1
|
Song X, Xia Z, Martinez D, Xu B, Spritzer Z, Zhang Y, Nugent E, Ho Y, Terzic B, Zhou Z. Independent genetic strategies define the scope and limits of CDKL5 deficiency disorder reversal. Cell Rep Med 2025:101926. [PMID: 39855191 DOI: 10.1016/j.xcrm.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental syndrome caused by mutations in the X-linked CDKL5 gene. The early onset of CDD suggests that CDKL5 is essential during development, but post-developmental re-expression rescues multiple CDD-related phenotypes in hemizygous male mice. Since most patients are heterozygous females, studies in clinically relevant female models are essential. Here, we systematically compare phenotype reversal across age and sex using two independent mouse models of CDD. We find that early re-activation of endogenous Cdkl5 in heterozygous females reverses most phenotypes, except working memory. Later re-expression improves several traits but has limited effects on cognitive function. Seizure prevention is more effective with early intervention in heterozygous females but becomes limited after seizure onset. These findings demonstrate the robust potential of CDKL5 re-expression to reverse CDD-related phenotypes in both sexes while underscoring the critical impact of age and disease stage in designing clinical trials.
Collapse
Affiliation(s)
- Xie Song
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Zijie Xia
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Bing Xu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong 250000, China
| | - Zachary Spritzer
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Yanjie Zhang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Erin Nugent
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Yugong Ho
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Barbara Terzic
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19102, USA.
| |
Collapse
|
2
|
Glass MR, Whye D, Anderson NC, Wood D, Makhortova NR, Polanco T, Kim KH, Donovan KE, Vaccaro L, Jain A, Cacchiarelli D, Sun L, Olson H, Buttermore ED, Sahin M. Excitatory Cortical Neurons from CDKL5 Deficiency Disorder Patient-Derived Organoids Show Early Hyperexcitability Not Identified in Neurogenin2 Induced Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622878. [PMID: 39605742 PMCID: PMC11601297 DOI: 10.1101/2024.11.11.622878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation. Patient-derived neurons from both differentiation paradigms had decreased phosphorylated EB2, a known molecular target of CDKL5. Induced neurons showed no detectable differences between cases and isogenic controls in network activity using a multielectrode array, or in MAP2+ neurite length, and only two genes were differentially expressed. However, patient-derived neurons from the organoid differentiation showed increased synchrony and weighted mean firing rate on the multielectrode array within the first month of network maturation. CDD patient-derived cortical neurons had lower expression of CDKL5 and HS3ST1, which may change the extracellular matrix around the synapse and contribute to hyperexcitability. Similar to the induced neurons, there were no differences in neurite length across or within patient-control cell lines. Induced neurons have poor cortical specification while the organoid derived neurons expressed cortical markers, suggesting that the changes in neuronal excitability and gene expression are specific to cortical excitatory neurons. Examining molecular mechanisms of early hyperexcitability in cortical neurons is a promising avenue for identification of CDD therapeutics.
Collapse
|
3
|
Li C, Liu Y, Luo S, Yang M, Li L, Sun L. A review of CDKL: An underestimated protein kinase family. Int J Biol Macromol 2024; 277:133604. [PMID: 38964683 DOI: 10.1016/j.ijbiomac.2024.133604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
4
|
Colarusso A, Lauro C, Canè L, Cozzolino F, Tutino ML. Bacterial Production of CDKL5 Catalytic Domain: Insights in Aggregation, Internal Translation and Phosphorylation Patterns. Int J Mol Sci 2024; 25:8891. [PMID: 39201578 PMCID: PMC11354467 DOI: 10.3390/ijms25168891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a serine/threonine protein kinase involved in human brain development and functioning. Mutations in CDKL5, especially in its catalytic domain, cause a severe developmental condition named CDKL5 deficiency disorder. Nevertheless, molecular studies investigating the structural consequences of such mutations are still missing. The CDKL5 catalytic domain harbors different sites of post-translational modification, such as phosphorylations, but their role in catalytic activity, protein folding, and stability has not been entirely investigated. With this work, we describe the expression pattern of the CDKL5 catalytic domain in Escherichia coli demonstrating that it predominantly aggregates. However, the use of solubility tags, the lowering of the expression temperature, the manual codon optimization to overcome an internal translational start, and the incubation of the protein with K+ and MgATP allow the collection of a soluble catalytically active kinase. Interestingly, the resulting protein exhibits hypophosphorylation compared to its eukaryotic counterpart, proving that bacteria are a useful tool to achieve almost unmodified CDKL5. Posing questions about the CDKL5 autoactivation mechanism and the determinants for its stability, this research provides a valuable platform for comparative biophysical studies between bacterial and eukaryotic-expressed proteins, contributing to our understanding of neurodevelopmental disorders associated with CDKL5 dysfunction.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Translational Medical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B., Viale Medaglie D’Oro 305, 00136 Roma, Italy
| |
Collapse
|
5
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Zhou B, Zhang M, Ma H, Wang Y, Qiu J, Liu Y, Lu L, Li T, Zhang L, Huang R, Gu Y, Kong E, Liang Y. Distinct palmitoylation of Foxp3 regulates the function of regulatory T cells via palmitoyltransferases. Cell Mol Immunol 2024; 21:787-789. [PMID: 38720064 PMCID: PMC11214613 DOI: 10.1038/s41423-024-01166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/18/2024] [Indexed: 07/01/2024] Open
Affiliation(s)
- Binhui Zhou
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Mengjie Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ying Wang
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juanjuan Qiu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yang Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianhan Li
