1
|
Shao B, Yan J. A long-context language model for deciphering and generating bacteriophage genomes. Nat Commun 2024; 15:9392. [PMID: 39477977 PMCID: PMC11525655 DOI: 10.1038/s41467-024-53759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Inspired by the success of large language models (LLMs), we develop a long-context generative model for genomes. Our multiscale transformer model, megaDNA, is pre-trained on unannotated bacteriophage genomes with nucleotide-level tokenization. We demonstrate the foundational capabilities of our model including the prediction of essential genes, genetic variant effects, regulatory element activity and taxonomy of unannotated sequences. Furthermore, it generates de novo sequences up to 96 K base pairs, which contain potential regulatory elements and annotated proteins with phage-related functions.
Collapse
Affiliation(s)
- Bin Shao
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Jiawei Yan
- Independent researcher, 100 N Gushan Rd, Shanghai, 200135, China
| |
Collapse
|
2
|
Chen J, Nilsen ED, Chitboonthavisuk C, Mo CY, Raman S. Systematic, high-throughput characterization of bacteriophage gene essentiality on diverse hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617714. [PMID: 39416107 PMCID: PMC11482910 DOI: 10.1101/2024.10.10.617714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Understanding core and conditional gene essentiality is crucial for decoding genotype-phenotype relationships in organisms. We present PhageMaP, a high-throughput method to create genome-scale phage knockout libraries for systematically assessing gene essentiality in bacteriophages. Using PhageMaP, we generate gene essentiality maps across hundreds of genes in the model phage T7 and the non-model phage Bas63, on diverse hosts. These maps provide fundamental insights into genome organization, gene function, and host-specific conditional essentiality. By applying PhageMaP to a collection of anti-phage defense systems, we uncover phage genes that either inhibit or activate eight defenses and offer novel mechanistic hypotheses. Furthermore, we engineer synthetic phages with enhanced infectivity by modular transfer of a PhageMaP-discovered defense inhibitor from Bas63 to T7. PhageMaP is generalizable, as it leverages homologous recombination, a universal cellular process, for locus-specific barcoding. This versatile tool advances bacteriophage functional genomics and accelerates rational phage design for therapy.
Collapse
Affiliation(s)
- Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erick D Nilsen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Charlie Y Mo
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Robins WP, Meader BT, Toska J, Mekalanos JJ. DdmABC-dependent death triggered by viral palindromic DNA sequences. Cell Rep 2024; 43:114450. [PMID: 39002129 DOI: 10.1016/j.celrep.2024.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/24/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024] Open
Abstract
Defense systems that recognize viruses provide important insights into both prokaryotic and eukaryotic innate immunity mechanisms. Such systems that restrict foreign DNA or trigger cell death have recently been recognized, but the molecular signals that activate many of these remain largely unknown. Here, we characterize one such system in pandemic Vibrio cholerae responsible for triggering cell density-dependent death (CDD) of cells in response to the presence of certain genetic elements. We show that the key component is the Lamassu DdmABC anti-phage/plasmid defense system. We demonstrate that signals that trigger CDD were palindromic DNA sequences in phages and plasmids that are predicted to form stem-loop hairpins from single-stranded DNA. Our results suggest that agents that damage DNA also trigger DdmABC activation and inhibit cell growth. Thus, any infectious process that results in damaged DNA, particularly during DNA replication, can in theory trigger DNA restriction and death through the DdmABC abortive infection system.
Collapse
Affiliation(s)
- William P Robins
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Bradley T Meader
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonida Toska
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Inducible CRISPRi-Based Operon Silencing and Selective in Trans Gene Complementation in Borrelia burgdorferi. J Bacteriol 2023; 205:e0046822. [PMID: 36719218 PMCID: PMC9945571 DOI: 10.1128/jb.00468-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To accelerate genetic studies on the Lyme disease pathogen Borrelia burgdorferi, we developed an enhanced CRISPR interference (CRISPRi) approach for isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible repression of specific B. burgdorferi genes. The entire system is encoded on a compact 11-kb shuttle vector plasmid that allows for inducible expression of both the sgRNA module and a nontoxic codon-optimized dCas9 protein. We validated this CRISPRi system by targeting the genes encoding OspA and OspB, abundant surface lipoproteins coexpressed by a single operon, and FlaB, the major subunit forming the periplasmic flagella. As in other systems, single guide RNAs (sgRNAs) complementary to the nontemplate strand were consistently effective in gene repression, with 4- to 994-fold reductions in targeted transcript levels and concomitant reductions of protein levels. Furthermore, we showed that ospAB knockdowns could be selectively complemented in trans for OspA expression via the insertion of CRISPRi-resistant, synonymously or nonsynonymously mutated protospacer adjacent motif (PAM*) ospA alleles into a unique site within the CRISPRi plasmid. Together, this establishes CRISPRi PAM* as a robust new genetic tool to simplify the study of B. burgdorferi genes, bypassing the need for gene disruptions by allelic exchange and avoiding rare codon toxicity from the heterologous expression of dCas9. IMPORTANCE Borrelia burgdorferi, the spirochetal bacterium causing Lyme disease, is a tick-borne pathogen of global importance. Here, we expand the genetic toolbox for studying B. burgdorferi physiology and pathogenesis by establishing a single plasmid-based, fully inducible, and nontoxic CRISPR interference (CRISPRi) system for transcriptional silencing of B. burgdorferi genes and operons. We also show that alleles of CRISPRi-targeted genes with mutated protospacer-adjacent motif (PAM*) sites are CRISPRi resistant and can be used for simultaneous in trans gene complementation. The CRISPRi PAM* system will streamline the study of essential Borrelia proteins and accelerate investigations into their structure-function relationships.
