1
|
Hou Q, Hu W, Peterson L, Gilbert J, Liu R, Man HY. SIK1 Downregulates Synaptic AMPA Receptors and Contributes to Cognitive Defects in Alzheimer's Disease. Mol Neurobiol 2024; 61:10365-10380. [PMID: 38727976 DOI: 10.1007/s12035-024-04177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/22/2024] [Indexed: 11/24/2024]
Abstract
A reduction in AMPA receptor (AMPAR) expression and weakened synaptic activity is early cellular phenotypes in Alzheimer's disease (AD). However, the molecular processes leading to AMPAR downregulation are complex and remain less clear. Here, we report that the salt inducible kinase SIK1 interacts with AMPARs, leading to a reduced accumulation of AMPARs at synapses. SIK1 protein level is sensitive to amyloid beta (Aβ) and shows a marked increase in the presence of Aβ and in AD brains. In neurons, Aβ incubation causes redistribution of SIK1 to synaptic sites and enhances SIK1-GluA1 association. SIK1 function is required for Aβ-induced AMPAR reduction. Importantly, in 3xTG AD mice, knockdown of SIK1 in the brain leads to restoration of AMPAR expression and a rescue of the cognitive deficits. These findings indicate an important role for SIK1 in meditating the cellular and functional pathology in AD.
Collapse
Affiliation(s)
- Qingming Hou
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, 266071, China
| | - Wenting Hu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Lucy Peterson
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
| | - James Gilbert
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Rong Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Bonastre-Férez J, Giménez-Orenga K, Falaguera-Vera FJ, Garcia-Escudero M, Oltra E. Manual Therapy Improves Fibromyalgia Symptoms by Downregulating SIK1. Int J Mol Sci 2024; 25:9523. [PMID: 39273470 PMCID: PMC11394909 DOI: 10.3390/ijms25179523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Fibromyalgia (FM), classified by ICD-11 with code MG30.0, is a chronic debilitating disease characterized by widespread pain, fatigue, cognitive impairment, sleep, and intestinal alterations, among others. FM affects a large proportion of the worldwide population, with increased prevalence among women. The lack of understanding of its etiology and pathophysiology hampers the development of effective treatments. Our group had developed a manual therapy (MT) pressure-controlled custom manual protocol on FM showing hyperalgesia/allodynia, fatigue, and patient's quality of life benefits in a cohort of 38 FM cases (NCT04174300). With the aim of understanding the therapeutic molecular mechanisms triggered by MT, this study interrogated Peripheral Blood Mononuclear Cell (PBMC) transcriptomes from FM participants in this clinical trial using whole RNA sequencing (RNAseq) and reverse transcription followed by quantitative Polymerase Chain Reaction (RT-qPCR) technologies. The results show that the salt-induced kinase SIK1 gene was consistently downregulated by MT in FM, correlating with improvement of patient symptoms. In addition, this study compared the findings in a non-FM control cohort subjected to the same MT protocol, evidencing that those changes in SIK1 expression with MT only occurred in individuals with FM. This positions SIK1 as a potential biomarker to monitor response to MT and as a therapeutic target of FM, which will be further explored by continuation studies.
Collapse
Affiliation(s)
- Javier Bonastre-Férez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - María Garcia-Escudero
- School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Elisa Oltra
- Department of Pathology, School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
3
|
Shi F. Understanding the roles of salt-inducible kinases in cardiometabolic disease. Front Physiol 2024; 15:1426244. [PMID: 39081779 PMCID: PMC11286596 DOI: 10.3389/fphys.2024.1426244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Salt-inducible kinases (SIKs) are serine/threonine kinases of the adenosine monophosphate-activated protein kinase family. Acting as mediators of a broad array of neuronal and hormonal signaling pathways, SIKs play diverse roles in many physiological and pathological processes. Phosphorylation by the upstream kinase liver kinase B1 is required for SIK activation, while phosphorylation by protein kinase A induces the binding of 14-3-3 protein and leads to SIK inhibition. SIKs are subjected to auto-phosphorylation regulation and their activity can also be modulated by Ca2+/calmodulin-dependent protein kinase in response to cellular calcium influx. SIKs regulate the physiological processes through direct phosphorylation on various substrates, which include class IIa histone deacetylases, cAMP-regulated transcriptional coactivators, phosphatase methylesterase-1, among others. Accumulative body of studies have demonstrated that SIKs are important regulators of the cardiovascular system, including early works establishing their roles in sodium sensing and vascular homeostasis and recent progress in pulmonary arterial hypertension and pathological cardiac remodeling. SIKs also regulate inflammation, fibrosis, and metabolic homeostasis, which are essential pathological underpinnings of cardiovascular disease. The development of small molecule SIK inhibitors provides the translational opportunity to explore their potential as therapeutic targets for treating cardiometabolic disease in the future.
Collapse
Affiliation(s)
- Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
da Silva RP, Costa DM, da Cruz-Filho J, Santos TDO, Dos Anjos-Santos HC, Vasconcelos ABS, Heck LC, Kettelhut ÍDC, Navegantes LC, Dos Santos JR, de Souza PRM, Badauê-Passos D, Mecawi AS, DeSantana JM, Lustrino D. Reduced sympathetic activity is associated with the development of pain and muscle atrophy in a female rat model of fibromyalgia. Physiol Behav 2024; 281:114575. [PMID: 38692384 DOI: 10.1016/j.physbeh.2024.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Fibromyalgia (FM) is characterized by chronic widespread musculoskeletal pain accompanied by fatigue and muscle atrophy. Although its etiology is not known, studies have shown that FM patients exhibit altered function of the sympathetic nervous system (SNS), which regulates nociception and muscle plasticity. Nevertheless, the precise SNS-mediated mechanisms governing hyperalgesia and skeletal muscle atrophy in FM remain unclear. Thus, we employed two distinct FM-like pain models, involving intramuscular injections of acidic saline (pH 4.0) or carrageenan in prepubertal female rats, and evaluated the catecholamine content, adrenergic signaling and overall muscle proteolysis. Subsequently, we assessed the contribution of the SNS to the development of hyperalgesia and muscle atrophy in acidic saline-injected rats treated with clenbuterol (a selective β2-adrenergic receptor agonist) and in animals maintained under baseline conditions and subjected to epinephrine depletion through adrenodemedullation (ADM). Seven days after inducing an FM-like model with acidic saline or carrageenan, we observed widespread mechanical hyperalgesia along with loss of strength and/or muscle mass. These changes were associated with reduced catecholamine content, suggesting a common underlying mechanism. Notably, treatment with a β2-agonist alleviated hyperalgesia and prevented muscle atrophy in acidic saline-induced FM-like pain, while epinephrine depletion induced mechanical hyperalgesia and increased muscle proteolysis in animals under baseline conditions. Together, the results suggest that reduced sympathetic activity is involved in the development of pain and muscle atrophy in the murine model of FM analyzed.