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Rong Huang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Eryan Kong
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yinming Liang
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
- Center of Disease Model and Immunology, Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
7
|
Li X, Yennawar M, Wiest A, O'Brien WT, Babrowicz B, White RS, Talos DM, Jensen FE. Cannabidiol attenuates seizure susceptibility and behavioural deficits in adult CDKL5 R59X knock-in mice. Eur J Neurosci 2024; 59:3337-3352. [PMID: 38654472 DOI: 10.1111/ejn.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by a loss-of-function mutation in CDKL5 gene, encoding a serine-threonine kinase highly expressed in the brain. CDD manifests with early-onset epilepsy, autism, motor impairment and severe intellectual disability. While there are no known treatments for CDD, the use of cannabidiol has recently been introduced into clinical practice for neurodevelopmental disorders. Given the increased clinical utilization of cannabidiol, we examined its efficacy in the CDKL5R59X knock-in (R59X) mice, a CDD model based on a human mutation that exhibits both lifelong seizure susceptibility and behavioural deficits. We found that cannabidiol pre-treatment rescued the increased seizure susceptibility in response to the chemoconvulsant pentylenetetrazol (PTZ), attenuated working memory and long-term memory impairments, and rescued social deficits in adult R59X mice. To elucidate a potential mechanism, we compared the developmental hippocampal and cortical expression of common endocannabinoid (eCB) targets in R59X mice and their wild-type littermates, including cannabinoid type 1 receptor (CB1R), transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), G-coupled protein receptor 55 (GPR55) and adenosine receptor 1 (A1R). Many of these eCB targets were developmentally regulated in both R59X and wild-type mice. In addition, adult R59X mice demonstrated significantly decreased expression of CB1R and TRPV1 in the hippocampus, and TRPV2 in the cortex, while TRPV1 was increased in the cortex. These findings support the potential for dysregulation of eCB signalling as a plausible mechanism and therapeutic target in CDD, given the efficacy of cannabidiol to attenuate hyperexcitability and behavioural deficits in this disorder.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madhumita Yennawar
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa Wiest
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William T O'Brien
- Neurobehavior Testing Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bergan Babrowicz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel S White
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Wang J, Zhu H, Tian R, Zhang Q, Zhang H, Hu J, Wang S. Physiological and pathological effects of phase separation in the central nervous system. J Mol Med (Berl) 2024; 102:599-615. [PMID: 38441598 PMCID: PMC11055734 DOI: 10.1007/s00109-024-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Phase separation, also known as biomolecule condensate, participates in physiological processes such as transcriptional regulation, signal transduction, gene expression, and DNA damage repair by creating a membrane-free compartment. Phase separation is primarily caused by the interaction of multivalent non-covalent bonds between proteins and/or nucleic acids. The strength of molecular multivalent interaction can be modified by component concentration, the potential of hydrogen, posttranslational modification, and other factors. Notably, phase separation occurs frequently in the cytoplasm of mitochondria, the nucleus, and synapses. Phase separation in vivo is dynamic or stable in the normal physiological state, while abnormal phase separation will lead to the formation of biomolecule condensates, speeding up the disease progression. To provide candidate suggestions for the clinical treatment of nervous system diseases, this review, based on existing studies, carefully and systematically represents the physiological roles of phase separation in the central nervous system and its pathological mechanism in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, China.
| | - Ruijia Tian
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Qian Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Haoliang Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Jin Hu
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
9
|
Martinez D, Jiang E, Zhou Z. Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities. J Neurodev Disord 2024; 16:5. [PMID: 38424476 PMCID: PMC10902969 DOI: 10.1186/s11689-024-09517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.
Collapse
Affiliation(s)
- Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Evan Jiang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Liao W, Lee KZ. CDKL5-mediated developmental tuning of neuronal excitability and concomitant regulation of transcriptome. Hum Mol Genet 2023; 32:3276-3298. [PMID: 37688574 DOI: 10.1093/hmg/ddad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase enriched in the forebrain to regulate neuronal development and function. Patients with CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition caused by mutations of CDKL5 gene, present early-onset epilepsy as the most prominent feature. However, spontaneous seizures have not been reported in mouse models of CDD, raising vital questions on the human-mouse differences and the roles of CDKL5 in early postnatal brains. Here, we firstly measured electroencephalographic (EEG) activities via a wireless telemetry system coupled with video-recording in neonatal mice. We found that mice lacking CDKL5 exhibited spontaneous epileptic EEG discharges, accompanied with increased burst activities and ictal behaviors, specifically at postnatal day 12 (P12). Intriguingly, those epileptic spikes disappeared after P14. We next performed an unbiased transcriptome profiling in the dorsal hippocampus and motor cortex of Cdkl5 null mice at different developmental timepoints, uncovering a set of age-dependent and brain region-specific alterations of gene expression in parallel with the transient display of epileptic activities. Finally, we validated multiple differentially expressed genes, such as glycine receptor alpha 2 and cholecystokinin, at the transcript or protein levels, supporting the relevance of these genes to CDKL5-regulated excitability. Our findings reveal early-onset neuronal hyperexcitability in mouse model of CDD, providing new insights into CDD etiology and potential molecular targets to ameliorate intractable neonatal epilepsy.