Collapse
|
5
|
The bacterial tyrosine kinase system CpsBCD governs the length of capsule polymers. Proc Natl Acad Sci U S A 2021; 118:2103377118. [PMID: 34732571 DOI: 10.1073/pnas.2103377118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.
Collapse
|
6
|
High-Throughput Mutagenesis and Cross-Complementation Experiments Reveal Substrate Preference and Critical Residues of the Capsule Transporters in Streptococcus pneumoniae. mBio 2021; 12:e0261521. [PMID: 34724815 PMCID: PMC8561386 DOI: 10.1128/mbio.02615-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family transporters are found in almost all life forms. They are responsible for transporting lipid-linked precursors across the cell membrane to support the synthesis of various glycoconjugates. While significant progress has been made in elucidating their transport mechanism, how these transporters select their substrates remains unclear. Here, we systematically tested the MOP transporters in the Streptococcus pneumoniae capsule pathway for their ability to translocate noncognate capsule precursors. Sequence similarity cannot predict whether these transporters are interchangeable. We showed that subtle changes in the central aqueous cavity of the transporter are sufficient to accommodate a different cargo. These changes can occur naturally, suggesting a potential mechanism of expanding substrate selectivity. A directed evolution experiment was performed to identify gain-of-function variants that translocate a noncognate cargo. Coupled with a high-throughput mutagenesis and sequencing (Mut-seq) experiment, residues that are functionally important for the capsule transporter were revealed. Lastly, we showed that the expression of a flippase that can transport unfinished precursors resulted in an increased susceptibility to bacitracin and mild cell shape defects, which may be a driving force to maintain transporter specificity. IMPORTANCE All licensed pneumococcal vaccines target the capsular polysaccharide (CPS). This layer is highly variable and is important for virulence in many bacterial pathogens. Most of the CPSs are produced by the Wzx/Wzy mechanism. In this pathway, CPS repeating units are synthesized in the cytoplasm, which must be flipped across the cytoplasmic membrane before polymerization. This step is mediated by the widely conserved MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family transporters. Here, we systematically evaluated the interchangeability of these transporters and identified the residues important for substrate specificity and function. Understanding how CPS is synthesized will inform glycoengineering, vaccine development, and antimicrobial discovery.
Collapse
|
7
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
8
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
9
|
Song H, Bremer BJ, Hinds EC, Raskutti G, Romero PA. Inferring Protein Sequence-Function Relationships with Large-Scale Positive-Unlabeled Learning. Cell Syst 2020; 12:92-101.e8. [PMID: 33212013 DOI: 10.1016/j.cels.2020.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 08/13/2020] [Accepted: 10/22/2020] [Indexed: 10/22/2022]
Abstract
Machine learning can infer how protein sequence maps to function without requiring a detailed understanding of the underlying physical or biological mechanisms. It is challenging to apply existing supervised learning frameworks to large-scale experimental data generated by deep mutational scanning (DMS) and related methods. DMS data often contain high-dimensional and correlated sequence variables, experimental sampling error and bias, and the presence of missing data. Notably, most DMS data do not contain examples of negative sequences, making it challenging to directly estimate how sequence affects function. Here, we develop a positive-unlabeled (PU) learning framework to infer sequence-function relationships from large-scale DMS data. Our PU learning method displays excellent predictive performance across ten large-scale sequence-function datasets, representing proteins of different folds, functions, and library types. The estimated parameters pinpoint key residues that dictate protein structure and function. Finally, we apply our statistical sequence-function model to design highly stabilized enzymes.
