1
|
Sánchez Á, Arrabal A, San Román M, Díaz-Colunga J. The optimization of microbial functions through rational environmental manipulations. Mol Microbiol 2024; 122:294-303. [PMID: 38372207 DOI: 10.1111/mmi.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/20/2024]
Abstract
Microorganisms play a central role in biotechnology and it is key that we develop strategies to engineer and optimize their functionality. To this end, most efforts have focused on introducing genetic manipulations in microorganisms which are then grown either in monoculture or in mixed-species consortia. An alternative strategy to optimize microbial processes is to rationally engineer the environment in which microbes grow. The microbial environment is multidimensional, including factors such as temperature, pH, salinity, nutrient composition, etc. These environmental factors all influence the growth and phenotypes of microorganisms and they generally "interact" with one another, combining their effects in complex, non-additive ways. In this piece, we overview the origins and consequences of these "interactions" between environmental factors and discuss how they have been built into statistical, bottom-up predictive models of microbial function to identify optimal environmental conditions for monocultures and microbial consortia. We also overview alternative "top-down" approaches, such as genetic algorithms, to finding optimal combinations of environmental factors. By providing a brief summary of the state of this field, we hope to stimulate further work on the rational manipulation and optimization of the microbial environment.
Collapse
Affiliation(s)
- Álvaro Sánchez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB - CSIC, Campus de Cantoblanco, Madrid, Spain
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Andrea Arrabal
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB - CSIC, Campus de Cantoblanco, Madrid, Spain
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Magdalena San Román
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB - CSIC, Campus de Cantoblanco, Madrid, Spain
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Juan Díaz-Colunga
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB - CSIC, Campus de Cantoblanco, Madrid, Spain
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Alves R, Salvadó B, Milo R, Vilaprinyo E, Sorribas A. Maximization of information transmission influences selection of native phosphorelay architectures. PeerJ 2021; 9:e11558. [PMID: 34178454 PMCID: PMC8199921 DOI: 10.7717/peerj.11558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/12/2021] [Indexed: 01/28/2023] Open
Abstract
Phosphorelays are signal transduction circuits that sense environmental changes and adjust cellular metabolism. Five different circuit architectures account for 99% of all phosphorelay operons annotated in over 9,000 fully sequenced genomes. Here we asked what biological design principles, if any, could explain selection among those architectures in nature. We began by studying kinetically well characterized phosphorelays (Spo0 of Bacillus subtilis and Sln1 of Saccharomyces cerevisiae). We find that natural circuit architecture maximizes information transmission in both cases. We use mathematical models to compare information transmission among the architectures for a realistic range of concentration and parameter values. Mapping experimentally determined phosphorelay protein concentrations onto that range reveals that the native architecture maximizes information transmission in sixteen out of seventeen analyzed phosphorelays. These results suggest that maximization of information transmission is important in the selection of native phosphorelay architectures, parameter values and protein concentrations.
Collapse
Affiliation(s)
- Rui Alves
- Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Baldiri Salvadó
- Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Ron Milo
- Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Vilaprinyo
- Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Albert Sorribas
- Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
3
|
Lee YJ, Kim SJ, Amrofell MB, Moon TS. Establishing a Multivariate Model for Predictable Antisense RNA-Mediated Repression. ACS Synth Biol 2019; 8:45-56. [PMID: 30517781 DOI: 10.1021/acssynbio.8b00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent advances in our understanding of RNA folding and functions have facilitated the use of regulatory RNAs such as synthetic antisense RNAs (asRNAs) to modulate gene expression. However, despite the simple and universal complementarity rule, predictable asRNA-mediated repression is still challenging due to the intrinsic complexity of native asRNA-mediated gene regulation. To address this issue, we present a multivariate model, based on the change in free energy of complex formation (Δ GCF) and percent mismatch of the target binding region, which can predict synthetic asRNA-mediated repression efficiency in diverse contexts. First, 69 asRNAs that bind to multiple target mRNAs were designed and tested to create the predictive model. Second, we showed that the same model is effective predicting repression of target genes in both plasmids and chromosomes. Third, using our model, we designed asRNAs that simultaneously modulated expression of a toxin and its antitoxin to demonstrate tunable control of cell growth. Fourth, we tested and validated the same model in two different biotechnologically important organisms: Escherichia coli Nissle 1917 and Bacillus subtilis 168. Last, multiple parameters, including target locations, the presence of an Hfq binding site, GC contents, and gene expression levels, were revisited to define the conditions under which the multivariate model should be used for accurate prediction. Together, 434 different strain-asRNA combinations were tested, validating the predictive model in a variety of contexts, including multiple target genes and organisms. The result presented in this study is an important step toward achieving predictable tunability of asRNA-mediated repression.