Collapse
Affiliation(s)
- Raquel Prado da Silva
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Daniely Messias Costa
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - João da Cruz-Filho
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Tatiane de Oliveira Santos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Hevely Catharine Dos Anjos-Santos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Alan Bruno Silva Vasconcelos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lilian Carmo Heck
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ísis do Carmo Kettelhut
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Carlos Navegantes
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Ronaldo Dos Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Daniel Badauê-Passos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - André Souza Mecawi
- Department of Biophysics, São Paulo Medical School, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Josimari Melo DeSantana
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Danilo Lustrino
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
5
|
Yan Z, Yang J, Wei WT, Zhou ML, Mo DX, Wan X, Ma R, Wu MM, Huang JH, Liu YJ, Lv FH, Li MH. A time-resolved multi-omics atlas of transcriptional regulation in response to high-altitude hypoxia across whole-body tissues. Nat Commun 2024; 15:3970. [PMID: 38730227 PMCID: PMC11087590 DOI: 10.1038/s41467-024-48261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.
Collapse
Affiliation(s)
- Ze Yan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ji Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen-Tian Wei
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ming-Liang Zhou
- Sichuan Academy of Grassland Science, Chengdu, 611743, China
| | - Dong-Xin Mo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xing Wan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rui Ma
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mei-Ming Wu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia-Hui Huang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ya-Jing Liu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng-Hua Lv
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Meng-Hua Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Gao Y, Li H, Wang P, Wang J, Yao X. SIK1 suppresses colorectal cancer metastasis and chemoresistance via the TGF-β signaling pathway. J Cancer 2023; 14:2455-2467. [PMID: 37670972 PMCID: PMC10475365 DOI: 10.7150/jca.83708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023] Open
Abstract
In the present study, we investigated the role of salt-induced kinase 1 (SIK1), a serine/threonine kinase protein, in colorectal cancer (CRC). Despite the reported association of SIK1 with tumor malignancy suppression in various cancers, limited research has been conducted on its function in CRC. Our findings revealed that SIK1 expression was low in CRC cells. The results of a KEGG pathway analysis showed a strong association between SIK1 and the TGF-β signaling pathway. In addition, a coimmunoprecipitation assay validated the interaction between SIK1 and Smad7. Our data indicate that SIK1 inhibited the phosphorylation of Smad2, a critical molecule in the Smad-related TGF-β pathway, and downstream target genes of the TGF-β pathway. Furthermore, SIK1 was found to inhibit indicators of epithelial-mesenchymal transition (EMT) and reverse oxaliplatin resistance in CRC. Additionally, SIK1 reduced cell migration and invasion. Our results suggest that the inhibitory effect of SIK1 on the TGF-β pathway contributes to the suppression of metastasis and oxaliplatin chemoresistance in CRC. However, this effect was reversed by galunisertib (LY2157299). In conclusion, our findings provide novel insights into the role of SIK1 in the regulation of the TGF-β pathway in CRC, suggesting its potential as a therapeutic target for the treatment of CRC. Further studies are required to fully characterize the mechanism underlying these observations and to validate these findings in animal models.
Collapse
Affiliation(s)
- Yuan Gao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
| | - Hongming Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- Department of Colorectal surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Ping Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
| | - Junjiang Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Xueqing Yao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
| |
Collapse
|
7
|
Murata S, Sasaki T, Yamauchi Y, Shimizu M, Sato R. Maslinic acid activates mTORC1 and human TGR5 and induces skeletal muscle hypertrophy. Biosci Biotechnol Biochem 2021; 85:2311-2321. [PMID: 34459485 DOI: 10.1093/bbb/zbab151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Maslinic acid, a naturally occurring pentacyclic triterpene in more than 30 plants (including olives), reportedly increases human muscle mass and muscle strength; however, the underlying molecular mechanism remains unknown. C57BL/6J mice were fed a standard diet or supplemented with 0.27% maslinic acid for 4 weeks, and their skeletal muscle mass was measured. Mice that consumed maslinic acid displayed significant increases in gastrocnemius and soleus muscle mass. Cultured mouse-C2C12 skeletal muscle cells were treated with mammalian target of rapamycin complex 1 (mTORC1) or protein kinase b (Akt) inhibitor, and protein synthesis was quantified. Maslinic acid accelerated protein synthesis via mTORC1 activation independent of Akt. Furthermore, maslinic acid activated human Takeda G protein-coupled receptor 5 (TGR5) more strongly than mouse TGR5, augmenting the expression of several genes related to muscular hypertrophy. Maslinic acid activated mTORC1 and human TGR5, implying its contribution to human muscular hypertrophy through these effects.
Collapse
Affiliation(s)
- Shotaro Murata
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Sasaki
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Yamauchi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
8
|
Ma W, Cai Y, Shen Y, Chen X, Zhang L, Ji Y, Chen Z, Zhu J, Yang X, Sun H. HDAC4 Knockdown Alleviates Denervation-Induced Muscle Atrophy by Inhibiting Myogenin-Dependent Atrogene Activation. Front Cell Neurosci 2021; 15:663384. [PMID: 34276308 PMCID: PMC8278478 DOI: 10.3389/fncel.2021.663384] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Denervation can activate the catabolic pathway in skeletal muscle and lead to progressive skeletal muscle atrophy. At present, there is no effective treatment for muscle atrophy. Histone deacetylase 4 (HDAC4) has recently been found to be closely related to muscle atrophy, but the underlying mechanism of HDAC4 in denervation-induced muscle atrophy have not been described clearly yet. In this study, we found that the expression of HDAC4 increased significantly in denervated skeletal muscle. HDAC4 inhibition can effectively diminish denervation-induced muscle atrophy, reduce the expression of muscle specific E3 ubiquitin ligase (MuRF1 and MAFbx) and autophagy related proteins (Atg7, LC3B, PINK1 and BNIP3), inhibit the transformation of type I fibers to type II fibers, and enhance the expression of SIRT1 and PGC-1 α. Transcriptome sequencing and bioinformatics analysis was performed and suggested that HDAC4 may be involved in denervation-induced muscle atrophy by regulating the response to denervation involved in the regulation of muscle adaptation, cell division, cell cycle, apoptotic process, skeletal muscle atrophy, and cell differentiation. STRING analysis showed that HDAC4 may be involved in the process of muscle atrophy by directly regulating myogenin (MYOG), cell cycle inhibitor p21 (CDKN1A) and salt induced kinase 1 (SIK1). MYOG was significantly increased in denervated skeletal muscle, and MYOG inhibition could significantly alleviate denervation-induced muscle atrophy, accompanied by the decreased MuRF1 and MAFbx. MYOG overexpression could reduce the protective effect of HDAC4 inhibition on denervation-induced muscle atrophy, as evidenced by the decreased muscle mass and cross-sectional area of muscle fibers, and the increased mitophagy. Taken together, HDAC4 inhibition can alleviate denervation-induced muscle atrophy by reducing MYOG expression, and HDAC4 is also directly related to CDKN1A and SIK1 in skeletal muscle, which suggests that HDAC4 inhibitors may be a potential drug for the treatment of neurogenic muscle atrophy. These results not only enrich the molecular regulation mechanism of denervation-induced muscle atrophy, but also provide the experimental basis for HDAC4-MYOG axis as a new target for the prevention and treatment of muscular atrophy.