Collapse
Affiliation(s)
- Hyebin Song
- Department of Statistics, The Pennsylvania State University, State College, PA 16802, USA; Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bennett J Bremer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily C Hinds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Garvesh Raskutti
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Philip A Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Armbruster KM, Komazin G, Meredith TC. Bacterial lyso-form lipoproteins are synthesized via an intramolecular acyl chain migration. J Biol Chem 2020; 295:10195-10211. [PMID: 32471867 DOI: 10.1074/jbc.ra120.014000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
All bacterial lipoproteins share a variably acylated N-terminal cysteine residue. Gram-negative bacterial lipoproteins are triacylated with a thioether-linked diacylglycerol moiety and an N-acyl chain. The latter is transferred from a membrane phospholipid donor to the α-amino terminus by the enzyme lipoprotein N-acyltransferase (Lnt), using an active-site cysteine thioester covalent intermediate. Many Gram-positive Firmicutes also have N-acylated lipoproteins, but the enzymes catalyzing N-acylation remain uncharacterized. The integral membrane protein Lit (lipoprotein intramolecular transacylase) from the opportunistic nosocomial pathogen Enterococcus faecalis synthesizes a specific lysoform lipoprotein (N-acyl S-monoacylglycerol) chemotype by an unknown mechanism that helps this bacterium evade immune recognition by the Toll-like receptor 2 family complex. Here, we used a deuterium-labeled lipoprotein substrate with reconstituted Lit to investigate intramolecular acyl chain transfer. We observed that Lit transfers the sn-2 ester-linked lipid from the diacylglycerol moiety to the α-amino terminus without forming a covalent thioester intermediate. Utilizing Mut-Seq to analyze an alanine scan library of Lit alleles, we identified two stretches of functionally important amino acid residues containing two conserved histidines. Topology maps based on reporter fusion assays and cysteine accessibility placed both histidines in the extracellular half of the cytoplasmic membrane. We propose a general acid base-promoted catalytic mechanism, invoking direct nucleophilic attack by the substrate α-amino group on the sn-2 ester to form a cyclic tetrahedral intermediate that then collapses to produce lyso-lipoprotein. Lit is a unique example of an intramolecular transacylase differentiated from that catalyzed by Lnt, and provides insight into the heterogeneity of bacterial lipoprotein biosynthetic systems.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gloria Komazin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park Pennsylvania, USA
| |
Collapse
|
11
|
Davey L, Valdivia RH. Bacterial genetics and molecular pathogenesis in the age of high throughput DNA sequencing. Curr Opin Microbiol 2020; 54:59-66. [PMID: 32044689 PMCID: PMC8765803 DOI: 10.1016/j.mib.2020.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
Abstract
When Stanley Falkow introduced Molecular Koch's Postulates (Falkow, 1988) as a conceptual framework to identify microbial factors that contributed to disease, he reaffirmed the prominent role that the basic principles of genetic analysis should play in defining genotype-phenotype associations in microbial pathogens. In classical bacterial genetics the nature of mutations is inferred through cis-trans complementation and by indirectly mapping their relative position and physical distance through recombination frequencies - all of which were made possible by the genetic tools of the day: natural transformations, conjugation and transduction. Unfortunately, many of these genetic tools are not always available to study pathogenic bacteria. The recombinant DNA revolution in the 1980s launched the field of molecular pathogenesis as genes could be treated as physical units that could be cut, spliced and transplanted from one microbe to another and thus not only 'prove' that an individual gene complemented a virulence defect in a mutant strain but also could impart pathogenic properties to otherwise benign microbes. The recombinant DNA revolution also enabled the generation of newer versions of genetic tools to generate mutations and engineer microbial genomes. The last decade has ushered in next generation sequencing technologies as a new powerful tool for bacterial genetics. The routine and inexpensive sequencing of microbial genomes has increased the number and phylogenetic scope of microbes that are amenable to functional characterization and experimentation. In this review, we highlight some salient advances in this rapidly evolving area.
Collapse
Affiliation(s)
- Lauren Davey
- Duke University School of Medicine, Molecular Genetics and Microbiology, 272 Jones Bldg DUMC 3580, Durham, NC 27710, United States
| | - Raphael H Valdivia
- Duke University School of Medicine, Molecular Genetics and Microbiology, 272 Jones Bldg DUMC 3580, Durham, NC 27710, United States.
| |
Collapse
|
12
|
Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nat Commun 2019; 10:5627. [PMID: 31819054 PMCID: PMC6901541 DOI: 10.1038/s41467-019-13344-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Current genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs. We associate genes linked to lipid metabolism or to ribosome/translation functions with miltefosine or paromomycin resistance, respectively. We prove by allelic replacement and CRISPR-Cas9 gene-editing that the essential protein kinase CDPK1 is crucial for paromomycin resistance. We have linked CDPK1 in translation by functional interactome analysis, and provide evidence that CDPK1 contributes to antimonial resistance in the parasite. This screen is powerful in exploring networks of drug resistance in an organism with diploid to mosaic aneuploid genome, hence widening the scope of its applicability. Here, Bhattacharya et al. chemically mutagenize Leishmania and identify genes associated with resistance to miltefosine and paromomycin by next generation sequencing. The study shows that a protein kinase (CDPK1) can mediate resistance to paromomycin by affecting translation.
Collapse
|
13
|
Abstract
Gram-negative carbapenem-resistant bacteria are a major threat to global health. The use of genome-wide screening approaches to probe for genes or mutations enabling resistance can lead to identification of molecular markers for diagnostics applications. We describe an approach called Mut-Seq that couples chemical mutagenesis and next-generation sequencing for studying resistance to imipenem in the Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The use of this approach highlighted shared and species-specific responses, and the role in resistance of a number of genes involved in membrane biogenesis, transcription, and signal transduction was functionally validated. Interestingly, some of the genes identified were previously considered promising therapeutic targets. Our genome-wide screen has the potential to be extended outside drug resistance studies and expanded to other organisms. Carbapenem-resistant Gram-negative bacteria are considered a major threat to global health. Imipenem (IMP) is used as a last line of treatment against these pathogens, but its efficacy is diminished by the emergence of resistance. We applied a whole-genome screen in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates that were submitted to chemical mutagenesis, selected for IMP resistance, and characterized by next-generation sequencing. A comparative analysis of IMP-resistant clones showed that most of the highly mutated genes shared by the three species encoded proteins involved in transcription or signal transduction. Of these, the rpoD gene was one of the most prevalent and an E. coli strain disrupted for rpoD displayed a 4-fold increase in resistance to IMP. E. coli and K. pneumoniae also specifically shared several mutated genes, most involved in membrane/cell envelope biogenesis, and the contribution in IMP susceptibility was experimentally proven for amidases, transferases, and transglycosidases. P. aeruginosa differed from the two Enterobacteriaceae isolates with two different resistance mechanisms, with one involving mutations in the oprD porin or, alternatively, in two-component systems. Our chemogenomic screen performed with the three species has highlighted shared and species-specific responses to IMP. IMPORTANCE Gram-negative carbapenem-resistant bacteria are a major threat to global health. The use of genome-wide screening approaches to probe for genes or mutations enabling resistance can lead to identification of molecular markers for diagnostics applications. We describe an approach called Mut-Seq that couples chemical mutagenesis and next-generation sequencing for studying resistance to imipenem in the Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The use of this approach highlighted shared and species-specific responses, and the role in resistance of a number of genes involved in membrane biogenesis, transcription, and signal transduction was functionally validated. Interestingly, some of the genes identified were previously considered promising therapeutic targets. Our genome-wide screen has the potential to be extended outside drug resistance studies and expanded to other organisms.