Collapse
Affiliation(s)
- Young Je Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Soo-Jung Kim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Matthew B. Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
4
|
Perez-Carrasco R, Barnes CP, Schaerli Y, Isalan M, Briscoe J, Page KM. Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors. Cell Syst 2018; 6:521-530.e3. [PMID: 29574056 PMCID: PMC5929911 DOI: 10.1016/j.cels.2018.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/16/2022]
Abstract
Although the structure of a genetically encoded regulatory circuit is an important determinant of its function, the relationship between circuit topology and the dynamical behaviors it can exhibit is not well understood. Here, we explore the range of behaviors available to the AC-DC circuit. This circuit consists of three genes connected as a combination of a toggle switch and a repressilator. Using dynamical systems theory, we show that the AC-DC circuit exhibits both oscillations and bistability within the same region of parameter space; this generates emergent behaviors not available to either the toggle switch or the repressilator alone. The AC-DC circuit can switch on oscillations via two distinct mechanisms, one of which induces coherence into ensembles of oscillators. In addition, we show that in the presence of noise, the AC-DC circuit can behave as an excitable system capable of spatial signal propagation or coherence resonance. Together, these results demonstrate how combinations of simple motifs can exhibit multiple complex behaviors.
Collapse
Affiliation(s)
- Ruben Perez-Carrasco
- Department of Mathematics, University College London, Gower Street, WC1E 6BT London, UK.
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK; Department of Genetics, Evolution and Environment, University College London, Gower Street, WC1E 6BT London, UK
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, SW7 2AZ London, UK
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Karen M Page
- Department of Mathematics, University College London, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
5
|
Park J, Dies M, Lin Y, Hormoz S, Smith-Unna SE, Quinodoz S, Hernández-Jiménez MJ, Garcia-Ojalvo J, Locke JCW, Elowitz MB. Molecular Time Sharing through Dynamic Pulsing in Single Cells. Cell Syst 2018; 6:216-229.e15. [PMID: 29454936 PMCID: PMC6070344 DOI: 10.1016/j.cels.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/04/2017] [Accepted: 01/10/2018] [Indexed: 11/19/2022]
Abstract
In cells, specific regulators often compete for limited amounts of a core enzymatic resource. It is typically assumed that competition leads to partitioning of core enzyme molecules among regulators at constant levels. Alternatively, however, different regulatory species could time share, or take turns utilizing, the core resource. Using quantitative time-lapse microscopy, we analyzed sigma factor activity dynamics, and their competition for RNA polymerase, in individual Bacillus subtilis cells under energy stress. Multiple alternative sigma factors were activated in ~1-hr pulses in stochastic and repetitive fashion. Pairwise analysis revealed that two sigma factors rarely pulse simultaneously and that some pairs are anti-correlated, indicating that RNAP utilization alternates among different sigma factors. Mathematical modeling revealed how stochastic time-sharing dynamics can emerge from pulse-generating sigma factor regulatory circuits actively competing for RNAP. Time sharing provides a mechanism for cells to dynamically control the distribution of cell states within a population. Since core molecular components are limiting in many other systems, time sharing may represent a general mode of regulation.
