1
|
Sun XL, Song HX, Li JH, Liu YJ, Wang XY, Zhang LN. TOE1 deadenylase inhibits gastric cancer cell proliferation by regulating cell cycle progression. Biochim Biophys Acta Gen Subj 2025; 1869:130736. [PMID: 39657841 DOI: 10.1016/j.bbagen.2024.130736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
TOE1, also known as hCaf1z, belongs to the DEDD superfamily of deadenylases and a newly identified isoenzyme of hCaf1 deadenylases. Previous research has demonstrated that TOE1 has deadenylase activity, which can catalyze the degradation of poly(A) substrates and interact with hCcr4d to form the unconventional human Ccr4-Caf1 deadenylase complex. Our recent research indicates that hCaf1a and hCaf1b isoenzymes, highly expressed in gastric cancer, promote gastric cancer cell proliferation and tumorigenicity via modulating cell cycle progression. However, no studies have yet explored the relationship between TOE1 deadenylase and tumor development. In our study, we systematically investigated the functions and mechanisms of TOE1 in gastric cancer progression. Our findings revealed that overexpression of TOE1 inhibited gastric cancer cell proliferation, invasion and migration, promoted cell apoptosis, and led to cell cycle arrest in G0/G1 phase, while TOE1 knockdown had the opposite biological effects on these processes in gastric cancer cells. Further results indicated that TOE1 suppressed gastric cancer progression by inhibiting EMT process and MMPs expression. Moreover, our study clarified that TOE1 blocked gastric cancer cell cycle progression by up-regulating the expression level of the key cell cycle factors p21 and p53 through different regulatory mechanisms. Specifically, TOE1 up-regulated p53 expression by enhancing p53 promoter activity, and up-regulated p21 expression by enhancing p21 mRNA stability. Collectively, our findings first contribute to further elucidating the molecular mechanisms by which TOE1 participates in the regulation of gastric cancer progression, and are expected to provide a theoretical basis for diagnosis and targeted treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiao-Lin Sun
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Huan-Xi Song
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Jia-Hui Li
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yi-Jin Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin-Ya Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Li-Na Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Varriano S, Yu A, Xu YQ, Natelson DM, Ramadei A, Kleiman FE. Estrogen receptor alpha (ERα) regulates PARN-mediated nuclear deadenylation and gene expression in breast cancer cells. RNA Biol 2024; 21:14-23. [PMID: 39392174 PMCID: PMC11487348 DOI: 10.1080/15476286.2024.2413821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
The estrogen signalling pathway is highly dynamic and primarily mediated by estrogen receptors (ERs) that transcriptionally regulate the expression of target genes. While transcriptional functions of ERs have been widely studied, their roles in RNA biology have not been extensively explored. Here, we reveal a novel biological role of ER alpha (ERα) in mRNA 3' end processing in breast cancer cells, providing an alternative mechanism in regulating gene expression at the post-transcriptional level. We show that ERα activates poly(A) specific ribonuclease (PARN) deadenylase using in vitro assays, and that this activation is further increased by tumour suppressor p53, a factor involved in mRNA processing. Consistent with this, we confirm ERα-mediated activation of nuclear deadenylation by PARN in samples from MCF7 and T47D breast cancer cells that vary in expression of ERα and p53. We further show that ERα can form complex(es) with PARN and p53. Lastly, we identify and validate expression of common mRNA targets of ERα and PARN known to be involved in cell invasion, metastasis and angiogenesis, supporting the functional overlap of these factors in regulating gene expression in a transactivation-independent manner. Together, these results show a new regulatory mechanism by which ERα regulates mRNA processing and gene expression post-transcriptionally, highlighting its contribution to unique transcriptomic profiles and breast cancer progression.
Collapse
Affiliation(s)
- Sophia Varriano
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Amy Yu
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
| | - Yu Qing Xu
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
| | - Devorah M. Natelson
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Anthony Ramadei
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Frida E. Kleiman
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY, USA
| |
Collapse
|
4
|
Rakotopare J, Toledo F. p53 in the Molecular Circuitry of Bone Marrow Failure Syndromes. Int J Mol Sci 2023; 24:14940. [PMID: 37834388 PMCID: PMC10573108 DOI: 10.3390/ijms241914940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
5
|
Zhang FW, Xie XW, Chen MH, Tong J, Chen QQ, Feng J, Chen FT, Liu WQ. Poly(A)-specific ribonuclease protein promotes the proliferation, invasion and migration of esophageal cancer cells. World J Gastroenterol 2023; 29:4783-4796. [PMID: 37664151 PMCID: PMC10473923 DOI: 10.3748/wjg.v29.i31.4783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Bioinformatics analysis showed that the expression of the poly(A)-specific ribonuclease (PARN) gene in gastric cancer, head and neck squamous cell carcinoma, melanoma, cervical cancer and lung squamous cell carcinoma tissues was significantly higher than that in normal tissues and was associated with high stage and poor prognosis. The expression of the PARN gene in esophageal cancer (EC) tissue is also significantly higher than that in normal tissues, but the effect of PARN on the proliferation, migration and invasion of EC cells remains unclear. AIM To investigate the relationship between PARN and the proliferation, migration and invasion of EC cells. METHODS The EC tissues of 91 patients after EC surgery and 63 paired precancerous healthy tissues were collected. PARN mRNA levels were measured using a tissue microarray, and the PARN expression level was evaluated using immunohistochemistry to analyze the relationship between PARN expression and clinicopathologic features as well as the survival and prognosis of patients. In addition, the effects of PARN gene knockout on tumor cell proliferation, invasion and migration were studied by using shRNA during the in vitro culture of EC cell lines Eca-109 and TE-1, and the effects of the PARN gene on tumor growth in vivo were verified by a xenotransplantation nude mice model. RESULTS The expression of PARN in EC tissues was higher than that in adjacent normal tissues, and the level of PARN expression was significantly positively correlated with lymphatic metastasis. Patients with high PARN levels had poor overall survival. BIM, IGFBP-5 and p21 levels were significantly increased in the PARN knockout group, while the expression levels of the antiapoptotic proteins Survivin and sTNF-R1 were significantly decreased in the apoptotic antibody array data. In addition, the expression levels of Akt, p-Akt, PIK3CA and CCND1 in the downstream signaling pathway regulating EC progression were significantly decreased. The culture of EC cell lines confirmed that the apoptosis rate of EC cells was significantly increased, the growth and proliferation of tumor cells were significantly inhibited, and the invasion and migration ability of tumor cells were significantly decreased after PARN gene knockout. In vivo experiments of BALB/c nude mice transfected with Eca-109 cells expressing control shRNA (sh-NC) and PARN shRNA (sh-PARN) showed that the tumor volume and weight of nude mice treated with sh-PARN were significantly decreased compared with those of nude mice treated with sh-NC, indicating that PARN knockdown significantly inhibited tumor growth in vivo. CONCLUSION PARN has antiapoptotic effects on EC cells and promotes their proliferation, invasion and migration, which is associated with the development of EC and poor patient prognosis. PARN may become a potential target for the diagnosis, prognosis prediction and treatment of EC.