Collapse
|
14
|
Abstract
Peptidoglycan is an essential macromolecule that forms the bacterial cell wall. The recent discovery of new cell wall-polymerizing enzymes not only illuminates the basic biology and evolution of prokaryotes but also provides new targets for the development of antibacterials to combat drug-resistant pathogens.
Collapse
|
15
|
Gain- and Loss-of-Function Screens Coupled to Next-Generation Sequencing for Antibiotic Mode of Action and Resistance Studies in Streptococcus pneumoniae. Antimicrob Agents Chemother 2019; 63:AAC.02381-18. [PMID: 30783004 DOI: 10.1128/aac.02381-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/08/2019] [Indexed: 12/23/2022] Open
Abstract
Two whole-genome screening approaches are described for studying the mode of action and the mechanisms of resistance to trimethoprim (TMP) in the Gram-positive Streptococcus pneumoniae The gain-of-function approach (Int-Seq) relies on a genomic library of DNA fragments integrated into a fucose-inducible cassette. The second approach, leading to both gain- and loss-of-function mutation, is based on chemical mutagenesis coupled to next-generation sequencing (Mut-Seq). Both approaches pointed at the drug target dihydrofolate reductase (DHFR) as a major resistance mechanism to TMP. Resistance was achieved by dhfr overexpression either through the addition of fucose (Int-Seq) or by mutations upstream of the gene (Mut-Seq). Three types of mutations increased expression by disrupting a predicted Rho-independent terminator upstream of dhfr Known and novel DHFR mutations were also detected by Mut-Seq, and these were functionally validated for TMP resistance. The two approaches also suggested that an increase in the metabolic flux from purine synthesis to GTP and then to folate can modulate the susceptibility to TMP. Finally, we provide evidence for a novel role of the ABC transporter PatAB in TMP susceptibility. Our genomic screens highlighted novel aspects on the mode of action and mechanisms of resistance to antibiotics.
Collapse
|
16
|
Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. Proc Natl Acad Sci U S A 2018; 115:6709-6714. [PMID: 29891673 DOI: 10.1073/pnas.1802192115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The peptidoglycan cell wall provides an essential protective barrier in almost all bacteria, defining cellular morphology and conferring resistance to osmotic stress and other environmental hazards. The precursor to peptidoglycan, lipid II, is assembled on the inner leaflet of the plasma membrane. However, peptidoglycan polymerization occurs on the outer face of the plasma membrane, and lipid II must be flipped across the membrane by the MurJ protein before its use in peptidoglycan synthesis. Due to its central role in cell wall assembly, MurJ is of fundamental importance in microbial cell biology and is a prime target for novel antibiotic development. However, relatively little is known regarding the mechanisms of MurJ function, and structural data for MurJ are available only from the extremophile Thermosipho africanus Here, we report the crystal structure of substrate-free MurJ from the gram-negative model organism Escherichia coli, revealing an inward-open conformation. Taking advantage of the genetic tractability of E. coli, we performed high-throughput mutagenesis and next-generation sequencing to assess mutational tolerance at every amino acid in the protein, providing a detailed functional and structural map for the enzyme and identifying sites for inhibitor development. Lastly, through the use of sequence coevolution analysis, we identify functionally important interactions in the outward-open state of the protein, supporting a rocker-switch model for lipid II transport.