Collapse
Affiliation(s)
- Jin Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marta Dies
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Department of Physics and Nuclear Engineering, Universitat Politecnica de Catalunya, 08222 Terrassa, Spain; Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Yihan Lin
- Center for Quantitative Biology, and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sahand Hormoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Sofia Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - James C W Locke
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Microsoft Research, Cambridge, UK.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Holst-Hansen T, Abad E, Muntasell A, López-Botet M, Jensen MH, Trusina A, Garcia-Ojalvo J. Impact of Zygosity on Bimodal Phenotype Distributions. Biophys J 2017; 113:148-156. [PMID: 28700913 DOI: 10.1016/j.bpj.2017.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/12/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022] Open
Abstract
Allele number, or zygosity, is a clear determinant of gene expression in diploid cells. However, the relationship between the number of copies of a gene and its expression can be hard to anticipate, especially when the gene in question is embedded in a regulatory circuit that contains feedback. Here, we study this question making use of the natural genetic variability of human populations, which allows us to compare the expression profiles of a receptor protein in natural killer cells among donors infected with human cytomegalovirus with one or two copies of the allele. Crucially, the distribution of gene expression in many of the donors is bimodal, which indicates the presence of a positive feedback loop somewhere in the regulatory environment of the gene. Three separate gene-circuit models differing in the location of the positive feedback loop with respect to the gene can all reproduce the homozygous data. However, when the resulting fitted models are applied to the hemizygous donors, one model (the one with the positive feedback located at the level of gene transcription) is superior in describing the experimentally observed gene-expression profile. In that way, our work shows that zygosity can help us relate the structure and function of gene regulatory networks.
Collapse
Affiliation(s)
| | - Elena Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Miguel López-Botet
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | | | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Rodesney CA, Roman B, Dhamani N, Cooley BJ, Katira P, Touhami A, Gordon VD. Mechanosensing of shear by Pseudomonas aeruginosa leads to increased levels of the cyclic-di-GMP signal initiating biofilm development. Proc Natl Acad Sci U S A 2017; 114:5906-5911. [PMID: 28533383 PMCID: PMC5468607 DOI: 10.1073/pnas.1703255114] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Biofilms are communities of sessile microbes that are phenotypically distinct from their genetically identical, free-swimming counterparts. Biofilms initiate when bacteria attach to a solid surface. Attachment triggers intracellular signaling to change gene expression from the planktonic to the biofilm phenotype. For Pseudomonas aeruginosa, it has long been known that intracellular levels of the signal cyclic-di-GMP increase upon surface adhesion and that this is required to begin biofilm development. However, what cue is sensed to notify bacteria that they are attached to the surface has not been known. Here, we show that mechanical shear acts as a cue for surface adhesion and activates cyclic-di-GMP signaling. The magnitude of the shear force, and thereby the corresponding activation of cyclic-di-GMP signaling, can be adjusted both by varying the strength of the adhesion that binds bacteria to the surface and by varying the rate of fluid flow over surface-bound bacteria. We show that the envelope protein PilY1 and functional type IV pili are required mechanosensory elements. An analytic model that accounts for the feedback between mechanosensors, cyclic-di-GMP signaling, and production of adhesive polysaccharides describes our data well.
Collapse
Affiliation(s)
- Christopher A Rodesney
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712
| | - Brian Roman
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712
| | - Numa Dhamani
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712
| | - Benjamin J Cooley
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712
| | | | - Ahmed Touhami
- Department of Physics, The University of Texas Rio Grande Valley, Brownsville, TX 78520
| | - Vernita D Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712;
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
8
|
Yüksel M, Power JJ, Ribbe J, Volkmann T, Maier B. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis. Front Microbiol 2016; 7:888. [PMID: 27375604 PMCID: PMC4896167 DOI: 10.3389/fmicb.2016.00888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/25/2016] [Indexed: 11/15/2022] Open
Abstract
In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.
Collapse
Affiliation(s)
- Melih Yüksel
- Department of Physics, University of Cologne Köln, Germany
| | | | - Jan Ribbe
- Department of Physics, University of Cologne Köln, Germany
| | | | - Berenike Maier
- Department of Physics, University of Cologne Köln, Germany
| |
Collapse
|
9
|
Noise Expands the Response Range of the Bacillus subtilis Competence Circuit. PLoS Comput Biol 2016; 12:e1004793. [PMID: 27003682 PMCID: PMC4803322 DOI: 10.1371/journal.pcbi.1004793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/05/2016] [Indexed: 12/01/2022] Open
Abstract
Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit. Fluctuations, or “noise”, in the response of a system is usually thought to be harmful. However, it is becoming increasingly clear that in single-celled organisms, noise can sometimes help cells survive. This is because noise can enhance the diversity of responses within a cell population. In this study, we identify a novel benefit of noise in the competence response of a population of Bacillus subtilis bacteria, where competence is the ability of bacteria to take in DNA from their environment when under stress. We use computational modeling and experiments to show that noise increases the range of stress levels for which these bacteria exhibit a highly dynamic response, meaning that they are neither unresponsive, nor permanently in the competent state. Since a dynamic response is thought to be optimal for survival, this study suggests that noise is exploited to increase the fitness of the bacterial population.