Collapse
Affiliation(s)
- Fu-Wei Zhang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Xiao-Wei Xie
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Meng-Hua Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jian Tong
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Qun-Qing Chen
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Jing Feng
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Feng-Ti Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Wen-Qi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
6
|
Guo M, Fang Z, Chen B, Songyang Z, Xiong Y. Distinct dosage compensations of ploidy-sensitive and -insensitive X chromosome genes during development and in diseases. iScience 2023; 26:105997. [PMID: 36798435 PMCID: PMC9926305 DOI: 10.1016/j.isci.2023.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The active X chromosome in mammals is upregulated to balance its dosage to autosomes during evolution. However, it is elusive why the known dosage compensation machinery showed uneven and small influence on X genes. Here, based on >20,000 transcriptomes, we identified two X gene groups (ploidy-sensitive [PSX] and ploidy-insensitive [PIX]), showing distinct but evolutionarily conserved dosage compensations (termed XAR). We demonstrated that XAR-PIX was downregulated whereas XAR-PSX upregulated at both RNA and protein levels across cancer types, in contrast with their trends during stem cell differentiation. XAR-PIX, but not XAR-PSX, was lower and correlated with autoantibodies and inflammation in patients of lupus, suggesting that insufficient dosage of PIX genes contribute to lupus pathogenesis. We further identified and experimentally validated two XAR regulators, TP53 and ATRX. Collectively, we provided insights into X dosage compensation in mammals and demonstrated different regulation of PSX and PIX and their pathophysiological roles in human diseases.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengwen Fang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bohong Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China,Corresponding author
| |
Collapse
|
7
|
Murphy MR, Ramadei A, Doymaz A, Varriano S, Natelson D, Yu A, Aktas S, Mazzeo M, Mazzeo M, Zakusilo G, Kleiman FE. Long Non-Coding RNA Generated from CDKN1A Gene by Alternative Polyadenylation Regulates p21 Expression during DNA Damage Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523318. [PMID: 36711808 PMCID: PMC9882041 DOI: 10.1101/2023.01.10.523318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alternative Polyadenylation (APA) is an emerging mechanism for dynamic changes in gene expression. Previously, we described widespread APA occurrence in introns during the DNA damage response (DDR). Here, we show that a DNA damage activated APA event occurs in the first intron of CDKN1A , inducing an alternate last exon (ALE)-containing lncRNA. We named this lncRNA SPUD (Selective Polyadenylation Upon Damage). SPUD localizes to polysomes in the cytoplasm and is detectable as multiple isoforms in available high throughput studies. SPUD has low abundance compared to the CDKN1A full-length isoform and is induced in cancer and normal cells under a variety of DNA damaging conditions in part through p53 transcriptional activation. RNA binding protein (RBP) HuR and the transcriptional repressor CTCF regulate SPUD levels. SPUD induction increases p21 protein, but not CDKN1A full-length levels, affecting p21 functions in cell-cycle, CDK2 expression, and cell viability. Like CDKN1A full-length isoform, SPUD can bind two competitive p21 translational regulators, the inhibitor calreticulin and the activator CUGBP1; SPUD can change their association with CDKN1A full-length in a DDR-dependent manner. Together, these results show a new regulatory mechanism by which a lncRNA controls p21 expression post-transcriptionally, highlighting lncRNA relevance in DDR progression and cellcycle.
Collapse
|
8
|
Kyritsis A, Papanastasi E, Kokkori I, Maragozidis P, Chatzileontiadou DSM, Pallaki P, Labrou M, Zarogiannis SG, Chrousos GP, Vlachakis D, Gourgoulianis KI, Balatsos NAA. Integrated Deadenylase Genetic Association Network and Transcriptome Analysis in Thoracic Carcinomas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103102. [PMID: 35630580 PMCID: PMC9145511 DOI: 10.3390/molecules27103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022]
Abstract
The poly(A) tail at the 3′ end of mRNAs determines their stability, translational efficiency, and fate. The shortening of the poly(A) tail, and its efficient removal, triggers the degradation of mRNAs, thus, regulating gene expression. The process is catalyzed by a family of enzymes, known as deadenylases. As the dysregulation of gene expression is a hallmark of cancer, understanding the role of deadenylases has gained additional interest. Herein, the genetic association network shows that CNOT6 and CNOT7 are the most prevalent and most interconnected nodes in the equilibrated diagram. Subsequent silencing and transcriptomic analysis identifies transcripts possibly regulated by specific deadenylases. Furthermore, several gene ontologies are enriched by common deregulated genes. Given the potential concerted action and overlapping functions of deadenylases, we examined the effect of silencing a deadenylase on the remaining ones. Our results suggest that specific deadenylases target unique subsets of mRNAs, whilst at the same time, multiple deadenylases may affect the same mRNAs with overlapping functions.
Collapse
Affiliation(s)
- Athanasios Kyritsis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
| | - Eirini Papanastasi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Ioanna Kokkori
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
- Department of Pneumonology-Oncology, Theagenio Cancer Hospital, 540 07 Thessaloniki, Greece
| | - Panagiotis Maragozidis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Paschalina Pallaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Maria Labrou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Sotirios G. Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 415 00 Larissa, Greece
- Correspondence: (S.G.Z.); (K.I.G.); (N.A.A.B.)
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (G.P.C.); (D.V.)
- UNESCO Chair on Adolescent Health Care, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Dimitrios Vlachakis
- University Research Institute of Maternal and Child Health and Precision Medicine, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (G.P.C.); (D.V.)
- UNESCO Chair on Adolescent Health Care, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece
| | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
- Correspondence: (S.G.Z.); (K.I.G.); (N.A.A.B.)
| | - Nikolaos A. A. Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
- Correspondence: (S.G.Z.); (K.I.G.); (N.A.A.B.)
| |
Collapse
|
9
|
Candia RF, Cohen LS, Morozova V, Corbo C, Alonso AD. Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption of the Nuclear Lamina, TDP-43 Mislocalization and Cell Death. Front Mol Neurosci 2022; 15:888420. [PMID: 35592115 PMCID: PMC9113199 DOI: 10.3389/fnmol.2022.888420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Tau is a cytosolic protein that has also been observed in the nucleus, where it has multiple proposed functions that are regulated by phosphorylation. However, the mechanism underlying the nuclear import of tau is unclear, as is the contribution of nuclear tau to the pathology of tauopathies. We have previously generated a pathological form of tau, PH-tau (pseudophosphorylation mutants S199E, T212E, T231E, and S262E) that mimics AD pathological behavior in cells, Drosophila, and a mouse model. Here, we demonstrated that PH-tau translocates into the nucleus of transiently transfected HEK-293 cells, but wildtype tau does not. We identified a putative importin binding site in the tau sequence, and showed that disruption of this site prevents tau from entering the nucleus. We further showed that this nuclear translocation is prevented by inhibitors of both importin-α and importin-β. In addition, expression of PH-tau resulted in an enlarged population of dying cells, which is prevented by blocking its entry into the nucleus. PH-tau-expressing cells also exhibited disruption of the nuclear lamina and mislocalization of TDP-43 to the cytoplasm. We found that PH-tau does not bundle microtubules, and this effect is independent of nuclear translocation. These results demonstrate that tau translocates into the nucleus through the importin-α/β pathway, and that PH-tau exhibits toxicity after its nuclear translocation. We propose a model where hyperphosphorylated tau not only disrupts the microtubule network, but also translocates into the nucleus and interferes with cellular functions, such as nucleocytoplasmic transport, inducing mislocalization of proteins like TDP-43 and, ultimately, cell death.
Collapse
Affiliation(s)
- Robert F. Candia
- Department of Biology, Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Leah S. Cohen
- Department of Chemistry, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Viktoriya Morozova
- Department of Biology, Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Christopher Corbo
- Department of Biological Sciences, Wagner College, Staten Island, NY, United States
| | - Alejandra D. Alonso
- Department of Biology, Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States,*Correspondence: Alejandra D. Alonso,
| |
Collapse
|
10
|
Spada S, Luke B, Danckwardt S. The Bidirectional Link Between RNA Cleavage and Polyadenylation and Genome Stability: Recent Insights From a Systematic Screen. Front Genet 2022; 13:854907. [PMID: 35571036 PMCID: PMC9095915 DOI: 10.3389/fgene.2022.854907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The integrity of the genome is governed by multiple processes to ensure optimal survival and to prevent the inheritance of deleterious traits. While significant progress has been made to characterize components involved in the DNA Damage Response (DDR), little is known about the interplay between RNA processing and the maintenance of genome stability. Here, we describe the emerging picture of an intricate bidirectional coupling between RNA processing and genome integrity in an integrative manner. By employing insights from a recent large-scale RNAi screening involving the depletion of more than 170 components that direct (alternative) polyadenylation, we provide evidence of bidirectional crosstalk between co-transcriptional RNA 3′end processing and the DDR in a manner that optimizes genomic integrity. We provide instructive examples illustrating the wiring between the two processes and show how perturbations at one end are either compensated by buffering mechanisms at the other end, or even propel the initial insult and thereby become disease-eliciting as evidenced by various disorders.