Collapse
|
17
|
Freed EF, Pines G, Eckert CA, Gill RT. Trackable Multiplex Recombineering (TRMR) and Next-Generation Genome Design Technologies: Modifying Gene Expression inE. coliby Inserting Synthetic DNA Cassettes and Molecular Barcodes. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Affiliation(s)
- Emily F. Freed
- Biosciences Center, National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401 USA
| | - Gur Pines
- University of Colorado; Chemical and Biological Engineering; 3415 Colorado Ave Boulder CO 80303 USA
- University of Colorado; Renewable and Sustainable Energy Institute; 4001 Discovery Dr Boulder CO 80303 USA
| | - Carrie A. Eckert
- Biosciences Center, National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401 USA
- University of Colorado; Renewable and Sustainable Energy Institute; 4001 Discovery Dr Boulder CO 80303 USA
| | - Ryan T. Gill
- University of Colorado; Chemical and Biological Engineering; 3415 Colorado Ave Boulder CO 80303 USA
- University of Colorado; Renewable and Sustainable Energy Institute; 4001 Discovery Dr Boulder CO 80303 USA
| |
Collapse
|
18
|
Segawa K, Kurata S, Nagata S. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane. J Biol Chem 2017; 293:2172-2182. [PMID: 29276178 DOI: 10.1074/jbc.ra117.000289] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/21/2017] [Indexed: 02/04/2023] Open
Abstract
Flippases are enzymes that translocate phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) from the outer to the inner leaflet in the lipid bilayer of the plasma membrane, leading to the asymmetric distribution of aminophospholipids in the membrane. One mammalian phospholipid flippase at the plasma membrane is ATP11C, a type IV P-type ATPase (P4-ATPase) that forms a heterocomplex with the transmembrane protein CDC50A. However, the structural features in CDC50A that support the function of ATP11C and other P4-ATPases have not been characterized. Here, using error-prone PCR-mediated mutagenesis of human CDC50A cDNA followed by functional screening and deep sequencing, we identified 14 amino acid residues that affect ATP11C's flippase activity. These residues were all located in CDC50A's extracellular domain and were evolutionarily well-conserved. Most of the mutations decreased CDC50A's ability to chaperone ATP11C and other P4-ATPases to their destinations. The CDC50A mutants failed to form a stable complex with ATP11C and could not induce ATP11C's PtdSer-dependent ATPase activity. Notably, one mutant variant could form a stable complex with ATP11C and transfer ATP11C to the plasma membrane, yet the ATP11C complexed with this CDC50A variant had very weak or little PtdSer- or PtdEtn-dependent ATPase activity. These results indicated that the extracellular domain of CDC50A has important roles both in CDC50A's ability to chaperone ATP11C to the plasma membrane and in inducing ATP11C's ATP hydrolysis-coupled flippase activity.
Collapse
Affiliation(s)
- Katsumori Segawa
- From the Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sachiko Kurata
- From the Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigekazu Nagata
- From the Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Zheng X, Xing XH, Zhang C. Targeted mutagenesis: A sniper-like diversity generator in microbial engineering. Synth Syst Biotechnol 2017; 2:75-86. [PMID: 29062964 PMCID: PMC5636951 DOI: 10.1016/j.synbio.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Mutations, serving as the raw materials of evolution, have been extensively utilized to increase the chances of engineering molecules or microbes with tailor-made functions. Global and targeted mutagenesis are two main methods of obtaining various mutations, distinguished by the range of action they can cover. While the former one stresses the mining of novel genetic loci within the whole genomic background, targeted mutagenesis performs in a more straightforward manner, bringing evolutionary escape and error catastrophe under control. In this review, we classify the existing techniques of targeted mutagenesis into two categories in terms of whether the diversity is generated in vitro or in vivo, and briefly introduce the mechanisms and applications of them separately. The inherent connections and development trends of the two classes are also discussed to provide an insight into the next generation evolution research.
Collapse
Key Words
- 3′-LTR, 3’-long terminal repeat
- 5-FOA, 5-fluoro-orotic acid
- CRISPR/Cas9, clustered regularly interspaced short palindromic repeats and associated protein 9
- DNA Pol III, DNA polymerase III
- DNA PolI, DNA polymerase I
- DSB, double strand break
- Evolution
- FLASH, fast ligation-based automatable solid-phase high-throughput
- HDR, homology-directed repair
- HIV, human immunodeficiency virus
- ICE, in vivo continuous evolution
- LIC, ligation-independent cloning
- MAGE, multiplex automated genome engineering
- MMEJ, microhomology-mediated end-joining
- Mutations
- NHEJ, error-prone non-homologous end-joining
- ORF, open reading frame
- PAM, protospacer-adjacent motif
- RVD, repeat variable di-residue
- Synthetic biology
- TALE, transcription activator-like effector
- TALEN, transcription activator-like effector nuclease
- TP, terminal protein
- TP-DNAP, TP-DNA polymerase fusion
- TaGTEAM, targeting glycosylase to embedded arrays for mutagenesis
- Targeted mutagenesis
- YOGE, yeast oligo-mediated genome engineering
- ZF, zinc-finger protein
- ZFN, zinc-finger nuclease
- dCas9, catalytically dead Cas9
- dNTP, deoxy-ribonucleoside triphosphate
- dsDNA, double-stranded DNA
- error-prone PCR, error-prone polymerase chain reaction
- non-GMO, non-genetically modified organism
- pre-crRNA, pre-CRISPR RNA
- sctetR, single chain tetR
- sgRNA, single-guide RNA
- ssDNA, single-stranded DNA
- tracrRNA, trans-encoded RNA
Collapse
Affiliation(s)
| | | | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Genomic sequencing-based mutational enrichment analysis identifies motility genes in a genetically intractable gut microbe. Proc Natl Acad Sci U S A 2016; 113:14127-14132. [PMID: 27911803 DOI: 10.1073/pnas.1612753113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major roadblock to understanding how microbes in the gastrointestinal tract colonize and influence the physiology of their hosts is our inability to genetically manipulate new bacterial species and experimentally assess the function of their genes. We describe the application of population-based genomic sequencing after chemical mutagenesis to map bacterial genes responsible for motility in Exiguobacterium acetylicum, a representative intestinal Firmicutes bacterium that is intractable to molecular genetic manipulation. We derived strong associations between mutations in 57 E. acetylicum genes and impaired motility. Surprisingly, less than half of these genes were annotated as motility-related based on sequence homologies. We confirmed the genetic link between individual mutations and loss of motility for several of these genes by performing a large-scale analysis of spontaneous suppressor mutations. In the process, we reannotated genes belonging to a broad family of diguanylate cyclases and phosphodiesterases to highlight their specific role in motility and assigned functions to uncharacterized genes. Furthermore, we generated isogenic strains that allowed us to establish that Exiguobacterium motility is important for the colonization of its vertebrate host. These results indicate that genetic dissection of a complex trait, functional annotation of new genes, and the generation of mutant strains to define the role of genes in complex environments can be accomplished in bacteria without the development of species-specific molecular genetic tools.
