modulates the sympathetic output simultaneously to multiple effector organs to maintain energy homeostasis under different conditions that require adjustments of energy demands.
Collapse
Affiliation(s)
- Georgina Cano
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA; (S.L.H.); (A.F.S.)
| | | | | |
Collapse
|
44
|
Ancient fishes and the functional evolution of the corticosteroid stress response in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111024. [PMID: 34237466 DOI: 10.1016/j.cbpa.2021.111024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022]
Abstract
The neuroendocrine mechanism underlying stress responses in vertebrates is hypothesized to be highly conserved and evolutionarily ancient. Indeed, elements of this mechanism, from the brain to steroidogenic tissue, are present in all vertebrate groups; yet, evidence of the function and even identity of some elements of the hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is equivocal among the most basal vertebrates. The purpose of this review is to discuss the functional evolution of the HPA/I axis in vertebrates with a focus on our understanding of this neuroendocrine mechanism in the most ancient vertebrates: the agnathan (i.e., hagfish and lamprey) and chondrichthyan fishes (i.e., sharks, rays, and chimeras). A review of the current literature presents evidence of a conserved HPA/I axis in jawed vertebrates (i.e., gnathostomes); yet, available data in jawless (i.e., agnathan) and chondrichthyan fishes are limited. Neuroendocrine regulation of corticosteroidogenesis in agnathans and chondrichthyans appears to function through similar pathways as in bony fishes and tetrapods; however, key elements have yet to be identified and the involvement of melanotropins and gonadotropin-releasing hormone in the stress axis in these ancient fishes warrants further investigation. Further, the identities of physiological glucocorticoids are uncertain in hagfishes, chondrichthyans, and even coelacanths. Resolving these and other knowledge gaps in the stress response of ancient fishes will be significant for advancing knowledge of the evolutionary origins of the vertebrate stress response.
Collapse
|
45
|
Bülbül M, Sinen O. Sexual dimorphism in maternally separated rats: effects of repeated homotypic stress on gastrointestinal motor functions. Exp Brain Res 2021; 239:2551-2560. [PMID: 34160630 DOI: 10.1007/s00221-021-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Experiencing stressful events during early life has been considered as a risk factor for development of functional gastrointestinal disorders in adulthood. This study aimed to investigate the sex-related differences in stress-induced gastrointestinal (GI) dysmotility in rats exposed to neonatal maternal separation (MS). Newborn pups were removed from mothers for 180 min from postnatal day-1 to day-14. Experiments were performed in male and female offsprings at adulthood. Elevated plus maze (EPM) test was used to assess MS-induced anxiety-like behaviors. Ninety minute of restraint stress was applied for once or 5 consecutive days for acute stress (AS) or repeated homotypic stress (RHS), respectively. Measurement of fecal output (FO) and gastric emptying (GE), and hypothalamic microdialysis were performed. Both in males and females, MS produced anxiety-like behaviors. AS delayed GE and increased FO in all groups. In RHS-loaded MS females, AS-induced alterations in GE and FO were restored, however, no adaptation was observed in male counterparts. Regardless of sex and neonatal stress experience, AS significantly increased corticotropin-releasing factor (CRF) release from paraventricular nucleus of hypothalamus, whereas females were found more susceptible than males. Following RHS, AS-induced elevations in CRF release were attenuated only in MS females, but not in males. Both females and males seem to be prone to AS-induced alterations in hypothalamic CRF system and in GI motor functions. Neonatal MS disturbs chronic stress coping mechanisms in males. Conversely, females are likely to circumvent the deleterious effects of neonatal MS on GI functions through developing a habituation to prolonged stressed conditions.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey.
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
46
|
Liu S, Karo A, Agterberg S, Hua H, Bhargava A. Effects of stress-related peptides on chloride secretion in the mouse proximal colon. Neurogastroenterol Motil 2021; 33:e14021. [PMID: 33118282 DOI: 10.1111/nmo.14021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stress increases intestinal secretion and exacerbates symptoms of irritable bowel syndrome (IBS). Peripherally derived corticotropin-releasing factor (CRF) is known to mediate stress-induced intestinal secretion, presumably by activation of CRF1 receptors in the gut. The present study aimed to ascertain the role of CRF2 activation in intestinal secretion by three other members of CRF peptide family, urocortin (UCN) 1-3, in wild type (WT) and CRF2 knockout (Crhr2-/- ) mice. METHODS Mucosal/submucosal preparations from proximal colon of WT and Crhr2-/- mice of both sexes were mounted in Ussing chambers for measurement of short-circuit current (Isc ) as an indicator of ion secretion. KEY RESULTS Male mice demonstrated a significantly higher baseline Isc than female in both WT and Crhr2-/- genotypes. CRF and UCN1-3 (1 μM) caused greater increases in colonic Isc (ΔIsc ) in male than female. Colonic Isc response to the selective CRF1 agonist, stressin1, was similar in both sexes. In male mice, the selective CRF2 agonists (UCN2 and UCN3) caused significantly greater ΔIsc than CRF and stressin1. UCN2- and UCN3-evoked ΔISC was significantly reduced in preparations pretreated with the selective CRF2 antagonist antisauvagine-30 and in Crhr2-/- mice. The prosecretory effects of urocortins were due to increases in Cl- secretion and involved enteric neurons and mast cells. CONCLUSIONS AND INFERENCE The findings revealed sex differences in baseline colonic secretion and responses to stress-related peptides. CRF2 receptors play a more prominent role in colonic secretion in male mice. The greater baseline secretion and responses to UCNs may contribute to the higher prevalence of diarrhea-predominant IBS in males.