Collapse
Affiliation(s)
- Stefano Spada
- Posttranscriptional Gene Regulation, University Medical Centre Mainz, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre Mainz, Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Mainz, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, University Medical Centre Mainz, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre Mainz, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Centre for Healthy Aging (CHA) Mainz, Mainz, Germany
- *Correspondence: Sven Danckwardt,
| |
Collapse
|
11
|
Nanjappa DP, Babu N, Khanna-Gupta A, O'Donohue MF, Sips P, Chakraborty A. Poly (A)-specific ribonuclease (PARN): More than just "mRNA stock clearing". Life Sci 2021; 285:119953. [PMID: 34520768 DOI: 10.1016/j.lfs.2021.119953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the balance between the synthesis and the degradation decides the steady-state levels of messenger RNAs (mRNA). The removal of adenosine residues from the poly(A) tail, called deadenylation, is the first and the most crucial step in the process of mRNA degradation. Poly (A)-specific ribonuclease (PARN) is one such enzyme that catalyses the process of deadenylation. Although PARN has been primarily known as the regulator of the mRNA stability, recent evidence clearly suggests several other functions of PARN, including a role in embryogenesis, oocyte maturation, cell-cycle progression, telomere biology, non-coding RNA maturation and ribosome biogenesis. Also, deregulated PARN activity is shown to be a hallmark of specific disease conditions. Pathogenic variants in the PARN gene have been observed in various cancers and inherited bone marrow failure syndromes. The focus in this review is to highlight the emerging functions of PARN, particularly in the context of human diseases.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Arati Khanna-Gupta
- Consortium of Rare Genetic and Bone Marrow Disorders, India network@NitteDU, NITTE (Deemed to be University, Deralakatte, Mangaluru, India
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative CBI, Université de Toulouse- CNRS- UPS- Toulouse-, Dynamics and Disorders of Ribosome Synthesis, Toulouse, France
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India.
| |
Collapse
|
12
|
Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes (Basel) 2021; 12:1446. [PMID: 34573428 PMCID: PMC8465283 DOI: 10.3390/genes12091446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
Collapse
Affiliation(s)
| | - Ondrej Bonczek
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Sa Chen
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Robin Fahraeus
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
- Inserm UMRS1131, Institut de Genetique Moleculaire, Universite Paris 7, Hopital St Louis, F-75010 Paris, France
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| |
Collapse
|
13
|
Translational control by DHX36 binding to 5'UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nat Commun 2021; 12:5043. [PMID: 34413292 PMCID: PMC8377060 DOI: 10.1038/s41467-021-25170-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/06/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle has a remarkable ability to regenerate owing to its resident stem cells (also called satellite cells, SCs). SCs are normally quiescent; when stimulated by damage, they activate and expand to form new fibers. The mechanisms underlying SC proliferative progression remain poorly understood. Here we show that DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, is essential for muscle regeneration by regulating SC expansion. DHX36 (initially named RHAU) is barely expressed at quiescence but is highly induced during SC activation and proliferation. Inducible deletion of Dhx36 in adult SCs causes defective proliferation and muscle regeneration after damage. System-wide mapping in proliferating SCs reveals DHX36 binding predominantly to rG4 structures at various regions of mRNAs, while integrated polysome profiling shows that DHX36 promotes mRNA translation via 5′-untranslated region (UTR) rG4 binding. Furthermore, we demonstrate that DHX36 specifically regulates the translation of Gnai2 mRNA by unwinding its 5′ UTR rG4 structures and identify GNAI2 as a downstream effector of DHX36 for SC expansion. Altogether, our findings uncover DHX36 as an indispensable post-transcriptional regulator of SC function and muscle regeneration acting through binding and unwinding rG4 structures at 5′ UTR of target mRNAs. Skeletal muscle stem cells (or satellite cells, SCs) are normally quiescent but activate and expand in response to injury. Here the authors show that induction of DHX36 helicase during SC activation promotes mRNA translation by binding to 5′UTR mRNA G-quadruplexes (rG4) in targets including Gnai2 and unwinding them.
Collapse
|
14
|
Mohanan G, Das A, Rajyaguru PI. Genotoxic stress response: What is the role of cytoplasmic mRNA fate? Bioessays 2021; 43:e2000311. [PMID: 34096096 DOI: 10.1002/bies.202000311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Genotoxic stress leads to DNA damage which can be detrimental to the cell. A well-orchestrated cellular response is mounted to manage and repair the genotoxic stress-induced DNA damage. Our understanding of genotoxic stress response is derived mainly from studies focused on transcription, mRNA splicing, and protein turnover. Surprisingly not as much is understood about the role of mRNA translation and decay in genotoxic stress response. This is despite the fact that regulation of gene expression at the level of mRNA translation and decay plays a critical role in a myriad of cellular processes. This review aims to summarize some of the known findings of the role of mRNA translation and decay by focusing on two categories of examples. We discuss examples of mRNA whose fates are regulated in the cytoplasm and RNA-binding proteins that regulate mRNA fates in response to genotoxic stress.
Collapse
Affiliation(s)
- Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amiyaranjan Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
15
|
Song XH, Liao XY, Zheng XY, Liu JQ, Zhang ZW, Zhang LN, Yan YB. Human Ccr4 and Caf1 Deadenylases Regulate Proliferation and Tumorigenicity of Human Gastric Cancer Cells via Modulating Cell Cycle Progression. Cancers (Basel) 2021; 13:cancers13040834. [PMID: 33671234 PMCID: PMC7922635 DOI: 10.3390/cancers13040834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer cells generally reprogram their gene expression profiles to satisfy continuous growth, proliferation, and metastasis. Most eukaryotic mRNAs are degraded in a deadenylation-dependent pathway, in which deadenylases are the key enzymes. We found that human Ccr4 (hCcr4a/b) and Caf1 (hCaf1a/b), the dominant cytosolic deadenylases, were dysregulated in several types of cancers including stomach adenocarcinoma. Stably knocking down hCaf1a/b or hCcr4a/b blocks cell cycle progression by enhancing the levels of cell cycle inhibitors and by inhibiting the formation of processing bodies, which are cytosolic foci involved in mRNA metabolism. More importantly, depletion of hCaf1a/b or hCcr4a/b dramatically inhibits cell proliferation and tumorigenicity. Our results suggest that perturbating global RNA metabolism may provide a potential novel strategy for cancer treatment. Abstract Cancer cells generally have reprogrammed gene expression profiles to meet the requirements of survival, continuous division, and metastasis. An interesting question is whether the cancer cells will be affected by interfering their global RNA metabolism. In this research, we found that human Ccr4a/b (hCcr4a/b) and Caf1a/b (hCaf1a/b) deadenylases, the catalytic components of the Ccr4-Not complex, were dysregulated in several types of cancers including stomach adenocarcinoma. The impacts of the four deadenylases on cancer cell growth were studied by the establishment of four stable MKN28 cell lines with the knockdown of hCcr4a/b or hCaf1a/b or transient knockdown in several cell lines. Depletion of hCcr4a/b or hCaf1a/b significantly inhibited cell proliferation and tumorigenicity. Mechanistic studies indicated that the cells were arrested at the G2/M phase by knocking down hCaf1a, while arrested at the G0/G1 phase by depleting hCaf1b or hCcr4a/b. The four enzymes did not affect the levels of CDKs and cyclins but modulated the levels of CDK–cyclin inhibitors. We identified that hCcr4a/b, but not hCaf1a/b, targeted the p21 mRNA in the MKN28 cells. Furthermore, depletion of any one of the four deadenylases dramatically impaired processing-body formation in the MKN28 and HEK-293T cells. Our results highlight that perturbating global RNA metabolism may severely affect cancer cell proliferation, which provides a potential novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hui Song
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Xiao-Yan Liao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Xu-Ying Zheng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Jia-Qian Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Zhe-Wei Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Li-Na Zhang
- College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: (L.-N.Z.); (Y.-B.Y.); Tel.: +86-10-6739-6342 (L.-N.Z.); +86-10-6278-3477 (Y.-B.Y.)
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
- Correspondence: (L.-N.Z.); (Y.-B.Y.); Tel.: +86-10-6739-6342 (L.-N.Z.); +86-10-6278-3477 (Y.-B.Y.)
| |
Collapse
|
16
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Dejene EA, Li Y, Showkatian Z, Ling H, Seto E. Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation. J Biol Chem 2020; 295:10255-10270. [PMID: 32457045 DOI: 10.1074/jbc.ra120.012552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.