Collapse
|
10
|
Schultz D. Coordination of cell decisions and promotion of phenotypic diversity in B. subtilis via pulsed behavior of the phosphorelay. Bioessays 2016; 38:440-5. [PMID: 26941227 DOI: 10.1002/bies.201500199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The phosphorelay of Bacillus subtilis, a kinase cascade that activates master regulator Spo0A ~ P in response to starvation signals, is the core of a large network controlling the cell's decision to differentiate into sporulation and other phenotypes. This article reviews recent advances in understanding the origins and purposes of the complex dynamical behavior of the phosphorelay, which pulses with peaks of activity coordinated with the cell cycle. The transient imbalance in the expression of two critical genes caused by their strategic placement at opposing ends of the chromosome proved to be the key for this pulsed behavior. Feedback control loops in the phosphorelay use these pulses to implement a timer mechanism, which creates several windows of opportunity for phenotypic transitions over multiple generations. This strategy allows the cell to coordinate multiple differentiation programs in a decision process that fosters phenotypic diversity and adapts to current conditions.
Collapse
Affiliation(s)
- Daniel Schultz
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Ciechonska M, Grob A, Isalan M. From noise to synthetic nucleoli: can synthetic biology achieve new insights? Integr Biol (Camb) 2016; 8:383-93. [PMID: 26751735 DOI: 10.1039/c5ib00271k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."
Collapse
Affiliation(s)
- Marta Ciechonska
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | |
Collapse
|
12
|
Jeong HH, Jin SH, Lee BJ, Kim T, Lee CS. Microfluidic static droplet array for analyzing microbial communication on a population gradient. LAB ON A CHIP 2015; 15:889-899. [PMID: 25494004 DOI: 10.1039/c4lc01097c] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quorum sensing (QS) is a type of cell-cell communication using signal molecules that are released and detected by cells, which respond to changes in their population density. A few studies explain that QS may operate in a density-dependent manner; however, due to experimental challenges, this fundamental hypothesis has never been investigated. Here, we present a microfluidic static droplet array (SDA) that combines a droplet generator with hydrodynamic traps to independently generate a bacterial population gradient into a parallel series of droplets under complete chemical and physical isolation. The SDA independently manipulates both a chemical concentration gradient and a bacterial population density. In addition, the bacterial population gradient in the SDA can be tuned by a simple change in the number of sample plug loading. Finally, the method allows the direct analysis of complicated biological events in an addressable droplet to enable the characterization of bacterial communication in response to the ratio of two microbial populations, including two genetically engineered QS circuits, such as the signal sender for acyl-homoserine lactone (AHL) production and the signal receiver bacteria for green fluorescent protein (GFP) expression induced by AHL. For the first time, we found that the population ratio of the signal sender and receiver indicates a significant and potentially interesting partnership between microbial communities. Therefore, we envision that this simple SDA could be a useful platform in various research fields, including analytical chemistry, combinatorial chemistry, synthetic biology, microbiology, and molecular biology.