Collapse
Affiliation(s)
- Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Cai
- Department of Neurology, People's Hospital of Binhai County, Yancheng, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zehao Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
9
|
AMPKα-like proteins as LKB1 downstream targets in cell physiology and cancer. J Mol Med (Berl) 2021; 99:651-662. [PMID: 33661342 DOI: 10.1007/s00109-021-02040-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
One of the key events in cancer development is the ability of tumor cells to overcome nutrient deprivation and hypoxia. Among proteins performing metabolic adaptation to the various cellular nutrient conditions, liver kinase B 1 (LKB1) and its main downstream target adenosine monophosphate (AMP)-activated protein kinase α (AMPKα) are important sensors of energy requirements within the cell. Although LKB1 was originally described as a tumor suppressor, given its role in metabolism, it potentially acts as a double-edged sword. AMPKα, a master regulator of cell energy demands, is activated when ATP level drops under a certain threshold, responding accordingly through its downstream targets. Twelve downstream kinase targets of LKB1 have been described as AMPKα-like proteins. This group is comprised of novel (nua) kinase family (NUAK) kinases (NUAK1 and 2) linked to cell cycle progression and ultraviolet (UV)-damage; microtubule affinity regulating kinases (MARKs) (MARK1, MARK2, MARK3, and MARK4) that are involved in cell polarity; salt inducible kinases (SIK) (SIK1, SIK2, also known as Qin-induced kinase or QIK and SIK3) that are implicated in cell metabolism and adipose tissue development and mitotic regulation; maternal embryonic leuzine zipper kinase (MELK) that regulate oocyte maturation; and finally brain selective kinases (BRSKs) (BRSK1 and 2), which have been mainly characterized in the brain due to their role in neuronal polarization. Thus, many efforts have been made in order to harness LKB1 kinase and its downstream targets as a possible therapeutic hub in tumor development and propagation. In this review, we describe LKB1 and its downstream target AMPK summarize major functions of various AMPK-like proteins, while focusing on biological functions of BRSK1 and 2 in different models.
Collapse
|
10
|
Sun Z, Jiang Q, Li J, Guo J. The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 2020; 5:150. [PMID: 32788639 PMCID: PMC7423983 DOI: 10.1038/s41392-020-00265-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
Salt-inducible kinases (SIKs) belong to AMP-activated protein kinase (AMPK) family, and functions mainly involve in regulating energy response-related physiological processes, such as gluconeogenesis and lipid metabolism. However, compared with another well-established energy-response kinase AMPK, SIK roles in human diseases, especially in diabetes and tumorigenesis, are rarely investigated. Recently, the pilot roles of SIKs in tumorigenesis have begun to attract more attention due to the finding that the tumor suppressor role of LKB1 in non-small-cell lung cancers (NSCLCs) is unexpectedly mediated by the SIK but not AMPK kinases. Thus, here we tend to comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for SIKs, and shed light on SIKs as the potential therapeutic targets for cancer therapies.
Collapse
Affiliation(s)
- Zicheng Sun
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.,Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
11
|
Activation of SIK1 by phanginin A inhibits hepatic gluconeogenesis by increasing PDE4 activity and suppressing the cAMP signaling pathway. Mol Metab 2020; 41:101045. [PMID: 32599076 PMCID: PMC7381706 DOI: 10.1016/j.molmet.2020.101045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
Objective Salt-induced kinase 1 (SIK1) acts as a key modulator in many physiological processes. However, the effects of SIK1 on gluconeogenesis and the underlying mechanisms have not been fully elucidated. In this study, we found that a natural compound phanginin A could activate SIK1 and further inhibit gluconeogenesis. The mechanisms by which phanginin A activates SIK1 and inhibits gluconeogenesis were explored in primary mouse hepatocytes, and the effects of phanginin A on glucose homeostasis were investigated in ob/ob mice. Methods The effects of phanginin A on gluconeogenesis and SIK1 phosphorylation were examined in primary mouse hepatocytes. Pan-SIK inhibitor and siRNA-mediated knockdown were used to elucidate the involvement of SIK1 activation in phanginin A-reduced gluconeogenesis. LKB1 knockdown was used to explore how phanginin A activated SIK1. SIK1 overexpression was used to evaluate its effect on gluconeogenesis, PDE4 activity, and the cAMP pathway. The acute and chronic effects of phanginin A on metabolic abnormalities were observed in ob/ob mice. Results Phanginin A significantly increased SIK1 phosphorylation through LKB1 and further suppressed gluconeogenesis by increasing PDE4 activity and inhibiting the cAMP/PKA/CREB pathway in primary mouse hepatocytes, and this effect was blocked by pan-SIK inhibitor HG-9-91-01 or siRNA-mediated knockdown of SIK1. Overexpression of SIK1 in hepatocytes increased PDE4 activity, reduced cAMP accumulation, and thereby inhibited gluconeogenesis. Acute treatment with phanginin A reduced gluconeogenesis in vivo, accompanied by increased SIK1 phosphorylation and PDE4 activity in the liver. Long-term treatment of phanginin A profoundly reduced blood glucose levels and improved glucose tolerance and dyslipidemia in ob/ob mice. Conclusion We discovered an unrecognized effect of phanginin A in suppressing hepatic gluconeogenesis and revealed a novel mechanism that activation of SIK1 by phanginin A could inhibit gluconeogenesis by increasing PDE4 activity and suppressing the cAMP/PKA/CREB pathway in the liver. We also highlighted the potential value of phanginin A as a lead compound for treating type 2 diabetes. Phanginin A inhibits gluconeogenesis in primary mouse hepatocytes. Phanginin A increases hepatic SIK1 phosphorylation both in vitro and in vivo. Activation of SIK1 increases PDE4 activity and suppresses the cAMP signaling pathway. Activation of SIK1 inhibits gluconeogenesis by regulating the PDE4/cAMP/PKA/CREB pathway. Phanginin A improves metabolic disorders in ob/ob mice.