Collapse
Affiliation(s)
- Eden A Dejene
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Yixuan Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Zahra Showkatian
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Hongbo Ling
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA .,George Washington University Cancer Center, Washington, D.C., USA
| |
Collapse
|
18
|
Toufektchan E, Lejour V, Durand R, Giri N, Draskovic I, Bardot B, Laplante P, Jaber S, Alter BP, Londono-Vallejo JA, Savage SA, Toledo F. Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance. SCIENCE ADVANCES 2020; 6:eaay3511. [PMID: 32300648 PMCID: PMC7148086 DOI: 10.1126/sciadv.aay3511] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/16/2020] [Indexed: 05/08/2023]
Abstract
Dyskeratosis congenita is a cancer-prone inherited bone marrow failure syndrome caused by telomere dysfunction. A mouse model recently suggested that p53 regulates telomere metabolism, but the clinical relevance of this finding remained uncertain. Here, a germline missense mutation of MDM4, a negative regulator of p53, was found in a family with features suggestive of dyskeratosis congenita, e.g., bone marrow hypocellularity, short telomeres, tongue squamous cell carcinoma, and acute myeloid leukemia. Using a mouse model, we show that this mutation (p.T454M) leads to increased p53 activity, decreased telomere length, and bone marrow failure. Variations in p53 activity markedly altered the phenotype of Mdm4 mutant mice, suggesting an explanation for the variable expressivity of disease symptoms in the family. Our data indicate that a germline activation of the p53 pathway may cause telomere dysfunction and point to polymorphisms affecting this pathway as potential genetic modifiers of telomere biology and bone marrow function.
Collapse
Affiliation(s)
- Eléonore Toufektchan
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Romane Durand
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Irena Draskovic
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Telomeres and Cancer, Institut Curie, Paris, France
| | - Boris Bardot
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Pierre Laplante
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Sara Jaber
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - José-Arturo Londono-Vallejo
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Telomeres and Cancer, Institut Curie, Paris, France
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Corresponding author.
| |
Collapse
|
19
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
20
|
Yu X, Li H, Zhu M, Hu P, Liu X, Qing Y, Wang X, Wang H, Wang Z, Xu J, Tan R, Guo Q, Hui H. Involvement of p53 Acetylation in Growth Suppression of Cutaneous T-Cell Lymphomas Induced by HDAC Inhibition. J Invest Dermatol 2020; 140:2009-2022.e4. [PMID: 32119867 DOI: 10.1016/j.jid.2019.12.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent a rare form of non-Hodgkin lymphomas characterized by an accumulation of malignant CD4+ T cells in the skin. TP53 genetic alteration is one of the most prevalent genetic abnormalities in CTCLs. Therefore, it is a promising target for innovative therapeutic approaches. We found that p53 could physically interact with histone deacetylase (HDAC) 1 and HDAC8, and was subsequently deacetylated to lose its function in CTCL cells, and the p53 downstream apoptosis-associated genes were repressed. Thus, the anti-CTCL activity displayed by HDAC inhibitors depends on p53 status. However, recent studies have reported that HDAC inhibitors could induce a wide variety of drug-resistant characteristics in cancer cells by regulating ATP-binding cassette transporters. Moreover, we discovered that Baicalein, a natural product, exhibited an inhibitory effect on HDAC1 and HDAC8. Though the inhibition of HDAC1 was mild, Baicalein could induce the degradation of HDAC1 through the ubiquitin proteasome pathway, thereby markedly upregulating the acetylation of histone H3 without promoting ATP-binding cassette transporter gene expression. In terms of the mechanism, Baicalein showed better growth inhibition than traditional HDAC inhibitors in CTCLs. This study indicates a special mechanism of HDAC1 and HDAC8 and p53 in T-cell lymphoma cells and identifies a potential and safe natural HDAC inhibitor for the treatment of CTCLs.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Yingjie Qing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Xiangyuan Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Zhanyu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, The Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Translation Efficiency and Degradation of ER-Associated mRNAs Modulated by ER-Anchored poly(A)-Specific Ribonuclease (PARN). Cells 2020; 9:cells9010162. [PMID: 31936572 PMCID: PMC7017053 DOI: 10.3390/cells9010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Translation is spatiotemporally regulated and endoplasmic reticulum (ER)-associated mRNAs are generally in efficient translation. It is unclear whether the ER-associated mRNAs are deadenylated or degraded on the ER surface in situ or in the cytosol. Here, we showed that ER possessed active deadenylases, particularly the poly(A)-specific ribonuclease (PARN), in common cell lines and mouse tissues. Consistently, purified recombinant PARN exhibited a strong ability to insert into the Langmuir monolayer and liposome. ER-anchored PARN was found to be able to reshape the poly(A) length profile of the ER-associated RNAs by suppressing long poly(A) tails without significantly influencing the cytosolic RNAs. The shortening of long poly(A) tails did not affect global translation efficiency, which suggests that the non-specific action of PARN towards long poly(A) tails was beyond the scope of translation regulation on the ER surface. Transcriptome sequencing analysis indicated that the ER-anchored PARN trigged the degradation of a small subset of ER-enriched transcripts. The ER-anchored PARN modulated the translation of its targets by redistributing ribosomes to heavy polysomes, which suggests that PARN might play a role in dynamic ribosome reallocation. During DNA damage response, MK2 phosphorylated PARN-Ser557 to modulate PARN translocation from the ER to cytosol. The ER-anchored PARN modulated DNA damage response and thereby cell viability by promoting the decay of ER-associated MDM2 transcripts with low ribosome occupancy. These findings revealed that highly regulated communication between mRNA degradation rate and translation efficiency is present on the ER surface in situ and PARN might contribute to this communication by modulating the dynamic ribosome reallocation between transcripts with low and high ribosome occupancies.
Collapse
|
22
|
Haronikova L, Olivares-Illana V, Wang L, Karakostis K, Chen S, Fåhraeus R. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res 2019; 47:3257-3271. [PMID: 30828720 PMCID: PMC6468297 DOI: 10.1093/nar/gkz124] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
A large number of signalling pathways converge on p53 to induce different cellular stress responses that aim to promote cell cycle arrest and repair or, if the damage is too severe, to induce irreversible senescence or apoptosis. The differentiation of p53 activity towards specific cellular outcomes is tightly regulated via a hierarchical order of post-translational modifications and regulated protein-protein interactions. The mechanisms governing these processes provide a model for how cells optimize the genetic information for maximal diversity. The p53 mRNA also plays a role in this process and this review aims to illustrate how protein and RNA interactions throughout the p53 mRNA in response to different signalling pathways control RNA stability, translation efficiency or alternative initiation of translation. We also describe how a p53 mRNA platform shows riboswitch-like features and controls the rate of p53 synthesis, protein stability and modifications of the nascent p53 protein. A single cancer-derived synonymous mutation disrupts the folding of this platform and prevents p53 activation following DNA damage. The role of the p53 mRNA as a target for signalling pathways illustrates how mRNA sequences have co-evolved with the function of the encoded protein and sheds new light on the information hidden within mRNAs.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y cáncer. Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona universitaria, 78290 SLP, México
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.,Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden.,Inserm U1162, 27 rue Juliette Dodu, 75010 Paris, France.,ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
23
|
Baquero J, Varriano S, Ordonez M, Kuczaj P, Murphy MR, Aruggoda G, Lundine D, Morozova V, Makki AE, Alonso ADC, Kleiman FE. Nuclear Tau, p53 and Pin1 Regulate PARN-Mediated Deadenylation and Gene Expression. Front Mol Neurosci 2019; 12:242. [PMID: 31749682 PMCID: PMC6843027 DOI: 10.3389/fnmol.2019.00242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
While nuclear tau plays a role in DNA damage response (DDR) and chromosome relaxation, the mechanisms behind these functions are not fully understood. Here, we show that tau forms complex(es) with factors involved in nuclear mRNA processing such as tumor suppressor p53 and poly(A)-specific ribonuclease (PARN) deadenylase. Tau induces PARN activity in different cellular models during DDR, and this activation is further increased by p53 and inhibited by tau phosphorylation at residues implicated in neurological disorders. Tau's binding factor Pin1, a mitotic regulator overexpressed in cancer and depleted in Alzheimer's disease (AD), also plays a role in the activation of nuclear deadenylation. Tau, Pin1 and PARN target the expression of mRNAs deregulated in AD and/or cancer. Our findings identify novel biological roles of tau and toxic effects of hyperphosphorylated-tau. We propose a model in which factors involved in cancer and AD regulate gene expression by interactions with the mRNA processing machinery, affecting the transcriptome and suggesting insights into alternative mechanisms for the initiation and/or developments of these diseases.