Collapse
|
21
|
Martins IM, Reis RL, Azevedo HS. Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine. ACS Chem Biol 2016; 11:2962-2980. [PMID: 27661443 DOI: 10.1021/acschembio.5b00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.
Collapse
Affiliation(s)
- Ivone M. Martins
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CEB − Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena S. Azevedo
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Institute
of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
22
|
SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 2016; 537:634-638. [PMID: 27525505 PMCID: PMC5161649 DOI: 10.1038/nature19331] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022]
Abstract
Elongation of rod-shaped bacteria is mediated by a dynamic peptidoglycan synthetic machinery called the Rod complex. We report that in Bacillus subtilis this complex is functional in the absence of all known peptidoglycan polymerases. Cells lacking these enzymes survive by inducing an envelope stress response that increases expression of RodA, a widely conserved core component of the Rod complex. RodA is a member of the SEDS family of proteins that play essential but ill-defined roles in cell wall biogenesis during growth, division and sporulation. Our genetic and biochemical analyses indicate that SEDS proteins constitute a new family of peptidoglycan polymerases. Thus, B. subtilis and likely most bacteria use two distinct classes of polymerases to synthesize their exoskeleton. Our findings indicate that SEDS family proteins are core cell wall synthases of the cell elongation and division machinery, and represent attractive targets for antibiotic development.
Collapse
|
23
|
Freed EF, Winkler JD, Weiss SJ, Garst AD, Mutalik VK, Arkin AP, Knight R, Gill RT. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits. ACS Synth Biol 2015; 4:1244-53. [PMID: 26478262 DOI: 10.1021/acssynbio.5b00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.
Collapse
Affiliation(s)
- Emily F. Freed
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - James D. Winkler
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sophie J. Weiss
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Andrew D. Garst
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Vivek K. Mutalik
- Lawrence Berkeley National Laboratory, Physical Biosciences
Division, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Adam P. Arkin
- Lawrence Berkeley National Laboratory, Physical Biosciences
Division, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rob Knight
- Departments of Pediatrics and Computer Science & Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ryan T. Gill
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
24
|
Brender JR, Zhang Y. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles. PLoS Comput Biol 2015; 11:e1004494. [PMID: 26506533 PMCID: PMC4624718 DOI: 10.1371/journal.pcbi.1004494] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. Few proteins carry out their tasks in isolation. Instead, proteins combine with each other in complicated ways that can be affected by either the natural genetic variation that occurs among people or by disease causing mutations such as those that occur in cancer or in genetic disorders. To understand how these mutations affect our health, it is necessary to understand how mutations can affect the strength of the interactions that bind proteins together. This is a difficult task to do in a laboratory on a large scale and scientists are increasingly turning to computational methods to predict these effects in advance. We show that by looking at the multiple alignments of similar protein-protein complex structures at the interface regions, new constraints based on the evolution of the three dimensional structures of proteins can be made to predict which mutations are compatible with two proteins interacting and which are not.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
25
|
Molecular Dissection of the Essential Features of the Origin of Replication of the Second Vibrio cholerae Chromosome. mBio 2015. [PMID: 26220967 PMCID: PMC4551981 DOI: 10.1128/mbio.00973-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vibrionaceae family members are interesting models for studying DNA replication initiation, as they contain two circular chromosomes. Chromosome II (chrII) replication is governed by two evolutionarily unique yet highly conserved elements, the origin DNA sequence oriCII and the initiator protein RctB. The minimum functional region of oriCII, oriCII-min, contains multiple elements that are bound by RctB in vitro, but little is known about the specific requirements for individual elements during oriCII initiation. We utilized undirected and site-specific mutagenesis to investigate the functionality of mutant forms of oriCII-min and assessed binding to various mutant forms by RctB. Our analyses showed that deletions, point mutations, and changes in RctB target site spacing or methylation all impaired oriCII-min-based replication. RctB displayed a reduced affinity for most of the low-efficacy origins tested, although its characteristic cooperative binding was generally maintained. Mutations that removed or altered the relative positions of origin components other than RctB binding sites (e.g., AT-rich sequence, DnaA target site) also abolished replicative capacity. Comprehensive mutagenesis and deep-sequencing-based screening (OriSeq) allowed the identification of a previously uncharacterized methylated domain in oriCII that is required for origin function. Together, our results reveal the remarkable evolutionary honing of oriCII and provide new insight into the complex interplay between RctB and oriCII. The genome of the enteric pathogen Vibrio cholerae consists of two chromosomes. While the chromosome I replication origin and its cognate replication initiator protein resemble those of Escherichia coli, the factors responsible for chromosome II replication initiation display no similarity to any other known initiation systems. Here, to enhance our understanding of how this DNA sequence, oriCII, and its initiator protein, RctB, function, we used both targeted mutagenesis and a new random-mutagenesis approach (OriSeq) to finely map the oriCII structural features and sequences required for RctB-mediated DNA replication. Collectively, our findings reveal the extraordinary evolutionary honing of the architecture and motifs that constitute oriCII and reveal a new role for methylation in oriCII-based replication. Finally, our findings suggest that the OriSeq approach is likely to be widely applicable for defining critical bases in cis-acting sequences.
