1
|
Wu J, Wang Y, Zhou Y, Wang Y, Sun X, Zhao Y, Guan Y, Zhang Y, Wang W. PPARγ as an E3 Ubiquitin-Ligase Impedes Phosphate-Stat6 Stability and Promotes Prostaglandins E 2-Mediated Inhibition of IgE Production in Asthma. Front Immunol 2020; 11:1224. [PMID: 32636842 PMCID: PMC7317005 DOI: 10.3389/fimmu.2020.01224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Increased serum IgE level is one of the features of allergic asthma. It is reported that IgE production can be enhanced by E-prostanoid 2 (EP2) receptor of prostaglandin E2 (PGE2); however, whether E-prostanoid 4 (EP4) receptor (encoded by Ptger4) has a unique or redundant role is still unclear. Here, we demonstrated the mice with B cell-specific deletion of the EP4 receptor (Ptger4fl/flMb1cre+/−) showed their serum levels of IgE were markedly increased. A much more severe airway allergic inflammation was observed in the absence of EP4 signal using the OVA-induced asthma model. Mechanistic studies demonstrated that the transcription levels of AID, GLTε, and PSTε in EP4-deficient B cells were found to be significantly increased, implying an enhanced IgE class switch. In addition, we saw higher levels of phosphorylated STAT6, a vital factor for IgE class switch. Biochemical analyses indicated that inhibitory effect of EP4 signal on IgE depended on the activation of the PI3K-AKT pathway. Further downstream, PPARγ expression was up-regulated. Independent of its activity as a transcription factor, PPARγ here primarily functioned as an E3 ubiquitin-ligase, which bound the phosphorylated STAT6 to initiate its degradation. In support of PPARγ as a key mediator downstream of the EP4 signal, PPARγ agonist induced the down-regulation of phospho-STAT6, whereas its antagonist was able to rescue the EP4-mediated inhibition of STAT6 activation and IgE production. Thus, our findings highlight a role for the PGE2-EP4-AKT-PPARγ-STAT6 signaling in IgE response, highlighting the therapeutic potential of combined application of EP4 and PPARγ agonists in asthma.
Collapse
Affiliation(s)
- Jia Wu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqing Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Xiaowan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ye Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China.,Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
2
|
Abstract
IgE are absolutely required for initiation of allergy reactions, which affect over 20% of the world's population. IgE are the least prevalent immunoglobulins in circulation with 12-h and 2-day half-lives in mouse and human serum, respectively, but an extended tissue half-life of 3-weeks bound to the surface of mast cells by the high affinity IgE receptor, FcεRI (Gould and Sutton 2008). Although the importance of glycosylation to IgG biology is well established, less is known regarding the contribution of IgE glycosylation to allergic inflammation. IgE has seven and nine N-linked glycosylation sites distributed across human and murine constant chains, respectively. Here we discuss studies that have analyzed IgE glycosylation and its function, and how IgE glycosylation contributions to health and disease.
Collapse
|
3
|
Laffleur B, Debeaupuis O, Dalloul Z, Cogné M. B Cell Intrinsic Mechanisms Constraining IgE Memory. Front Immunol 2017; 8:1277. [PMID: 29180995 PMCID: PMC5694035 DOI: 10.3389/fimmu.2017.01277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
Memory B cells and long-lived plasma cells are key elements of adaptive humoral immunity. Regardless of the immunoglobulin class produced, these cells can ensure long-lasting protection but also long-lasting immunopathology, thus requiring tight regulation of their generation and survival. Among all antibody classes, this is especially true for IgE, which stands as the most potent, and can trigger dramatic inflammatory reactions even when present in minute amounts. IgE responses and memory crucially protect against parasites and toxic components of venoms, conferring selective advantages and explaining their conservation in all mammalian species despite a parallel broad spectrum of IgE-mediated immunopathology. Long-term memory of sensitization and anaphylactic responses to allergens constitute the dark side of IgE responses, which can trigger multiple acute or chronic pathologic manifestations, some punctuated with life-threatening events. This Janus face of the IgE response and memory, both necessary and potentially dangerous, thus obviously deserves the most elaborated self-control schemes.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Zeinab Dalloul
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France
| | - Michel Cogné
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Wu YL, Stubbington MJT, Daly M, Teichmann SA, Rada C. Intrinsic transcriptional heterogeneity in B cells controls early class switching to IgE. J Exp Med 2016; 214:183-196. [PMID: 27994069 PMCID: PMC5206502 DOI: 10.1084/jem.20161056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/27/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022] Open
Abstract
Combining novel mouse reporters and single-cell transcriptomic analyses, Wu et al. uncover differential activation thresholds for the transcripts that direct antibody class switching to IgE versus IgG1 in response to IL-4 and explain how cell-intrinsic transcriptional heterogeneity governs CSR. Noncoding transcripts originating upstream of the immunoglobulin constant region (I transcripts) are required to direct activation-induced deaminase to initiate class switching in B cells. Differential regulation of Iε and Iγ1 transcription in response to interleukin 4 (IL-4), hence class switching to IgE and IgG1, is not fully understood. In this study, we combine novel mouse reporters and single-cell RNA sequencing to reveal the heterogeneity in IL-4–induced I transcription. We identify an early population of cells expressing Iε but not Iγ1 and demonstrate that early Iε transcription leads to switching to IgE and occurs at lower activation levels than Iγ1. Our results reveal how probabilistic transcription with a lower activation threshold for Iε directs the early choice of IgE versus IgG1, a key physiological response against parasitic infestations and a mediator of allergy and asthma.