Collapse
Affiliation(s)
- Jorge Baquero
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Sophia Varriano
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Martha Ordonez
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Pawel Kuczaj
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Michael R. Murphy
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Gamage Aruggoda
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Devon Lundine
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Viktoriya Morozova
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, Graduate Center, The City University of New York, Staten Island, NY, United States
| | - Ali Elhadi Makki
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, Graduate Center, The City University of New York, Staten Island, NY, United States
| | - Alejandra del C. Alonso
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, Graduate Center, The City University of New York, Staten Island, NY, United States
| | - Frida E. Kleiman
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
24
|
Son A, Park JE, Kim VN. PARN and TOE1 Constitute a 3' End Maturation Module for Nuclear Non-coding RNAs. Cell Rep 2019; 23:888-898. [PMID: 29669292 DOI: 10.1016/j.celrep.2018.03.089] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/27/2017] [Accepted: 03/20/2018] [Indexed: 10/17/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) and target of EGR1 protein 1 (TOE1) are nuclear granule-associated deadenylases, whose mutations are linked to multiple human diseases. Here, we applied mTAIL-seq and RNA sequencing (RNA-seq) to systematically identify the substrates of PARN and TOE1 and elucidate their molecular functions. We found that PARN and TOE1 do not modulate the length of mRNA poly(A) tails. Rather, they promote the maturation of nuclear small non-coding RNAs (ncRNAs). PARN and TOE1 act redundantly on some ncRNAs, most prominently small Cajal body-specific RNAs (scaRNAs). scaRNAs are strongly downregulated when PARN and TOE1 are compromised together, leading to defects in small nuclear RNA (snRNA) pseudouridylation. They also function redundantly in the biogenesis of telomerase RNA component (TERC), which shares sequence motifs found in H/ACA box scaRNAs. Our findings extend the knowledge of nuclear ncRNA biogenesis, and they provide insights into the pathology of PARN/TOE1-associated genetic disorders whose therapeutic treatments are currently unavailable.
Collapse
Affiliation(s)
- Ahyeon Son
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong-Eun Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
25
|
Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol 2019; 10:1019. [PMID: 31572192 PMCID: PMC6753386 DOI: 10.3389/fphar.2019.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
26
|
Duan TL, He GJ, Hu LD, Yan YB. The Intrinsically Disordered C-Terminal Domain Triggers Nucleolar Localization and Function Switch of PARN in Response to DNA Damage. Cells 2019; 8:cells8080836. [PMID: 31387300 PMCID: PMC6721724 DOI: 10.3390/cells8080836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN), a multifunctional multi-domain deadenylase, is crucial to the regulation of mRNA turnover and the maturation of various non-coding RNAs. Despite extensive studies of the well-folding domains responsible for PARN catalysis, the structure and function of the C-terminal domain (CTD) remains elusive. PARN is a cytoplasm-nucleus shuttle protein with concentrated nucleolar distribution. Here, we identify the nuclear and nucleolar localization signals in the CTD of PARN. Spectroscopic studies indicated that PARN-CTD is intrinsically disordered with loosely packed local structures/tertiary structure. Phosphorylation-mimic mutation S557D disrupted the local structure and facilitated the binding of the CTD with the well-folded domains, with no impact on PARN deadenylase activity. Under normal conditions, the nucleolus-residing PARN recruited CBP80 into the nucleoli to repress its deadenylase activity, while DNA damage-induced phosphorylation of PARN-S557 expelled CBP80 from the nucleoli to discharge activity inhibition and attracted nucleoplasm-located CstF-50 into the nucleoli to activate deadenylation. The structure switch-induced function switch of PARN reshaped the profile of small nuclear non-coding RNAs to respond to DNA damage. Our findings highlight that the structure switch of the CTD induced by posttranslational modifications redefines the subset of binding partners, and thereby the RNA targets in the nucleoli.
Collapse
Affiliation(s)
- Tian-Li Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guang-Jun He
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li-Dan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Benyelles M, Episkopou H, O'Donohue M, Kermasson L, Frange P, Poulain F, Burcu Belen F, Polat M, Bole‐Feysot C, Langa‐Vives F, Gleizes P, de Villartay J, Callebaut I, Decottignies A, Revy P. Impaired telomere integrity and rRNA biogenesis in PARN-deficient patients and knock-out models. EMBO Mol Med 2019; 11:e10201. [PMID: 31273937 PMCID: PMC6609912 DOI: 10.15252/emmm.201810201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
PARN, poly(A)-specific ribonuclease, regulates the turnover of mRNAs and the maturation and stabilization of the hTR RNA component of telomerase. Biallelic PARN mutations were associated with Høyeraal-Hreidarsson (HH) syndrome, a rare telomere biology disorder that, because of its severity, is likely not exclusively due to hTR down-regulation. Whether PARN deficiency was affecting the expression of telomere-related genes was still unclear. Using cells from two unrelated HH individuals carrying novel PARN mutations and a human PARN knock-out (KO) cell line with inducible PARN complementation, we found that PARN deficiency affects both telomere length and stability and down-regulates the expression of TRF1, TRF2, TPP1, RAP1, and POT1 shelterin transcripts. Down-regulation of dyskerin-encoding DKC1 mRNA was also observed and found to result from p53 activation in PARN-deficient cells. We further showed that PARN deficiency compromises ribosomal RNA biogenesis in patients' fibroblasts and cells from heterozygous Parn KO mice. Homozygous Parn KO however resulted in early embryonic lethality that was not overcome by p53 KO. Our results refine our knowledge on the pleiotropic cellular consequences of PARN deficiency.
Collapse
Affiliation(s)
- Maname Benyelles
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | | | - Marie‐Françoise O'Donohue
- Laboratoire de Biologie Moléculaire EucaryoteCentre de Biologie Intégrative (CBI)CNRS, UPSUniversité de ToulouseToulouseFrance
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | - Pierre Frange
- EA 7327, Université Paris Descartes, Sorbonne Paris‐CitéParisFrance
- Laboratoire de Microbiologie clinique & Unité d'ImmunologieHématologie et Rhumatologie PédiatriquesAP‐HP, Hôpital Necker, Enfants MaladesParisFrance
| | - Florian Poulain
- de Duve InstituteUniversité catholique de LouvainBrusselsBelgium
| | - Fatma Burcu Belen
- Pediatric HematologyFaculty of MedicineBaskent UniversityAnkaraTurkey
| | - Meltem Polat
- Pediatric Infectious DiseasesDepartment of Pediatric Infectious DiseasesPamukkale University Medical FacultyDenizliTurkey
| | - Christine Bole‐Feysot
- INSERM, UMR 1163Genomics platform, Imagine InstituteParis Descartes–Sorbonne Paris Cité UniversityParisFrance
- Genomic Core FacilityImagine Institute‐Structure Fédérative de Recherche NeckerINSERM U1163ParisFrance
| | | | - Pierre‐Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire EucaryoteCentre de Biologie Intégrative (CBI)CNRS, UPSUniversité de ToulouseToulouseFrance
| | - Jean‐Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | - Isabelle Callebaut
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de Cosmochimie, IMPMCSorbonne UniversitéParisFrance
| | | | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| |
Collapse
|
28
|
Gomez-Cambronero J. Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer Metastasis Rev 2019; 37:491-507. [PMID: 30091053 DOI: 10.1007/s10555-018-9753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3'-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new "players" in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
29
|
Shukla S, Bjerke GA, Muhlrad D, Yi R, Parker R. The RNase PARN Controls the Levels of Specific miRNAs that Contribute to p53 Regulation. Mol Cell 2019; 73:1204-1216.e4. [PMID: 30770239 DOI: 10.1016/j.molcel.2019.01.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/08/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
PARN loss-of-function mutations cause a severe form of the hereditary disease dyskeratosis congenita (DC). PARN deficiency affects the stability of non-coding RNAs such as human telomerase RNA (hTR), but these effects do not explain the severe disease in patients. We demonstrate that PARN deficiency affects the levels of numerous miRNAs in human cells. PARN regulates miRNA levels by stabilizing either mature or precursor miRNAs by removing oligo(A) tails added by the poly(A) polymerase PAPD5, which if remaining recruit the exonuclease DIS3L or DIS3L2 to degrade the miRNA. PARN knockdown destabilizes multiple miRNAs that repress p53 translation, which leads to an increase in p53 accumulation in a Dicer-dependent manner, thus explaining why PARN-defective patients show p53 accumulation. This work also reveals that DIS3L and DIS3L2 are critical 3' to 5' exonucleases that regulate miRNA stability, with the addition and removal of 3' end extensions controlling miRNA levels in the cell.