Collapse
|
26
|
Wu NC, Olson CA, Du Y, Le S, Tran K, Remenyi R, Gong D, Al-Mawsawi LQ, Qi H, Wu TT, Sun R. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality. PLoS Genet 2015; 11:e1005310. [PMID: 26132554 PMCID: PMC4489113 DOI: 10.1371/journal.pgen.1005310] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022] Open
Abstract
Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available. The analysis of sequence conservation is a common approach to identify functional residues within a protein. However, not all functional residues are conserved as natural evolution and species diversification permit continuous innovation of protein functionality through the retention of advantageous mutations. Non-conserved functional residues, which are often species-specific, may not be identified by conventional analysis of sequence conservation despite being biologically important. Here we described a novel approach to identify functional residues within a protein by coupling a high-throughput experimental fitness profiling approach with computational protein modeling. Our methodology is independent of sequence conservation and is applicable to any protein where structural information is available. In this study, we systematically mapped the functional residues on the influenza A PA protein and revealed that non-conserved functional residues are prevalent. Our results not only have significant implication on how functionality evolves during natural evolution, but also highlight the caveats when applying conservation-based approaches to identify functional residues within a protein.
Collapse
Affiliation(s)
- Nicholas C. Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - C. Anders Olson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Kevin Tran
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Roland Remenyi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Laith Q. Al-Mawsawi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Hangfei Qi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America,
- AIDS Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Al-Mawsawi LQ, Wu NC, Olson CA, Shi VC, Qi H, Zheng X, Wu TT, Sun R. High-throughput profiling of point mutations across the HIV-1 genome. Retrovirology 2014; 11:124. [PMID: 25522661 PMCID: PMC4300175 DOI: 10.1186/s12977-014-0124-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/04/2014] [Indexed: 12/31/2022] Open
Abstract
Background The HIV-1 pandemic is not the result of a static pathogen but a large genetically diverse and dynamic viral population. The virus is characterized by a highly mutable genome rendering efforts to design a universal vaccine a significant challenge and drives the emergence of drug resistant variants upon antiviral pressure. Gaining a comprehensive understanding of the mutational tolerance of each HIV-1 genomic position is therefore of critical importance. Results Here we combine high-density mutagenesis with the power of next-generation sequencing to gauge the replication capacity and therefore mutational tolerability of single point mutations across the entire HIV-1 genome. We were able to achieve the evaluation of point mutational effects on viral replicative capacity for 5,553 individual HIV-1 nucleotide positions – representing 57% of the viral genome. Replicative capacity was assessed at 3,943 nucleotide positions for a single alternate base change, 1,459 nucleotide positions for two alternate base changes, and 151 nucleotide positions for all three possible alternate base changes. This resulted in the study of how a total of 7,314 individual point mutations impact HIV-1 replication on a single experimental platform. We further utilize the dataset for a focused structural analysis on a capsid inhibitor binding pocket. Conclusion The approach presented here can be applied to any pathogen that can be genetically manipulated in a laboratory setting. Furthermore, the methodology can be utilized under externally applied selection conditions, such as drug or immune pressure, to identify genetic elements that contribute to drug or host interactions, and therefore mutational routes of pathogen resistance and escape. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0124-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laith Q Al-Mawsawi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA. .,AIDS Institute, University of California, Los Angeles, CA, 90095, USA.
| | - Nicholas C Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| | - C Anders Olson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Vivian Cai Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Hangfei Qi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Xiaojuan Zheng
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA. .,AIDS Institute, University of California, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
28
|
Tenaillon O. The Utility of Fisher's Geometric Model in Evolutionary Genetics. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:179-201. [PMID: 26740803 PMCID: PMC4699269 DOI: 10.1146/annurev-ecolsys-120213-091846] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The accumulation of data on the genomic bases of adaptation has triggered renewed interest in theoretical models of adaptation. Among these models, Fisher Geometric Model (FGM) has received a lot of attention over the last two decades. FGM is based on a continuous multidimensional phenotypic landscape, but it is for the emerging properties of individual mutation effects that it is mostly used. Despite an apparent simplicity and a limited number of parameters, FGM integrates a full model of mutation and epistatic interactions that allows the study of both beneficial and deleterious mutations, and subsequently the fate of evolving populations. In this review, I present the different properties of FGM and the qualitative and quantitative support they have received from experimental evolution data. I later discuss how to estimate the different parameters of the model and outline some future directions to connect FGM and the molecular determinants of adaptation.
Collapse
Affiliation(s)
- O Tenaillon
- IAME, UMR 1137, INSERM, F-75018 Paris, France ; IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France
| |
Collapse
|
29
|
Gajula KS, Huwe PJ, Mo CY, Crawford DJ, Stivers JT, Radhakrishnan R, Kohli RM. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase. Nucleic Acids Res 2014; 42:9964-75. [PMID: 25064858 PMCID: PMC4150791 DOI: 10.1093/nar/gku689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9–11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function.