Collapse
|
12
|
Msheik H, El Hayek S, Bari MF, Azar J, Abou-Kheir W, Kobeissy F, Vatish M, Daoud G. Transcriptomic profiling of trophoblast fusion using BeWo and JEG-3 cell lines. Mol Hum Reprod 2020; 25:811-824. [PMID: 31778538 DOI: 10.1093/molehr/gaz061] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/07/2019] [Indexed: 01/26/2023] Open
Abstract
In human placenta, alteration in trophoblast differentiation has a major impact on placental maintenance and integrity. However, little is known about the mechanisms that control cytotrophoblast fusion. The BeWo cell line is used to study placental function, since it forms syncytium and secretes hormones after treatment with cAMP or forskolin. In contrast, the JEG-3 cell line fails to undergo substantial fusion. Therefore, BeWo and JEG-3 cells were used to identify a set of genes responsible for trophoblast fusion. Cells were treated with forskolin for 48 h to induce fusion. RNA was extracted, hybridised to Affymetrix HuGene ST1.0 arrays and analysed using system biology. Trophoblast differentiation was evaluated by real-time PCR and immunocytochemistry analysis. Moreover, some of the identified genes were validated by real-time PCR and their functional capacity was demonstrated by western blot using phospho-specific antibodies and CRISPR/cas9 knockdown experiments. Our results identified a list of 32 altered genes in fused BeWo cells compared to JEG-3 cells after forskolin treatment. Among these genes, four were validated by RT-PCR, including salt-inducible kinase 1 (SIK1) gene which is specifically upregulated in BeWo cells upon fusion and activated after 2 min with forskolin. Moreover, silencing of SIK1 completely abolished the fusion. Finally, SIK1 was shown to be at the center of many biological and functional processes, suggesting that it might play a role in trophoblast differentiation. In conclusion, this study identified new target genes implicated in trophoblast fusion. More studies are required to investigate the role of these genes in some placental pathology.
Collapse
Affiliation(s)
- H Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - S El Hayek
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - M Furqan Bari
- Department of Pathology, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - J Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - W Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - F Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - M Vatish
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK
| | - G Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
13
|
Nishimori S, O’Meara MJ, Castro CD, Noda H, Cetinbas M, da Silva Martins J, Ayturk U, Brooks DJ, Bruce M, Nagata M, Ono W, Janton CJ, Bouxsein ML, Foretz M, Berdeaux R, Sadreyev RI, Gardella TJ, Jüppner H, Kronenberg HM, Wein MN. Salt-inducible kinases dictate parathyroid hormone 1 receptor action in bone development and remodeling. J Clin Invest 2019; 129:5187-5203. [PMID: 31430259 PMCID: PMC6877304 DOI: 10.1172/jci130126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
The parathyroid hormone 1 receptor (PTH1R) mediates the biologic actions of parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP). Here, we showed that salt-inducible kinases (SIKs) are key kinases that control the skeletal actions downstream of PTH1R and that this GPCR, when activated, inhibited cellular SIK activity. Sik gene deletion led to phenotypic changes that were remarkably similar to models of increased PTH1R signaling. In growth plate chondrocytes, PTHrP inhibited SIK3, and ablation of this kinase in proliferating chondrocytes rescued perinatal lethality of PTHrP-null mice. Combined deletion of Sik2 and Sik3 in osteoblasts and osteocytes led to a dramatic increase in bone mass that closely resembled the skeletal and molecular phenotypes observed when these bone cells express a constitutively active PTH1R that causes Jansen's metaphyseal chondrodysplasia. Finally, genetic evidence demonstrated that class IIa histone deacetylases were key PTH1R-regulated SIK substrates in both chondrocytes and osteocytes. Taken together, our findings establish that SIK inhibition is central to PTH1R action in bone development and remodeling. Furthermore, this work highlights the key role of cAMP-regulated SIKs downstream of GPCR action.
Collapse
Affiliation(s)
- Shigeki Nishimori
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Maureen J. O’Meara
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian D. Castro
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroshi Noda
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Chugai Pharmaceutical Co., Tokyo, Japan
| | - Murat Cetinbas
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janaina da Silva Martins
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ugur Ayturk
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel J. Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Bruce
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Christopher J. Janton
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L. Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J. Gardella
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Salt-inducible kinase 1 regulates bone anabolism via the CRTC1-CREB-Id1 axis. Cell Death Dis 2019; 10:826. [PMID: 31672960 PMCID: PMC6823377 DOI: 10.1038/s41419-019-1915-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
New bone anabolic agents for the effective treatment of bone metabolic diseases like osteoporosis are of high clinical demand. In the present study, we reveal the function of salt-inducible kinase 1 (SIK1) in regulating osteoblast differentiation. Gene knockdown of SIK1 but not of SIK2 or SIK3 expression in primary preosteoblasts increased osteoblast differentiation and bone matrix mineralization. SIK1 also regulated the proliferation of osteoblastic precursor cells in osteogenesis. This negative control of osteoblasts required the catalytic activity of SIK1. SIK1 phosphorylated CREB regulated transcription coactivator 1 (CRTC1), preventing CRTC1 from enhancing CREB transcriptional activity for the expression of osteogenic genes like Id1. Furthermore, SIK1 knockout (KO) mice had higher bone mass, osteoblast number, and bone formation rate versus littermate wild-type (WT) mice. Preosteoblasts from SIK1 KO mice showed more osteoblastogenic potential than did WT cells, whereas osteoclast generation among KO and WT precursors was indifferent. In addition, bone morphogenic protein 2 (BMP2) suppressed both SIK1 expression as well as SIK1 activity by protein kinase A (PKA)–dependent mechanisms to stimulate osteogenesis. Taken together, our results indicate that SIK1 is a key negative regulator of preosteoblast proliferation and osteoblast differentiation and that the repression of SIK1 is crucial for BMP2 signaling for osteogenesis. Therefore, we propose SIK1 to be a useful therapeutic target for the development of bone anabolic strategies.
Collapse
|
15
|
Salt Inducible Kinase Signaling Networks: Implications for Acute Kidney Injury and Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20133219. [PMID: 31262033 PMCID: PMC6651122 DOI: 10.3390/ijms20133219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
A number of signal transduction pathways are activated during Acute Kidney Injury (AKI). Of particular interest is the Salt Inducible Kinase (SIK) signaling network, and its effects on the Renal Proximal Tubule (RPT), one of the primary targets of injury in AKI. The SIK1 network is activated in the RPT following an increase in intracellular Na+ (Na+in), resulting in an increase in Na,K-ATPase activity, in addition to the phosphorylation of Class IIa Histone Deacetylases (HDACs). In addition, activated SIKs repress transcriptional regulation mediated by the interaction between cAMP Regulatory Element Binding Protein (CREB) and CREB Regulated Transcriptional Coactivators (CRTCs). Through their transcriptional effects, members of the SIK family regulate a number of metabolic processes, including such cellular processes regulated during AKI as fatty acid metabolism and mitochondrial biogenesis. SIKs are involved in regulating a number of other cellular events which occur during AKI, including apoptosis, the Epithelial to Mesenchymal Transition (EMT), and cell division. Recently, the different SIK kinase isoforms have emerged as promising drug targets, more than 20 new SIK2 inhibitors and activators having been identified by MALDI-TOF screening assays. Their implementation in the future should prove to be important in such renal disease states as AKI.