Collapse
Affiliation(s)
- Siddharth Shukla
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Glen A Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Denise Muhlrad
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rui Yi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
30
|
Alonso AD, Cohen LS, Corbo C, Morozova V, ElIdrissi A, Phillips G, Kleiman FE. Hyperphosphorylation of Tau Associates With Changes in Its Function Beyond Microtubule Stability. Front Cell Neurosci 2018; 12:338. [PMID: 30356756 PMCID: PMC6189415 DOI: 10.3389/fncel.2018.00338] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
Tau is a neuronal microtubule associated protein whose main biological functions are to promote microtubule self-assembly by tubulin and to stabilize those already formed. Tau also plays an important role as an axonal microtubule protein. Tau is an amazing protein that plays a key role in cognitive processes, however, deposits of abnormal forms of tau are associated with several neurodegenerative diseases, including Alzheimer disease (AD), the most prevalent, and Chronic Traumatic Encephalopathy (CTE) and Traumatic Brain Injury (TBI), the most recently associated to abnormal tau. Tau post-translational modifications (PTMs) are responsible for its gain of toxic function. Alonso et al. (1996) were the first to show that the pathological tau isolated from AD brains has prion-like properties and can transfer its toxic function to the normal molecule. Furthermore, we reported that the pathological changes are associated with tau phosphorylation at Ser199 and 262 and Thr212 and 231. This pathological version of tau induces subcellular mislocalization in cultured cells and neurons, and translocates into the nucleus or accumulated in the perinuclear region of cells. We have generated a transgenic mouse model that expresses pathological human tau (PH-Tau) in neurons at two different concentrations (4% and 14% of the total endogenous tau). In this model, PH-Tau causes cognitive decline by at least two different mechanisms: one that involves the cytoskeleton with axonal disruption (at high concentration), and another in which the apparent neuronal morphology is not grossly affected, but the synaptic terminals are altered (at lower concentration). We will discuss the putative involvement of tau in proteostasis under these conditions. Understanding tau’s biological activity on and off the microtubules will help shed light to the mechanism of neurodegeneration and of normal neuronal function.
Collapse
Affiliation(s)
- Alejandra D Alonso
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States.,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States.,Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Leah S Cohen
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Christopher Corbo
- Department of Biology, Wagner College, Staten Island, NY, United States
| | - Viktoriya Morozova
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States.,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Abdeslem ElIdrissi
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States.,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Greg Phillips
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States.,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Frida E Kleiman
- Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States.,Department of Chemistry, Hunter College, The City University of New York, New York, NY, United States
| |
Collapse
|
31
|
The Guardian of the Genome Revisited: p53 Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere Structure. Cancers (Basel) 2018; 10:cancers10050135. [PMID: 29734785 PMCID: PMC5977108 DOI: 10.3390/cancers10050135] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
The p53 protein has been extensively studied for its capacity to prevent proliferation of cells with a damaged genome. Surprisingly, however, our recent analysis of mice expressing a hyperactive mutant p53 that lacks the C-terminal domain revealed that increased p53 activity may alter genome maintenance. We showed that p53 downregulates genes essential for telomere metabolism, DNA repair, and centromere structure and that a sustained p53 activity leads to phenotypic traits associated with dyskeratosis congenita and Fanconi anemia. This downregulation is largely conserved in human cells, which suggests that our findings could be relevant to better understand processes involved in bone marrow failure as well as aging and tumor suppression.
Collapse
|
32
|
Zhang X, Xiao S, Rameau RD, Devany E, Nadeem Z, Caglar E, Ng K, Kleiman FE, Saxena A. Nucleolin phosphorylation regulates PARN deadenylase activity during cellular stress response. RNA Biol 2018; 15:251-260. [PMID: 29168431 PMCID: PMC5798948 DOI: 10.1080/15476286.2017.1408764] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/11/2017] [Accepted: 11/16/2017] [Indexed: 01/28/2023] Open
Abstract
Nucleolin (NCL) is an abundant stress-responsive, RNA-binding phosphoprotein that controls gene expression by regulating either mRNA stability and/or translation. NCL binds to the AU-rich element (ARE) in the 3'UTR of target mRNAs, mediates miRNA functions in the nearby target sequences, and regulates mRNA deadenylation. However, the mechanism by which NCL phosphorylation affects these functions and the identity of the deadenylase involved, remain largely unexplored. Earlier we demonstrated that NCL phosphorylation is vital for cell cycle progression and proliferation, whereas phosphorylation-deficient NCL at six consensus CK2 sites confers dominant-negative effect on proliferation by increasing p53 expression, possibly mimicking cellular DNA damage conditions. In this study, we show that NCL phosphorylation at those CK2 consensus sites in the N-terminus is necessary to induce deadenylation upon oncogenic stimuli and UV stress. NCL-WT, but not hypophosphorylated NCL-6/S*A, activates poly (A)-specific ribonuclease (PARN) deadenylase activity. We further demonstrate that NCL interacts directly with PARN, and under non-stress conditions also forms (a) complex (es) with factors that regulate deadenylation, such as p53 and the ARE-binding protein HuR. Upon UV stress, the interaction of hypophosphorylated NCL-6/S*A with these proteins is favored. As an RNA-binding protein, NCL interacts with PARN deadenylase substrates such as TP53 and BCL2 mRNAs, playing a role in their downregulation under non-stress conditions. For the first time, we show that NCL phosphorylation offers specificity to its protein-protein, protein-RNA interactions, resulting in the PARN deadenylase regulation, and hence gene expression, during cellular stress responses.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Chemistry Department, Hunter College, New York, NY, USA
| | - Shu Xiao
- Biology Department, Brooklyn College, Brooklyn, NY, USA
| | | | - Emral Devany
- Chemistry Department, Hunter College, New York, NY, USA
| | - Zaineb Nadeem
- Biology Department, Brooklyn College, Brooklyn, NY, USA
| | - Elif Caglar
- Biology Department, Brooklyn College, Brooklyn, NY, USA
| | - Kenneth Ng
- Biology Department, Brooklyn College, Brooklyn, NY, USA
| | | | - Anjana Saxena
- Biology Department, Brooklyn College, Brooklyn, NY, USA
| |
Collapse
|
33
|
Gomez-Cambronero J, Fite K, Miller TE. How miRs and mRNA deadenylases could post-transcriptionally regulate expression of tumor-promoting protein PLD. Adv Biol Regul 2017; 68:107-119. [PMID: 28964725 DOI: 10.1016/j.jbior.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Phospholipase D (PLD) plays a key role in both cell membrane lipid reorganization and architecture, as well as a cell signaling protein via the product of its enzymatic reaction, phosphatidic acid (PA). PLD is involved in promoting breast cancer cell growth, proliferation, and metastasis and both gene and protein expression are upregulated in breast carcinoma human samples. In spite of all this, the ultimate reason as to why PLD expression is high in cancer cells vs. their normal counterparts remains largely unknown. Until we understand this and the associated signaling pathways, it will be difficult to establish PLD as a bona fide target to explore new potential cancer therapeutic approaches. Recently, our lab has identified several molecular mechanisms by which PLD expression is high in breast cancer cells and they all involve post-transcriptional control of its mRNA. First, PA, a mitogen, functions as a protein and mRNA stabilizer that counteracts natural decay and degradation. Second, there is a repertoire of microRNAs (miRs) that keep PLD mRNA translation at low levels in normal cells, but their effects change with starvation and during endothelial-to-mesenchymal transition (EMT) in cancer cells. Third, there is a novel way of post-transcriptional regulation of PLD involving 3'-exonucleases, specifically the deadenylase, Poly(A)-specific Ribonuclease (PARN), which tags mRNA for mRNA for degradation. This would enable PLD accumulation and ultimately breast cancer cell growth. We review in depth the emerging field of post-transcriptional regulation of PLD, which is only recently beginning to be understood. Since, surprisingly, so little is known about post-transcriptional regulation of PLD and related phospholipases (PLC or PLA), this new knowledge could help our understanding of how post-transcriptional deregulation of a lipid enzyme expression impacts tumor growth.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | - Kristen Fite
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Taylor E Miller
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| |
Collapse
|
34
|
Miller TE, Gomez-Cambronero J. A feedback mechanism between PLD and deadenylase PARN for the shortening of eukaryotic poly(A) mRNA tails that is deregulated in cancer cells. Biol Open 2017; 6:176-186. [PMID: 28011629 PMCID: PMC5312095 DOI: 10.1242/bio.021261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The removal of mRNA transcript poly(A) tails by 3′→5′ exonucleases is the rate-limiting step in mRNA decay in eukaryotes. Known cellular deadenylases are the CCR4-NOT and PAN complexes, and poly(A)-specific ribonuclease (PARN). The physiological roles and regulation for PARN is beginning to be elucidated. Since phospholipase D (PLD2 isoform) gene expression is upregulated in breast cancer cells and PARN is downregulated, we examined whether a signaling connection existed between these two enzymes. Silencing PARN with siRNA led to an increase in PLD2 protein, whereas overexpression of PARN had the opposite effect. Overexpression of PLD2, however, led to an increase in PARN expression. Thus, PARN downregulates PLD2 whereas PLD2 upregulates PARN. Co-expression of both PARN and PLD2 mimicked this pattern in non-cancerous cells (COS-7 fibroblasts) but, surprisingly, not in breast cancer MCF-7 cells, where PARN switches from inhibition to activation of PLD2 gene and protein expression. Between 30 and 300 nM phosphatidic acid (PA), the product of PLD enzymatic reaction, added exogenously to culture cells had a stabilizing role of both PARN and PLD2 mRNA decay. Lastly, by immunofluorescence microscopy, we observed an intracellular co-localization of PA-loaded vesicles (0.1-1 nm) and PARN. In summary, we report for the first time the involvement of a phospholipase (PLD2) and PA in mediating PARN-induced eukaryotic mRNA decay and the crosstalk between the two enzymes that is deregulated in breast cancer cells. Summary: Cell signaling enzyme phospholipase D2 (PLD2) and its reaction product, phospholipid phosphatidic acid (PA), are involved in mediating PARN-induced eukaryotic mRNA decay.