Collapse
Affiliation(s)
- Sumei Liu
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - Aaron Karo
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - Sita Agterberg
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - Howard Hua
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - Aditi Bhargava
- Department of OBGYN, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
47
|
Grone BP, Butler JM, Wayne CR, Maruska KP. Expression patterns and evolution of urocortin and corticotropin‐releasing hormone genes in a cichlid fish. J Comp Neurol 2021; 529:2596-2619. [DOI: 10.1002/cne.25113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Julie M. Butler
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
- Department of Biology Stanford University Stanford California USA
| | - Christy R. Wayne
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Karen P. Maruska
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
48
|
Horii-Hayashi N, Nomoto K, Endo N, Yamanaka A, Kikusui T, Nishi M. Hypothalamic perifornical Urocortin-3 neurons modulate defensive responses to a potential threat stimulus. iScience 2021; 24:101908. [PMID: 33385113 PMCID: PMC7770982 DOI: 10.1016/j.isci.2020.101908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/31/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Defensive behaviors are evolved responses to threat stimuli, and a potential threat elicits risk assessment (RA) behavior. However, neural mechanisms underlying RA behavior are hardly understood. Urocortin-3 (Ucn3) is a member of corticotropin-releasing factor peptide family and here, we report that Ucn3 neurons in the hypothalamic perifornical area (PeFA) are involved in RA of a novel object, a potential threat stimulus, in mice. Histological and in vivo fiber photometry studies revealed that the activity of PeFA Ucn3 neurons was associated with novel object investigation involving the stretch-attend posture, a behavioral marker for RA. Chemogenetic activation of these neurons increased RA and burying behaviors toward a novel object without affecting anxiety and corticosterone levels. Ablation of these neurons caused the abnormal behaviors of gnawing and direct contacts with novel objects, especially in a home-cage. These results suggest that PeFA Ucn3 neurons modulate defensive responses to a potential threat stimulus.
Collapse
Affiliation(s)
- Noriko Horii-Hayashi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| | - Kensaku Nomoto
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252–5201, Japan
- Department of Physiology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Takefumi Kikusui
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252–5201, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| |
Collapse
|
49
|
Lee Y, Ma EL, Patel M, Kim G, Howe C, Pothoulakis C, Kim YS, Im E, Rhee SH. Corticotropin-Releasing Hormone Receptor Alters the Tumor Development and Growth in Apcmin/+ Mice and in a Chemically-Induced Model of Colon Cancer. Int J Mol Sci 2021; 22:ijms22031043. [PMID: 33494263 PMCID: PMC7864487 DOI: 10.3390/ijms22031043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
The neuroendocrine circuit of the corticotropin-releasing hormone (CRH) family peptides, via their cognate receptors CRHR1 and CRHR2, copes with psychological stress. However, peripheral effects of the CRH system in colon cancer remains elusive. Thus, we investigate the role of CRHR1 and CRHR2 in colon cancer. Human colon cancer biopsies were used to measure the mRNA levels of the CRH family by quantitative real-time PCR. Two animal models of colon cancer were used: Apcmin/+ mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. The mRNA levels of CRHR2 and UCN III are reduced in human colon cancer tissues compared to those of normal tissues. Crhr1 deletion suppresses the tumor development and growth in Apcmin/+ mice, while Crhr2 deficiency exacerbates the tumorigenicity. Crhr1 deficiency not only inhibits the expression of tumor-promoting cyclooxygenase 2, but also upregulates tumor-suppressing phospholipase A2 in Apcmin/+ mice; however, Crhr2 deficiency does not change these expressions. In the AOM/DSS model, Crhr2 deficiency worsens the tumorigenesis. In conclusion, Crhr1 deficiency confers tumor-suppressing effects in Apcmin/+ mice, but Crhr2 deficiency worsens the tumorigenicity in both Apcmin/+ and AOM/DSS-treated mice. Therefore, pharmacological inhibitors of CRHR1 or activators of CRHR2 could be of significance as anti-colon cancer drugs.
Collapse
Affiliation(s)
- Yunna Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Elise L. Ma
- Inflammatory Bowel Disease Center, and Center for Systems Biomedicine, Vatcher and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (E.L.M.); (C.P.)
| | - Marisa Patel
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
| | - Gayoung Kim
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
| | - Cody Howe
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, and Center for Systems Biomedicine, Vatcher and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (E.L.M.); (C.P.)
| | - Yong Sung Kim
- Digestive Disease Research Institute and GutnFood Healthcare Inc., School of Medicine, Wonkwang University, Iksan 54538, Korea;
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
- Correspondence: (E.I.); (S.H.R.); Tel.: +82-51-510-2812 (E.I.); +1-248-370-4162 (S.H.R.)
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
- Correspondence: (E.I.); (S.H.R.); Tel.: +82-51-510-2812 (E.I.); +1-248-370-4162 (S.H.R.)
| |
Collapse
|
50
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|