Collapse
|
16
|
Gazda MA, Andrade P, Afonso S, Dilyte J, Archer JP, Lopes RJ, Faria R, Carneiro M. Signatures of Selection on Standing Genetic Variation Underlie Athletic and Navigational Performance in Racing Pigeons. Mol Biol Evol 2019; 35:1176-1189. [PMID: 29547891 DOI: 10.1093/molbev/msy030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Racing pigeons have been selectively bred to find their way home quickly over what are often extremely long distances. This breed is of substantial commercial value and is also an excellent avian model to gain empirical insights into the evolution of traits associated with flying performance and spatial orientation. Here, we investigate the molecular basis of the superior athletic and navigational capabilities of racing pigeons using whole-genome and RNA sequencing data. We inferred multiple signatures of positive selection distributed across the genome of racing pigeons. The strongest signature overlapped the CASK gene, a gene implicated in the formation of neuromuscular junctions. However, no diagnostic alleles were found between racing pigeons and other breeds, and only a small proportion of highly differentiated variants were exclusively detected in racing pigeons. We can thus conclude that very few individual genetic changes, if any, are either strictly necessary or sufficient for superior athletics and navigation. Gene expression analysis between racing and nonracing breeds revealed modest differences in muscle (213) and brain (29). These transcripts, however, showed only slightly elevated levels of genetic differentiation between the two groups, suggesting that most differential expression is not causative but likely a consequence of alterations in regulatory networks. Our results show that the unique suite of traits that enable fast flight, long endurance, and accurate navigation in racing pigeons, do not result from few loci acting as master switches but likely from a polygenic architecture that leveraged standing genetic variation available at the onset of the breed formation.
Collapse
Affiliation(s)
- Malgorzata A Gazda
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro Andrade
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Jolita Dilyte
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - John P Archer
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Ricardo J Lopes
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Rui Faria
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Insulin induces Thr484 phosphorylation and stabilization of SIK2 in adipocytes. Cell Signal 2019; 55:73-80. [DOI: 10.1016/j.cellsig.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/17/2022]
|
18
|
Berdeaux R, Hutchins C. Anabolic and Pro-metabolic Functions of CREB-CRTC in Skeletal Muscle: Advantages and Obstacles for Type 2 Diabetes and Cancer Cachexia. Front Endocrinol (Lausanne) 2019; 10:535. [PMID: 31428057 PMCID: PMC6688074 DOI: 10.3389/fendo.2019.00535] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022] Open
Abstract
cAMP is one of the earliest described mediators of hormone action in response to physiologic stress that allows acute stress responses and adaptation in every tissue. The classic role of cAMP signaling in metabolic tissues is to regulate nutrient partitioning. In response to acute stress, such as epinephrine released during strenuous exercise or fasting, intramuscular cAMP liberates glucose from glycogen and fatty acids from triglycerides. In the long-term, activation of Gs-coupled GPCRs stimulates muscle growth (hypertrophy) and metabolic adaptation through multiple pathways that culminate in a net increase of protein synthesis, mitochondrial biogenesis, and improved metabolic efficiency. This review focuses on regulation, function, and transcriptional targets of CREB (cAMP response element binding protein) and CRTCs (CREB regulated transcriptional coactivators) in skeletal muscle and the potential for targeting this pathway to sustain muscle mass and metabolic function in type 2 diabetes and cancer. Although the muscle-autonomous roles of these proteins might render them excellent targets for both conditions, pharmacologic targeting must be approached with caution. Gain of CREB-CRTC function is associated with excess liver glucose output in type 2 diabetes, and growing evidence implicates CREB-CRTC activation in proliferation and invasion of different types of cancer cells. We conclude that deeper investigation to identify skeletal muscle specific regulatory mechanisms that govern CREB-CRTC transcriptional activity is needed to safely take advantage of their potent effects to invigorate skeletal muscle to potentially improve health in people with type 2 diabetes and cancer.
Collapse
Affiliation(s)
- Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center Houston, Houston, TX, United States
- Graduate Program in Biochemistry and Cell Biology, The MD Anderson-UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- *Correspondence: Rebecca Berdeaux
| | - Chase Hutchins
- Department of Integrative Biology and Pharmacology, Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center Houston, Houston, TX, United States
| |
Collapse
|
19
|
Genetic assessment of inbred chicken lines indicates genomic signatures of resistance to Marek's disease. J Anim Sci Biotechnol 2018; 9:65. [PMID: 30221000 PMCID: PMC6136188 DOI: 10.1186/s40104-018-0281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Marek’s disease (MD) is a highly contagious pathogenic and oncogenic disease primarily affecting chickens. However, the mechanisms of genetic resistance for MD are complex and not fully understood. MD-resistant line 63 and MD-susceptible line 72 are two highly inbred progenitor lines of White Leghorn. Recombinant Congenic Strains (RCS) were developed from these two lines, which show varied susceptibility to MD. Results We investigated genetic structure and genomic signatures across the genome, including the line 63 and line 72, six RCSs, and two reciprocally crossed flocks between the lines 63 and 72 (F1 63 × 72 and F1 72 × 63) using Affymetrix® Axiom® HD 600 K genotyping array. We observed 18 chickens from RCS lines were specifically clustered into resistance sub-groups distributed around line 63. Additionally, homozygosity analysis was employed to explore potential genetic components related to MD resistance, while runs of homozygosity (ROH) are regions of the genome where the identical haplotypes are inherited from each parent. We found several genes including SIK, SOX1, LIG4, SIK1 and TNFSF13B were contained in ROH region identified in resistant group (line 63 and RCS), and these genes have been reported that are contribute to immunology and survival. Based on FST based population differential analysis, we also identified important genes related to cell death and anti-apoptosis, including AKT1, API5, CDH13, CFDP and USP15, which could be involved in divergent selection during inbreeding process. Conclusions Our findings offer valuable insights for understanding the genetic mechanism of resistance to MD and the identified genes could be considered as candidate biomarkers in further evaluation. Electronic supplementary material The online version of this article (10.1186/s40104-018-0281-x) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Taub M. Gene Level Regulation of Na,K-ATPase in the Renal Proximal Tubule Is Controlled by Two Independent but Interacting Regulatory Mechanisms Involving Salt Inducible Kinase 1 and CREB-Regulated Transcriptional Coactivators. Int J Mol Sci 2018; 19:E2086. [PMID: 30021947 PMCID: PMC6073390 DOI: 10.3390/ijms19072086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
For many years, studies concerning the regulation of Na,K-ATPase were restricted to acute regulatory mechanisms, which affected the phosphorylation of Na,K-ATPase, and thus its retention on the plasma membrane. However, in recent years, this focus has changed. Na,K-ATPase has been established as a signal transducer, which becomes part of a signaling complex as a consequence of ouabain binding. Na,K-ATPase within this signaling complex is localized in caveolae, where Na,K-ATPase has also been observed to regulate Inositol 1,4,5-Trisphosphate Receptor (IP3R)-mediated calcium release. This latter association has been implicated as playing a role in signaling by G Protein Coupled Receptors (GPCRs). Here, the consequences of signaling by renal effectors that act via such GPCRs are reviewed, including their regulatory effects on Na,K-ATPase gene expression in the renal proximal tubule (RPT). Two major types of gene regulation entail signaling by Salt Inducible Kinase 1 (SIK1). On one hand, SIK1 acts so as to block signaling via cAMP Response Element (CRE) Binding Protein (CREB) Regulated Transcriptional Coactivators (CRTCs) and on the other hand, SIK1 acts so as to stimulate signaling via the Myocyte Enhancer Factor 2 (MEF2)/nuclear factor of activated T cell (NFAT) regulated genes. Ultimate consequences of these pathways include regulatory effects which alter the rate of transcription of the Na,K-ATPase β1 subunit gene atp1b1 by CREB, as well as by MEF2/NFAT.