Collapse
Affiliation(s)
- Taylor E Miller
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA
| | - Julian Gomez-Cambronero
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA .,Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA
| |
Collapse
|
35
|
Newman M, Sfaxi R, Saha A, Monchaud D, Teulade-Fichou MP, Vagner S. The G-Quadruplex-Specific RNA Helicase DHX36 Regulates p53 Pre-mRNA 3'-End Processing Following UV-Induced DNA Damage. J Mol Biol 2016; 429:3121-3131. [PMID: 27940037 DOI: 10.1016/j.jmb.2016.11.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/26/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022]
Abstract
Pre-mRNA 3'-end processing, the process through which almost all eukaryotic mRNAs acquire a poly(A) tail is generally inhibited during the cellular DNA damage response leading to a profound impact on the level of protein expression since unprocessed transcripts at the 3'-end will be degraded or unable to be transported to the cytoplasm. However, a compensatory mechanism involving the binding of the hnRNP H/F family of RNA binding proteins to an RNA G-quadruplex (G4) structure located in the vicinity of a polyadenylation site has previously been described to allow the transcript encoding the p53 tumour suppressor protein to be properly processed during DNA damage and to provide the cells with a way to react to DNA damage. Here we report that the DEAH (Asp-Glu-Ala-His) box RNA helicase DHX36/RHAU/G4R1, which specifically binds to and resolves parallel-stranded G4, is necessary to maintain p53 pre-mRNA 3'-end processing following UV-induced DNA damage. DHX36 binds to the p53 RNA G4, while mutation of the G4 impairs the ability of DHX36 to maintain pre-mRNA 3'-end processing. Stabilization of the p53 RNA G4 with two different G4 ligands (PNADOTASQ and PhenDC3), which is expected from previous studies to prevent DHX36 from binding and unwinding G4s, also impairs p53 pre-mRNA 3'-end processing following UV. Our work identifies DHX36 as a new actor in the compensatory mechanisms that are in place to ensure that the mRNAs encoding p53 are still processed following UV.
Collapse
Affiliation(s)
- Michelle Newman
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France; Equipe Labellisée Ligue Contre le Cancer, F-91405 Orsay, France
| | - Rym Sfaxi
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France; Equipe Labellisée Ligue Contre le Cancer, F-91405 Orsay, France
| | - Abhijit Saha
- Institut Curie, PSL Research University, CNRS UMR9187-INSERM U1196, F-91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, UMR9187-INSERM U1196, F-91405 Orsay, France
| | - David Monchaud
- Institute of Molecular Chemistry, University of Dijon, ICMUB CNRS UMR6302, F-21078 Dijon, France
| | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, CNRS UMR9187-INSERM U1196, F-91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, UMR9187-INSERM U1196, F-91405 Orsay, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France; Equipe Labellisée Ligue Contre le Cancer, F-91405 Orsay, France.
| |
Collapse
|
36
|
Felix-Portillo M, Martínez-Quintana JA, Arenas-Padilla M, Mata-Haro V, Gómez-Jiménez S, Yepiz-Plascencia G. Hypoxia drives apoptosis independently of p53 and metallothionein transcript levels in hemocytes of the whiteleg shrimp Litopenaeus vannamei. CHEMOSPHERE 2016; 161:454-462. [PMID: 27459156 DOI: 10.1016/j.chemosphere.2016.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
The cellular mechanisms used by the shrimp Litopenaeus vannamei to respond to hypoxia have been studied from the energetic metabolism and antioxidant angles. We herein investigated the participation of p53 and metallothionein (MT) in the apoptotic process in response to hypoxia in shrimp hemocytes. The Lvp53 or LvMT genes were efficiently silenced by injection of double stranded RNA for p53 or MT. The effects of silencing on apoptosis were measured as caspase-3 activity and flow cytometry in hemocytes after 24 and 48 h of hypoxia (1.5 mg DO L(-1)). Hemocytes from unsilenced animals had significantly higher apoptosis levels upon both times of hypoxia. The apoptotic levels were diminished but not suppressed in dsp53-silenced but not dsMT-silenced hemocytes after 24 h of hypoxia, indicating a contribution of Lvp53 to apoptosis. Apoptosis in normoxia was significantly higher in dsp53-and dsMT-silenced animals compared to the unsilenced controls, pointing to a possible cytoprotective role of LvMT and Lvp53 during the basal apoptotic program in normoxia. Overall, these results indicate that hypoxia augments apoptosis in shrimp hemocytes and high mRNA levels of Lvp53 and LvMT are not necessary for this response.
Collapse
Affiliation(s)
- Monserrath Felix-Portillo
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - José A Martínez-Quintana
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua, Chihuahua, 33820, Mexico
| | - Marina Arenas-Padilla
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Verónica Mata-Haro
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Silvia Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
37
|
Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. Cell Discov 2016; 2:16013. [PMID: 27462460 PMCID: PMC4906801 DOI: 10.1038/celldisc.2016.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response involves coordinated control of gene expression and DNA repair. Using deep sequencing, we found widespread changes of alternative cleavage and polyadenylation site usage on ultraviolet-treatment in mammalian cells. Alternative cleavage and polyadenylation regulation in the 3ʹ untranslated region is substantial, leading to both shortening and lengthening of 3ʹ untranslated regions of genes. Interestingly, a strong activation of intronic alternative cleavage and polyadenylation sites is detected, resulting in widespread expression of truncated transcripts. Intronic alternative cleavage and polyadenylation events are biased to the 5ʹ end of genes and affect gene groups with important functions in DNA damage response and cancer. Moreover, intronic alternative cleavage and polyadenylation site activation during DNA damage response correlates with a decrease in U1 snRNA levels, and is reversible by U1 snRNA overexpression. Importantly, U1 snRNA overexpression mitigates ultraviolet-induced apoptosis. Together, these data reveal a significant gene regulatory scheme in DNA damage response where U1 snRNA impacts gene expression via the U1-alternative cleavage and polyadenylation axis.