Collapse
Affiliation(s)
- Yee Ling Wu
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | | | - Maria Daly
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Sarah A Teichmann
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, England, UK
| | - Cristina Rada
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
5
|
Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature 2015; 528:127-31. [PMID: 26580007 DOI: 10.1038/nature15715] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/10/2015] [Indexed: 12/27/2022]
Abstract
Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.
Collapse
|
6
|
Abstract
Immunoglobulin E (IgE) antibodies play a crucial role in host defense against parasite infections. However, inappropriate IgE responses are also involved in the pathogenesis of allergic diseases. The generation of IgE antibodies is a tightly controlled process regulated by multiple transcription factors, cytokines, and immune cells including γδ T cells. Accumulating evidence demonstrates that γδ T cells play a critical role in regulating IgE responses; however, both IgE-enhancing and IgE-suppressive effects are suggested for these cells in different experimental systems. In this review, we examine the available evidence and discuss the role of γδ T cells in IgE regulation both in the context of antigen-induced immune responses and in the state of partial immunodeficiency.
Collapse
|
7
|
Self-Restrained B Cells Arise following Membrane IgE Expression. Cell Rep 2015; 10:900-909. [PMID: 25683713 DOI: 10.1016/j.celrep.2015.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/21/2014] [Accepted: 01/08/2015] [Indexed: 11/20/2022] Open
Abstract
Among immunoglobulins (Igs), IgE can powerfully contribute to antimicrobial immunity and severe allergy despite its low abundance. IgE protein and gene structure resemble other Ig classes, making it unclear what constrains its production to thousand-fold lower levels. Whether class-switched B cell receptors (BCRs) differentially control B cell fate is debated, and study of the membrane (m)IgE class is hampered by its elusive in vivo expression. Here, we demonstrate a self-controlled mIgE+ B cell stage. Primary or transfected mIgE+ cells relocate the BCRs into spontaneously internalized lipid rafts, lose mobility to chemokines, and change morphology. We suggest that combined proapoptotic mechanisms possibly involving Hax1 prevent mIgE+ memory lymphocyte accumulation. By uncoupling in vivo IgE switching from cytokine and antigen stimuli, we show that these features are independent from B cell stimulation and instead result from mIgE expression per se. Consequently, few cells survive IgE class switching, which might ensure minimal long-term IgE memory upon differentiation into plasma cells.
Collapse
|
8
|
Senger K, Hackney J, Payandeh J, Zarrin AA. Antibody Isotype Switching in Vertebrates. Results Probl Cell Differ 2015; 57:295-324. [PMID: 26537387 DOI: 10.1007/978-3-319-20819-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humoral or antibody-mediated immune response in vertebrates has evolved to respond to diverse antigenic challenges in various anatomical locations. Diversification of the immunoglobulin heavy chain (IgH) constant region via isotype switching allows for remarkable plasticity in the immune response, including versatile tissue distribution, Fc receptor binding, and complement fixation. This enables antibody molecules to exert various biological functions while maintaining antigen-binding specificity. Different immunoglobulin (Ig) classes include IgM, IgD, IgG, IgE, and IgA, which exist as surface-bound and secreted forms. High-affinity autoantibodies are associated with various autoimmune diseases such as lupus and arthritis, while defects in components of isotype switching are associated with infections. A major route of infection used by a large number of pathogens is invasion of mucosal surfaces within the respiratory, digestive, or urinary tract. Most infections of this nature are initially limited by effector mechanisms such as secretory IgA antibodies. Mucosal surfaces have been proposed as a major site for the genesis of adaptive immune responses, not just in fighting infections but also in tolerating commensals and constant dietary antigens. We will discuss the evolution of isotype switching in various species and provide an overview of the function of various isotypes with a focus on IgA, which is universally important in gut homeostasis as well as pathogen clearance. Finally, we will discuss the utility of antibodies as therapeutic modalities.
Collapse
Affiliation(s)
- Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jason Hackney
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
9
|
Wu LC, Zarrin AA. The production and regulation of IgE by the immune system. Nat Rev Immunol 2014; 14:247-59. [PMID: 24625841 DOI: 10.1038/nri3632] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IgE not only provides protective immunity against helminth parasites but can also mediate the type I hypersensitivity reactions that contribute to the pathogenesis of allergic diseases such as asthma, allergic rhinitis and atopic dermatitis. Despite the importance of IgE in immune biology and allergic pathogenesis, the cells and the pathways that produce and regulate IgE are poorly understood. In this Review, we summarize recent advances in our understanding of the production and the regulation of IgE in vivo, as revealed by studies in mice, and we discuss how these findings compare to what is known about human IgE biology.
Collapse
Affiliation(s)
- Lawren C Wu
- Department of Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA
| |
Collapse
|