Collapse
Affiliation(s)
- Mary Taub
- Biochemistry Dept., Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Suite 4902, Buffalo, NY 14203, USA.
| |
Collapse
|
21
|
Sasaki T, Kuboyama A, Mita M, Murata S, Shimizu M, Inoue J, Mori K, Sato R. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem 2018; 293:10322-10332. [PMID: 29773650 DOI: 10.1074/jbc.ra118.002733] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
TGR5 (also known as G protein-coupled bile acid receptor 1, GPBAR1) is a G protein-coupled bile acid receptor that is expressed in many diverse tissues. TGR5 is involved in various metabolic processes, including glucose metabolism and energy expenditure; however, TGR5's function in skeletal muscle is not fully understood. Using both gain- and loss-of-function mouse models, we demonstrate here that Tgr5 activation promotes muscle cell differentiation and muscle hypertrophy. Both young and old transgenic mice with muscle-specific Tgr5 expression exhibited increased muscle strength. Moreover, we found that Tgr5 expression is increased by the unfolded protein response (UPR), which is an adaptive response required for maintenance of endoplasmic reticulum (ER) homeostasis. Both ER stress response element (ERSE)- and unfolded protein response element (UPRE)-like sites are present in the 5' upstream region of the Tgr5 gene promoter and are essential for Tgr5 expression by Atf6α (activating transcription factor 6α), a well known UPR-activated transcriptional regulator. We observed that in the skeletal muscle of mice, exercise-induced UPR increases Tgr5 expression, an effect that was abrogated in Atf6α KO mice, indicating that Atf6α is essential for this response. These findings indicate that the bile acid receptor Tgr5 contributes to improved muscle function and provide an additional explanation for the beneficial effects of exercise on skeletal muscle activity.
Collapse
Affiliation(s)
| | | | - Moeko Mita
- From the Food Biochemistry Laboratory and
| | | | | | - Jun Inoue
- From the Food Biochemistry Laboratory and
| | - Kazutoshi Mori
- the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Ryuichiro Sato
- From the Food Biochemistry Laboratory and .,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
22
|
Qu C, Qu Y. Down-regulation of salt-inducible kinase 1 (SIK1) is mediated by RNF2 in hepatocarcinogenesis. Oncotarget 2018; 8:3144-3155. [PMID: 27911266 PMCID: PMC5356871 DOI: 10.18632/oncotarget.13673] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
Our previous study reported that down-regulation of SIK1 accelerates the growth and invasion of hepatocellular carcinoma (HCC). However, the underlying mechanism leading to SIK1 down-regulation in HCC largely remains to be determined. Herein, we demonstrated that RNF2 expression is negatively correlated with SIK1 levels in HCC tissues. Kaplan-Meier analysis of tumor samples revealed that high RNF2 expression with concurrent low SIK1 expression is associated with poor overall survival. The down-regulation of RNF2 expression in HCC cells significantly reduces tumor cell growth and metastasis, while the simultaneous down-regulation of both RNF2 and SIK1 restores tumor cell growth in vitro and in tumor xenograft models. Mechanistically, we identified RNF2 as an E3 ligase that targets SIK1 for degradation. We further demonstrated that direct physical interaction between RNF2 and SIK1 triggers SIK1 down-regulation in HCC cells. These data suggest that RNF2 is an important upstream negative regulator of SIK1 and that restoration of SIK1 levels induced by loss of RNF2 inhibited HCC cell growth and promoted apoptosis, which may represent a promising therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Chao Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yaqin Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Vanlandewijck M, Dadras MS, Lomnytska M, Mahzabin T, Lee Miller M, Busch C, Brunak S, Heldin CH, Moustakas A. The protein kinase SIK downregulates the polarity protein Par3. Oncotarget 2018; 9:5716-5735. [PMID: 29464029 PMCID: PMC5814169 DOI: 10.18632/oncotarget.23788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/26/2017] [Indexed: 01/10/2023] Open
Abstract
The multifunctional cytokine transforming growth factor β (TGFβ) controls homeostasis and disease during embryonic and adult life. TGFβ alters epithelial cell differentiation by inducing epithelial-mesenchymal transition (EMT), which involves downregulation of several cell-cell junctional constituents. Little is understood about the mechanism of tight junction disassembly by TGFβ. We found that one of the newly identified gene targets of TGFβ, encoding the serine/threonine kinase salt-inducible kinase 1 (SIK), controls tight junction dynamics. We provide bioinformatic and biochemical evidence that SIK can potentially phosphorylate the polarity complex protein Par3, an established regulator of tight junction assembly. SIK associates with Par3, and induces degradation of Par3 that can be prevented by proteasomal and lysosomal inhibition or by mutation of Ser885, a putative phosphorylation site on Par3. Functionally, this mechanism impacts on tight junction downregulation. Furthermore, SIK contributes to the loss of epithelial polarity and examination of advanced and invasive human cancers of diverse origin displayed high levels of SIK expression and a corresponding low expression of Par3 protein. High SIK mRNA expression also correlates with lower chance for survival in various carcinomas. In specific human breast cancer samples, aneuploidy of tumor cells best correlated with cytoplasmic SIK distribution, and SIK expression correlated with TGFβ/Smad signaling activity and low or undetectable expression of Par3. Our model suggests that SIK can act directly on the polarity protein Par3 to regulate tight junction assembly.
Collapse
Affiliation(s)
- Michael Vanlandewijck
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Integrated Cardio Metabolic Center, Novum, Karolinska Institute, Huddinge, Sweden
| | - Mahsa Shahidi Dadras
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marta Lomnytska
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institute, Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Academic Uppsala Hospital, Uppsala, Sweden
| | - Tanzila Mahzabin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA, Australia
| | - Martin Lee Miller
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Cancer Research UK, Cambridge Institute, University of Cambridge, Li Ka Shing Center, Cambridge, UK
| | - Christer Busch
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Sonntag T, Vaughan JM, Montminy M. 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). FEBS J 2018; 285:467-480. [PMID: 29211348 DOI: 10.1111/febs.14351] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 01/02/2023]
Abstract
The salt-inducible kinase (SIK) family regulates cellular gene expression via the phosphorylation of cAMP-regulated transcriptional coactivators (CRTCs) and class IIA histone deacetylases, which are sequestered in the cytoplasm by phosphorylation-dependent 14-3-3 interactions. SIK activity toward these substrates is inhibited by increases in cAMP signaling, although the underlying mechanism is unclear. Here, we show that the protein kinase A (PKA)-dependent phosphorylation of SIKs inhibits their catalytic activity by inducing 14-3-3 protein binding. SIK1 and SIK3 contain two functional PKA/14-3-3 sites, while SIK2 has four. In keeping with the dimeric nature of 14-3-3s, the presence of multiple binding sites within target proteins dramatically increases binding affinity. As a result, loss of a single 14-3-3-binding site in SIK1 and SIK3 abolished 14-3-3 association and rendered them insensitive to cAMP. In contrast, mutation of three sites in SIK2 was necessary to fully block cAMP regulation. Superimposed on the effects of PKA phosphorylation and 14-3-3 association, an evolutionary conserved domain in SIK1 and SIK2 (the so called RK-rich region; 595-624 in hSIK2) is also required for the inhibition of SIK2 activity. Collectively, these results point to a dual role for 14-3-3 proteins in repressing a family of Ser/Thr kinases as well as their substrates.