Collapse
Affiliation(s)
- Kiran S Gajula
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Huwe
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlie Y Mo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Crawford
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul M Kohli
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Wu NC, Young AP, Al-Mawsawi LQ, Olson CA, Feng J, Qi H, Chen SH, Lu IH, Lin CY, Chin RG, Luan HH, Nguyen N, Nelson SF, Li X, Wu TT, Sun R. High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution. Sci Rep 2014; 4:4942. [PMID: 24820965 PMCID: PMC4018626 DOI: 10.1038/srep04942] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/16/2014] [Indexed: 01/12/2023] Open
Abstract
Genetic research on influenza virus biology has been informed in large part by nucleotide variants present in seasonal or pandemic samples, or individual mutants generated in the laboratory, leaving a substantial part of the genome uncharacterized. Here, we have developed a single-nucleotide resolution genetic approach to interrogate the fitness effect of point mutations in 98% of the amino acid positions in the influenza A virus hemagglutinin (HA) gene. Our HA fitness map provides a reference to identify indispensable regions to aid in drug and vaccine design as targeting these regions will increase the genetic barrier for the emergence of escape mutations. This study offers a new platform for studying genome dynamics, structure-function relationships, virus-host interactions, and can further rational drug and vaccine design. Our approach can also be applied to any virus that can be genetically manipulated.
Collapse
Affiliation(s)
- Nicholas C Wu
- 1] Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA [2] Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA [3]
| | - Arthur P Young
- 1] Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA [2]
| | - Laith Q Al-Mawsawi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - C Anders Olson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jun Feng
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Hangfei Qi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - I-Hsuan Lu
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Robert G Chin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Harding H Luan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nguyen Nguyen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- 1] Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA [2] Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ren Sun
- 1] Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA [2] Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA [3] AIDS Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Zhang ZH, Khoo AA, Mihalek I. Cube - an online tool for comparison and contrasting of protein sequences. PLoS One 2013; 8:e79480. [PMID: 24363790 PMCID: PMC3867285 DOI: 10.1371/journal.pone.0079480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/23/2013] [Indexed: 01/10/2023] Open
Abstract
When comparing sequences of similar proteins, two kinds of questions can be asked, and the related two kinds of inference made. First, one may ask to what degree they are similar, and then, how they differ. In the first case one may tentatively conclude that the conserved elements common to all sequences are of central and common importance to the protein's function. In the latter case the regions of specialization may be discriminative of the function or binding partners across subfamilies of related proteins. Experimental efforts - mutagenesis or pharmacological intervention - can then be pointed in either direction, depending on the context of the study. Cube simplifies this process for users that already have their favorite sets of sequences, and helps them collate the information by visualization of the conservation and specialization scores on the sequence and on the structure, and by spreadsheet tabulation. All information can be visualized on the spot, or downloaded for reference and later inspection. Server homepage: http://eopsf.org/cube
Collapse
Affiliation(s)
- Zong Hong Zhang
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Aik Aun Khoo
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Ivana Mihalek
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
- * E-mail: Corresponding
| |
Collapse
|
32
|
Robasky K, Lewis NE, Church GM. The role of replicates for error mitigation in next-generation sequencing. Nat Rev Genet 2013; 15:56-62. [PMID: 24322726 DOI: 10.1038/nrg3655] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advances in next-generation sequencing (NGS) technologies have rapidly improved sequencing fidelity and substantially decreased sequencing error rates. However, given that there are billions of nucleotides in a human genome, even low experimental error rates yield many errors in variant calls. Erroneous variants can mimic true somatic and rare variants, thus requiring costly confirmatory experiments to minimize the number of false positives. Here, we discuss sources of experimental errors in NGS and how replicates can be used to abate such errors.
Collapse
Affiliation(s)
- Kimberly Robasky
- 1] Program in Bioinformatics, Boston University, Massachusetts 02115, USA.Department of Genetics, Harvard Medical School, and the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA. Present address: Expression Analysis, a Quintiles Company, Durham, North Carolina 27713, USA. [2]
| | - Nathan E Lewis
- 1] Department of Genetics, Harvard Medical School, and the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA. Department of Biology, Brigham Young University, Provo, Utah 84602, USA. Present address: Division of Pediatric Pharmacology and Drug Discovery, University of California, San Diego School of Medicine, La Jolla, California 92093, USA. [2]
| | - George M Church
- Department of Genetics, Harvard Medical School, and the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Abstract
From population genetics theory, elevating the mutation rate of a large population should progressively reduce average fitness. If the fitness decline is large enough, the population will go extinct in a process known as lethal mutagenesis. Lethal mutagenesis has been endorsed in the virology literature as a promising approach to viral treatment, and several in vitro studies have forced viral extinction with high doses of mutagenic drugs. Yet only one empirical study has tested the genetic models underlying lethal mutagenesis, and the theory failed on even a qualitative level. Here we provide a new level of analysis of lethal mutagenesis by developing and evaluating models specifically tailored to empirical systems that may be used to test the theory. We first quantify a bias in the estimation of a critical parameter and consider whether that bias underlies the previously observed lack of concordance between theory and experiment. We then consider a seemingly ideal protocol that avoids this bias-mutagenesis of virions-but find that it is hampered by other problems. Finally, results that reveal difficulties in the mere interpretation of mutations assayed from double-strand genomes are derived. Our analyses expose unanticipated complexities in testing the theory. Nevertheless, the previous failure of the theory to predict experimental outcomes appears to reside in evolutionary mechanisms neglected by the theory (e.g., beneficial mutations) rather than from a mismatch between the empirical setup and model assumptions. This interpretation raises the specter that naive attempts at lethal mutagenesis may augment adaptation rather than retard it.
Collapse
|