Collapse
|
38
|
Zhang X, Devany E, Murphy MR, Glazman G, Persaud M, Kleiman FE. PARN deadenylase is involved in miRNA-dependent degradation of TP53 mRNA in mammalian cells. Nucleic Acids Res 2015; 43:10925-38. [PMID: 26400160 PMCID: PMC4678859 DOI: 10.1093/nar/gkv959] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/13/2015] [Indexed: 01/10/2023] Open
Abstract
mRNA deadenylation is under the control of cis-acting regulatory elements, which include AU-rich elements (AREs) and microRNA (miRNA) targeting sites, within the 3' untranslated region (3' UTRs) of eukaryotic mRNAs. Deadenylases promote miRNA-induced mRNA decay through their interaction with miRNA-induced silencing complex (miRISC). However, the role of poly(A) specific ribonuclease (PARN) deadenylase in miRNA-dependent mRNA degradation has not been elucidated. Here, we present evidence that not only ARE- but also miRNA-mediated pathways are involved in PARN-mediated regulation of the steady state levels of TP53 mRNA, which encodes the tumor suppressor p53. Supporting this, Argonaute-2 (Ago-2), the core component of miRISC, can coexist in complexes with PARN resulting in the activation of its deadenylase activity. PARN regulates TP53 mRNA stability through not only an ARE but also an adjacent miR-504/miR-125b-targeting site in the 3' UTR. More importantly, we found that miR-125b-loaded miRISC contributes to the specific recruitment of PARN to TP53 mRNA, and that can be reverted by the ARE-binding protein HuR. Together, our studies provide new insights into the role of PARN in miRNA-dependent control of mRNA decay and into the mechanisms behind the regulation of p53 expression.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| | - Emral Devany
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA Department of Biological Sciences, Kingsborough Community College, City University of New York, 2001 Oriental Boulevard, Brooklyn, NY 11235, USA
| | - Michael R Murphy
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| | - Galina Glazman
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| | - Mirjana Persaud
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| | - Frida E Kleiman
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| |
Collapse
|
39
|
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amanda J Walne
- Centre for Genomics and Child health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
40
|
Tummala H, Walne A, Collopy L, Cardoso S, de la Fuente J, Lawson S, Powell J, Cooper N, Foster A, Mohammed S, Plagnol V, Vulliamy T, Dokal I. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest 2015; 125:2151-60. [PMID: 25893599 DOI: 10.1172/jci78963] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.
Collapse
|
41
|
Abstract
Dyskeratosis congenita (DC) is an inherited BM failure disorder that is associated with mutations in genes involved with telomere function and maintenance; however, the genetic cause of many instances of DC remains uncharacterized. In this issue of the JCI, Tummala and colleagues identify mutations in the gene encoding the poly(A)-specific ribonuclease (PARN) in individuals with a severe form of DC in three different families. PARN deficiency resulted in decreased expression of genes required for telomere maintenance and an aberrant DNA damage response, including increased levels of p53. Together, the results of this study support PARN as a DC-associated gene and suggest a potential link between p53 and telomere shortening.
Collapse
|
42
|
Birol I, Raymond A, Chiu R, Nip KM, Jackman SD, Kreitzman M, Docking TR, Ennis CA, Robertson AG, Karsan A. Kleat: cleavage site analysis of transcriptomes. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2015:347-358. [PMID: 25592595 PMCID: PMC4350765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In eukaryotic cells, alternative cleavage of 3' untranslated regions (UTRs) can affect transcript stability, transport and translation. For polyadenylated (poly(A)) transcripts, cleavage sites can be characterized with short-read sequencing using specialized library construction methods. However, for large-scale cohort studies as well as for clinical sequencing applications, it is desirable to characterize such events using RNA-seq data, as the latter are already widely applied to identify other relevant information, such as mutations, alternative splicing and chimeric transcripts. Here we describe KLEAT, an analysis tool that uses de novo assembly of RNA-seq data to characterize cleavage sites on 3' UTRs. We demonstrate the performance of KLEAT on three cell line RNA-seq libraries constructed and sequenced by the ENCODE project, and assembled using Trans-ABySS. Validating the KLEAT predictions with matched ENCODE RNA-seq and RNA-PET libraries, we show that the tool has over 90% positive predictive value when there are at least three RNA-seq reads supporting a poly(A) tail and requiring at least three RNA-PET reads mapping within 100 nucleotides as validation. We also compare the performance of KLEAT with other popular RNA-seq analysis pipelines that reconstruct 3' UTR ends, and show that it performs favourably, based on an ROC-like curve.
Collapse
Affiliation(s)
- Inanç Birol
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang LN, Yan YB. Depletion of poly(A)-specific ribonuclease (PARN) inhibits proliferation of human gastric cancer cells by blocking cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:522-34. [PMID: 25499764 DOI: 10.1016/j.bbamcr.2014.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
Regulation of mRNA decay plays a crucial role in the post-transcriptional control of cell growth, survival, differentiation, death and senescence. Deadenylation is a rate-limiting step in the silence and degradation of the bulk of highly regulated mRNAs. However, the physiological functions of various deadenylases have not been fully deciphered. In this research, we found that poly(A)-specific ribonuclease (PARN) was upregulated in gastric tumor tissues and gastric cancer cell lines MKN28 and AGS. The cellular function of PARN was investigated by stably knocking down the endogenous PARN in the MKN28 and AGS cells. Our results showed that PARN-depletion significantly inhibited the proliferation of the two types of gastric cancer cells and promoted cell death, but did not significantly affect cell motility and invasion. The depletion of PARN arrested the gastric cancer cells at the G0/G1 phase by upregulating the expression levels of p53 and p21 but not p27. The mRNA stability of p53 was unaffected by PARN-knockdown in both types of cells. A significant stabilizing effect of PARN-depletion on p21 mRNA was observed in the AGS cells but not in the MKN28 cells. We further showed that the p21 3'-UTR triggered the action of PARN in the AGS cells. The dissimilar observations between the MKN28 and AGS cells as well as various stress conditions suggested that the action of PARN strongly relied on protein expression profiles of the cells, which led to heterogeneity in the stability of PARN-targeted mRNAs.
Collapse
Affiliation(s)
- Li-Na Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
PAPD5-mediated 3' adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc Natl Acad Sci U S A 2014; 111:11467-72. [PMID: 25049417 DOI: 10.1073/pnas.1317751111] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Next-generation sequencing experiments have shown that microRNAs (miRNAs) are expressed in many different isoforms (isomiRs), whose biological relevance is often unclear. We found that mature miR-21, the most widely researched miRNA because of its importance in human disease, is produced in two prevalent isomiR forms that differ by 1 nt at their 3' end, and moreover that the 3' end of miR-21 is posttranscriptionally adenylated by the noncanonical poly(A) polymerase PAPD5. PAPD5 knockdown caused an increase in the miR-21 expression level, suggesting that PAPD5-mediated adenylation of miR-21 leads to its degradation. Exoribonuclease knockdown experiments followed by small-RNA sequencing suggested that PARN degrades miR-21 in the 3'-to-5' direction. In accordance with this model, microarray expression profiling demonstrated that PAPD5 knockdown results in a down-regulation of miR-21 target mRNAs. We found that disruption of the miR-21 adenylation and degradation pathway is a general feature in tumors across a wide range of tissues, as evidenced by data from The Cancer Genome Atlas, as well as in the noncancerous proliferative disease psoriasis. We conclude that PAPD5 and PARN mediate degradation of oncogenic miRNA miR-21 through a tailing and trimming process, and that this pathway is disrupted in cancer and other proliferative diseases.
Collapse
|
45
|
Abstract
SIGNIFICANCE Production of proteins requires the synthesis, maturation, and export of mRNAs before their translation in the cytoplasm. Endogenous and exogenous sources of DNA damage pose a challenge to the co-ordinated regulation of gene expression, because the integrity of the DNA template can be compromised by DNA lesions. Cells recognize and respond to this DNA damage through a variety of DNA damage responses (DDRs). Failure to deal with DNA damage appropriately can lead to genomic instability and cancer. RECENT ADVANCES The p53 tumor suppressor plays a dominant role in DDR-dependent changes in gene expression, but this transcription factor is not solely responsible for all changes. Recent evidence indicates that RNA metabolism is integral to DDRs as well. In particular, post-transcriptional processes are emerging as important contributors to these complex responses. CRITICAL ISSUES Transcriptional, post-transcriptional, and translational regulation of gene expression is subject to changes in response to DNA damage. How these processes are intertwined in the unfolding of DDR is not fully understood. FUTURE DIRECTIONS Many complex regulatory responses combine to determine cell fate after DNA damage. Understanding how transcriptional, post-transcriptional, and translational processes interdigitate to create a web of regulatory interactions will be one of the key challenges to fully understand DDRs.
Collapse
Affiliation(s)
- Bruce C McKay
- Department of Biology, Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
46
|
Abstract
Messenger RNA deadenylation is a process that allows rapid regulation of gene expression in response to different cellular conditions. The change of the mRNA poly(A) tail length by the activation of deadenylation might regulate gene expression by affecting mRNA stability, mRNA transport, or translation initiation. Activation of deadenylation processes are highly regulated and associated with different cellular conditions such as cancer, development, mRNA surveillance, DNA damage response, and cell differentiation. In the last few years, new technologies for studying deadenylation have been developed. Here we overview concepts related to deadenylation and its regulation in eukaryotic cells. We also describe some of the most commonly used protocols to study deadenylation in eukaryotic cells.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Department of Chemistry, Hunter College and Graduate Center, City University of New York, 10065, New York, NY, USA
| | | | | |
Collapse
|