Collapse
Affiliation(s)
- Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
25
|
Di Giorgio E, Brancolini C. Regulation of class IIa HDAC activities: it is not only matter of subcellular localization. Epigenomics 2016; 8:251-69. [DOI: 10.2217/epi.15.106] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to environmental cues, enzymes that influence the functions of proteins, through reversible post-translational modifications supervise the coordination of cell behavior like orchestral conductors. Class IIa histone deacetylases (HDACs) belong to this category. Even though in vertebrates these deacetylases have discarded the core enzymatic activity, class IIa HDACs can assemble into multiprotein complexes devoted to transcriptional reprogramming, including but not limited to epigenetic changes. Class IIa HDACs are subjected to variegated and interconnected layers of regulation, which reflect the wide range of biological responses under the scrutiny of this gene family. Here, we discuss about the key mechanisms that fine tune class IIa HDACs activities.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| |
Collapse
|
26
|
Hu Z, Hu J, Shen WJ, Kraemer FB, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry 2015; 54:6917-30. [PMID: 26567857 DOI: 10.1021/acs.biochem.5b00147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Salt-inducible kinase 1 (SIK1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMPK family of kinases. SIK1 expression is rapidly induced in Y1 adrenal cells in response to ACTH via the cAMP-PKA signaling cascade, and it has been suggested that an increased level of SIK1 expression inhibits adrenal steroidogenesis by repressing the cAMP-dependent transcription of steroidogenic proteins, CYP11A1 and StAR, by attenuating CREB transcriptional activity. Here we show that SIK1 stimulates adrenal steroidogenesis by modulating the selective HDL-CE transport activity of SR-B1. Overexpression of SIK1 increases cAMP-stimulated and SR-B1-mediated selective HDL-BODIPY-CE uptake in cell lines without impacting SR-B1 protein levels, whereas knockdown of SIK1 attenuated cAMP-stimulated selective HDL-BODIPY-CE uptake. SIK1 forms a complex with SR-B1 by interacting with its cytoplasmic C-terminal domain, and in vitro kinase activity measurements indicate that SIK1 can phosphorylate the C-terminal domain of SR-B1. Among potential phosphorylation sites, SIK1-catalyzed phosphorylation of Ser496 is critical for SIK1 stimulation of the selective CE transport activity of SR-B1. Mutational studies further demonstrated that both the intact catalytic activity of SIK1 and its PKA-catalyzed phosphorylation are essential for SIK1 stimulation of SR-B1 activity. Finally, overexpression of SIK1 caused time-dependent increases in SR-B1-mediated and HDL-supported steroid production in Y1 cells; however, these effects were lost with knockdown of SR-B1. Taken together, these studies establish a role for SIK1 in the positive regulation of selective HDL-CE transport function of SR-B1 and steroidogenesis and suggest a potential mechanism for SIK1 signaling in modulating SR-B1-mediated selective CE uptake and associated steroidogenesis.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Jie Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| |
Collapse
|
27
|
Nixon M, Stewart-Fitzgibbon R, Fu J, Akhmedov D, Rajendran K, Mendoza-Rodriguez MG, Rivera-Molina YA, Gibson M, Berglund ED, Justice NJ, Berdeaux R. Skeletal muscle salt inducible kinase 1 promotes insulin resistance in obesity. Mol Metab 2015; 5:34-46. [PMID: 26844205 PMCID: PMC4703802 DOI: 10.1016/j.molmet.2015.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Insulin resistance causes type 2 diabetes mellitus and hyperglycemia due to excessive hepatic glucose production and inadequate peripheral glucose uptake. Our objectives were to test the hypothesis that the proposed CREB/CRTC2 inhibitor salt inducible kinase 1 (SIK1) contributes to whole body glucose homeostasis in vivo by regulating hepatic transcription of gluconeogenic genes and also to identify novel SIK1 actions on glucose metabolism. METHODS We created conditional (floxed) SIK1-knockout mice and studied glucose metabolism in animals with global, liver, adipose or skeletal muscle Sik1 deletion. We examined cAMP-dependent regulation of SIK1 and the consequences of SIK1 depletion on primary mouse hepatocytes. We probed metabolic phenotypes in tissue-specific SIK1 knockout mice fed high fat diet through hyperinsulinemic-euglycemic clamps and biochemical analysis of insulin signaling. RESULTS SIK1 knockout mice are viable and largely normoglycemic on chow diet. On high fat diet, global SIK1 knockout animals are strikingly protected from glucose intolerance, with both increased plasma insulin and enhanced peripheral insulin sensitivity. Surprisingly, liver SIK1 is not required for regulation of CRTC2 and gluconeogenesis, despite contributions of SIK1 to hepatocyte CRTC2 and gluconeogenesis regulation ex vivo. Sik1 mRNA accumulates in skeletal muscle of obese high fat diet-fed mice, and knockout of SIK1 in skeletal muscle, but not liver or adipose tissue, improves insulin sensitivity and muscle glucose uptake on high fat diet. CONCLUSIONS SIK1 is dispensable for glycemic control on chow diet. SIK1 promotes insulin resistance on high fat diet by a cell-autonomous mechanism in skeletal muscle. Our study establishes SIK1 as a promising therapeutic target to improve skeletal muscle insulin sensitivity in obese individuals without deleterious effects on hepatic glucose production.