Collapse
Affiliation(s)
- Heon-Ho Jeong
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | | | | | | | | |
Collapse
|
13
|
Shong J, Collins CH. Quorum sensing-modulated AND-gate promoters control gene expression in response to a combination of endogenous and exogenous signals. ACS Synth Biol 2014; 3:238-46. [PMID: 24175658 DOI: 10.1021/sb4000965] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have constructed and characterized two synthetic AND-gate promoters that require both a quorum-sensing (QS) signal and an exogenously added inducer to turn on gene expression. The engineered promoters, LEE and TTE, contain binding sites for the QS-dependent repressor, EsaR, and either LacI or TetR, and they are induced by an acyl-homoserine lactone (AHL) signal and IPTG or aTc. Although repression of both LEE and TTE by wild-type EsaR was observed, induction of gene expression at physiologically relevant concentrations of AHL required the use of an EsaR variant with higher signal sensitivity. Gene expression from both LEE and TTE was shown to require both signal molecules, and gene expression above background levels was not observed with either signal alone. We added endogenous production of AHL to evaluate the ability of the promoters to function in a QS-dependent manner and observed that gene expression increased as a function of cell density only in the presence of exogenously added IPTG or aTc. Cell-cell communication-dependent AND-gate behaviors were demonstrated using an agar plate assay, where cells containing the engineered promoters were shown to respond to AHL produced by a second E. coli strain only in the presence of exogenously added IPTG or aTc. The promoters described in this work demonstrate that EsaR and its target DNA sequence can be used to engineer new promoters to respond to cell density or cell-cell communication. Further, the AND-gate promoters described here may serve as a template for new regulatory systems that integrate QS and the presence of key metabolites or other environmental cues to enable dynamic changes in gene expression for metabolic engineering applications.
Collapse
Affiliation(s)
- Jasmine Shong
- Department of Chemical
and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
- Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
| | - Cynthia H. Collins
- Department of Chemical
and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
- Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy New
York 12180 United States of America
| |
Collapse
|
14
|
Youk H, Lim WA. Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science 2014; 343:1242782. [PMID: 24503857 PMCID: PMC4145839 DOI: 10.1126/science.1242782] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells that secrete and sense the same signaling molecule are ubiquitous. To uncover the functional capabilities of the core "secrete-and-sense" circuit motif shared by these cells, we engineered yeast to secrete and sense the mating pheromone. Perturbing each circuit element revealed parameters that control the degree to which the cell communicated with itself versus with its neighbors. This tunable interplay of self-communication and neighbor communication enables cells to span a diverse repertoire of cellular behaviors. These include a cell being asocial by responding only to itself and social through quorum sensing, and an isogenic population of cells splitting into social and asocial subpopulations. A mathematical model explained these behaviors. The versatility of the secrete-and-sense circuit motif may explain its recurrence across species.
Collapse
Affiliation(s)
- Hyun Youk
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Wendell A. Lim
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Abstract
Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evolution, providing selective advantage in dynamic environments, enhancing intracellular transport of biomolecules and increasing information capacity of signaling pathways. This short review covers the recent progress in understanding mechanisms and effects of fluctuations in biological systems of different scales and the basic approaches to their mathematical modeling.
Collapse
Affiliation(s)
- Lev S. Tsimring
- BioCircuits Institute, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0328, USA
| |
Collapse
|
16
|
Mason E, Henderson MW, Scheller EV, Byrd MS, Cotter PA. Evidence for phenotypic bistability resulting from transcriptional interference of bvgAS in Bordetella bronchiseptica. Mol Microbiol 2013; 90:716-33. [PMID: 24007341 PMCID: PMC4216693 DOI: 10.1111/mmi.12394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
Bordetella species cause respiratory infections in mammals. Their master regulatory system BvgAS controls expression of at least three distinct phenotypic phases in response to environmental cues. The Bvg⁺ phase is necessary and sufficient for respiratory infection while the Bvg⁻ phase is required for survival ex vivo. We obtained large colony variants (LCVs) from the lungs of mice infected with B. bronchiseptica strain RBX9, which contains an in-frame deletion mutation in fhaB, encoding filamentous haemagglutinin. RBX9 also yielded LCVs when switched from Bvg⁻ phase conditions to Bvg⁺ phase conditions in vitro. We determined that LCVs are composed of both Bvg⁺ and Bvg⁻ phase bacteria and that they result from defective bvgAS positive autoregulation. The LCV phenotype was linked to the presence of a divergent promoter 5' to bvgAS, suggesting a previously undescribed mechanism of transcriptional interference that, in this case, leads to feedback-based bistability (FBM). Our results also indicate that a small proportion of RBX9 bacteria modulates to the Bvg⁻ phase in vivo. In addition to providing insight into transcriptional interference and FBM, our data provide an example of an in-frame deletion mutation exerting a 'polar' effect on nearby genes.
Collapse
Affiliation(s)
- Eliza Mason
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Michael W. Henderson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Erich V. Scheller
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Matthew S. Byrd
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|