Collapse
Key Words
- AKT, protein kinase B
- AMPK, AMP-activated protein kinase
- BAT, brown adipose tissue
- CHX, cycloheximide
- CREB
- CREB, cAMP response element-binding protein
- CRTC
- CRTC, CREB regulated transcription coactivator
- EndoRa, endogenous rate of glucose appearance
- FGF21, fibroblast growth factor 21
- FOXO1, forkhead box protein O1
- FSK, forskolin
- G6pase, glucose 6-phosphatase
- GDR, glucose disposal rate
- GIR, glucose infusion rate
- GTT, glucose tolerance test
- Glgn, glucagon
- Gluconeogenesis
- Glut, glucose transporter
- HDAC, histone deacetylase
- HFD, high fat diet
- HSP, heat shock protein
- IBMX, 3-isobutyl-1-methylxantine
- ITT, insulin tolerance test
- Insulin resistance
- PTT, pyruvate tolerance test
- Pepck, phosphoenolpyruvate carboxykinase
- Pgc, peroxisome proliferator-activated receptor gamma coactivator
- SIK, salt inducible kinase
- SIK1
- Salt inducible kinase
- WAT, white adipose tissue
- cAMP, cyclic adenosine monophosphate
Collapse
Affiliation(s)
- Mark Nixon
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Randi Stewart-Fitzgibbon
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA; Program in Cell and Regulatory Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston TX 77030, USA
| | - Jingqi Fu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Kavitha Rajendran
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Maria G Mendoza-Rodriguez
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yisel A Rivera-Molina
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Micah Gibson
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Eric D Berglund
- Advanced Imaging Research Center and Department of Pharmacology, University of Texas Southwestern Medical School, USA
| | - Nicholas J Justice
- Institute of Molecular Medicine Center for Metabolic and Degenerative Diseases, University of Texas Health Science Center, Houston, TX 77030, USA; Program in Cell and Regulatory Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston TX 77030, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA; Institute of Molecular Medicine Center for Metabolic and Degenerative Diseases, University of Texas Health Science Center, Houston, TX 77030, USA; Program in Cell and Regulatory Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston TX 77030, USA
| |
Collapse
|
28
|
Wong CO, Palmieri M, Li J, Akhmedov D, Chao Y, Broadhead GT, Zhu MX, Berdeaux R, Collins CA, Sardiello M, Venkatachalam K. Diminished MTORC1-Dependent JNK Activation Underlies the Neurodevelopmental Defects Associated with Lysosomal Dysfunction. Cell Rep 2015; 12:2009-20. [PMID: 26387958 DOI: 10.1016/j.celrep.2015.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/20/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022] Open
Abstract
Here, we evaluate the mechanisms underlying the neurodevelopmental deficits in Drosophila and mouse models of lysosomal storage diseases (LSDs). We find that lysosomes promote the growth of neuromuscular junctions (NMJs) via Rag GTPases and mechanistic target of rapamycin complex 1 (MTORC1). However, rather than employing S6K/4E-BP1, MTORC1 stimulates NMJ growth via JNK, a determinant of axonal growth in Drosophila and mammals. This role of lysosomal function in regulating JNK phosphorylation is conserved in mammals. Despite requiring the amino-acid-responsive kinase MTORC1, NMJ development is insensitive to dietary protein. We attribute this paradox to anaplastic lymphoma kinase (ALK), which restricts neuronal amino acid uptake, and the administration of an ALK inhibitor couples NMJ development to dietary protein. Our findings provide an explanation for the neurodevelopmental deficits in LSDs and suggest an actionable target for treatment.
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, TX 77030, USA
| | - Jiaxing Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Geoffrey T Broadhead
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 2015; 32:2893-907. [PMID: 25069613 DOI: 10.1002/stem.1788] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022]
Abstract
Serine/threonine kinase 11, commonly known as liver kinase b1 (Lkb1), is a tumor suppressor that regulates cellular energy metabolism and stem cell function. Satellite cells are skeletal muscle resident stem cells that maintain postnatal muscle growth and repair. Here, we used MyoD(Cre)/Lkb1(flox/flox) mice (called MyoD-Lkb1) to delete Lkb1 in embryonic myogenic progenitors and their descendant satellite cells and myofibers. The MyoD-Lkb1 mice exhibit a severe myopathy characterized by central nucleated myofibers, reduced mobility, growth retardation, and premature death. Although tamoxifen-induced postnatal deletion of Lkb1 in satellite cells using Pax7(CreER) mice bypasses the developmental defects and early death, Lkb1 null satellite cells lose their regenerative capacity cell-autonomously. Strikingly, Lkb1 null satellite cells fail to maintain quiescence in noninjured resting muscles and exhibit accelerated proliferation but reduced differentiation kinetics. At the molecular level, Lkb1 limits satellite cell proliferation through the canonical AMP-activated protein kinase/mammalian target of rapamycin pathway, but facilitates differentiation through phosphorylation of GSK-3β, a key component of the WNT signaling pathway. Together, these results establish a central role of Lkb1 in muscle stem cell homeostasis, muscle development, and regeneration.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hansen J, Snow C, Tuttle E, Ghoneim D, Yang CS, Spencer A, Gunter S, Smyser C, Gurnett C, Shinawi M, Dobyns W, Wheless J, Halterman M, Jansen L, Paschal B, Paciorkowski A. De novo mutations in SIK1 cause a spectrum of developmental epilepsies. Am J Hum Genet 2015; 96:682-90. [PMID: 25839329 DOI: 10.1016/j.ajhg.2015.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/19/2015] [Indexed: 10/23/2022] Open
Abstract
Developmental epilepsies are age-dependent seizure disorders for which genetic causes have been increasingly identified. Here we report six unrelated individuals with mutations in salt-inducible kinase 1 (SIK1) in a series of 101 persons with early myoclonic encephalopathy, Ohtahara syndrome, and infantile spasms. Individuals with SIK1 mutations had short survival in cases with neonatal epilepsy onset, and an autism plus developmental syndrome after infantile spasms in others. All six mutations occurred outside the kinase domain of SIK1 and each of the mutants displayed autophosphorylation and kinase activity toward HDAC5. Three mutations generated truncated forms of SIK1 that were resistant to degradation and also showed changes in sub-cellular localization compared to wild-type SIK1. We also report the human neuropathologic examination of SIK1-related developmental epilepsy, with normal neuronal morphology and lamination but abnormal SIK1 protein cellular localization. Therefore, these results expand the genetic etiologies of developmental epilepsies by demonstrating SIK1 mutations as a cause of severe developmental epilepsy.
Collapse
|
31
|
Fu J, Akhmedov D, Berdeaux R. The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes. PLoS One 2013; 8:e78522. [PMID: 24147136 PMCID: PMC3798379 DOI: 10.1371/journal.pone.0078522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/21/2013] [Indexed: 02/02/2023] Open
Abstract
During cycles of fasting and feeding, liver function is regulated by both transcriptional and post-translational events. Regulated protein degradation has recently emerged as a key mechanism to control abundance of specific hepatic proteins under different nutritional conditions. As glucagon signaling through cAMP and PKA is central to glucose output during fasting, we hypothesized that this signaling pathway may also regulate ubiquitin ligases in the fasted state. Here we show that fasting stimuli promote expression of the short isoform of the E3 ubiquitin ligase Nedd4l in primary mouse hepatocytes. Nedd4l-short mRNA and NEDD4L (short isoform) protein accumulate in glucagon-treated primary mouse hepatocytes and in liver tissues during fasting. We identified a functional cAMP response element in the alternate Nedd4l-short promoter; mutation of this element blunts cAMP-induced expression of a Nedd4l reporter construct. CREB occupies the endogenous Nedd4l locus near this element. CREB and its co-activator CRTC2, both activated by fasting stimuli, contribute to glucagon-stimulated Nedd4l-short expression in primary hepatocytes. siRNA-mediated Nedd4l depletion in primary hepatocytes did not affect gluconeogenic gene expression, glucose output or glycogen synthesis. Our findings reveal a new mechanism of Nedd4l transcriptional regulation in liver cells.
Collapse
Affiliation(s)
- Jingqi Fu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Rebecca Berdeaux
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|