Collapse
Affiliation(s)
- Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan
- Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-Sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
12
|
Jiang M, Xu Q, Yang C, Li D, Liu JW, Zhang Y, Zhu YC, Xiong ZQ. Activity-Dependent Phosphorylation of CDKL5 at Serine 407 Regulates Synaptogenesis and Plasticity. Neurosci Bull 2023; 39:1454-1458. [PMID: 37198422 PMCID: PMC10465469 DOI: 10.1007/s12264-023-01066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/05/2023] [Indexed: 05/19/2023] Open
Affiliation(s)
- Mengying Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiwu Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Can Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ji-Wei Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yuxian Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong-Chuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
13
|
Specchio N, Trivisano M, Lenge M, Ferretti A, Mei D, Parrini E, Napolitano A, Rossi-Espagnet C, Talenti G, Longo D, Proietti J, Ragona F, Freri E, Solazzi R, Granata T, Darra F, Bernardina BD, Vigevano F, Guerrini R. CDKL5 deficiency disorder: progressive brain atrophy may be part of the syndrome. Cereb Cortex 2023; 33:9709-9717. [PMID: 37429835 PMCID: PMC10472491 DOI: 10.1093/cercor/bhad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
The clinical phenotype of Cyclin-Dependent Kinase-Like 5 (CDKL5) deficiency disorder (CDD) has been delineated but neuroimaging features have not been systematically analyzed. We studied brain magnetic resonance imaging (MRI) scans in a cohort of CDD patients and reviewed age at seizure onset, seizure semiology, head circumference. Thirty-five brain MRI from 22 unrelated patients were included. The median age at study entry was 13.4 years. In 14/22 patients (85.7%), MRI in the first year of life was unremarkable in all but two. In 11/22, we performed MRI after 24 months of age (range 2.5-23 years). In 8 out of 11 (72.7%), MRI showed supratentorial atrophy and in six cerebellar atrophy. Quantitative analysis detected volumetric reduction of the whole brain (-17.7%, P-value = 0.014), including both white matter (-25.7%, P-value = 0.005) and cortical gray matter (-9.1%, P-value = 0.098), with a reduction of surface area (-18.0%, P-value = 0.032), mainly involving the temporal regions, correlated with the head circumference (ρ = 0.79, P-value = 0.109). Both the qualitative structural assessment and the quantitative analysis detected brain volume reduction involving the gray and white matter. These neuroimaging findings may be related to either progressive changes due to CDD pathogenesis, or to the extreme severity of epilepsy, or both. Larger prospective studies are needed to clarify the bases for the structural changes we observed.
Collapse
Affiliation(s)
- Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Marina Trivisano
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Matteo Lenge
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| | - Alessandro Ferretti
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| | - Elena Parrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| | - Antonio Napolitano
- Medical Physics Unit, Enterprise Risk Management, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Camilla Rossi-Espagnet
- Functional and Interventional Neuroimaging Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Giacomo Talenti
- Neuroradiology Unit, Neuroradiology Unit, Azienda Ospedale-Università di Padova, Padova 35128, Italy
| | - Daniela Longo
- Functional and Interventional Neuroimaging Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Jacopo Proietti
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona 37121, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona 37121, Italy
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona 37121, Italy
| | - Federico Vigevano
- Research Area on Neurology and Neurorehabilitation, Bambino Gesù Children’s Hospital IRCCS, Rome 00050, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| |
Collapse
|
14
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
15
|
Sun X, Wang T. Research progress on the pathogenesis of CDKL5 pathogenic variants and related encephalopathy. Eur J Pediatr 2023:10.1007/s00431-023-05006-z. [PMID: 37166538 DOI: 10.1007/s00431-023-05006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a gene encoding a serine/threonine kinase that possesses an N-terminal catalytic domain and a large C-terminal domain and is located on the short arm of the X-chromosome at position 22 (Xp22). CDKL5 regulates neuronal migration, axonal growth, dendritic morphogenesis, and synaptic development and affects synaptic function. Pathogenic variants include deletions, truncations, splice variants, and missense variants. The specificity of CDKL5 is mainly determined by the shared sequence of amino acid residues, which is the phosphorylation site of the target protein with the motif Arg-Pro-X-Ser/Thr-Ala/Pro/Gly/Ser (R-P-X-[S/T]-[A/G/P/S]). Developmental encephalopathy caused by pathogenic variants of CDKL5 has a variety of nervous system symptoms, such as epilepsy, hypotonia, growth retardation, dyskinesia, cortical visual impairment, sleep disorders, and other clinical symptoms. This review summarizes the mechanism of CDKL5-induced allogeneic lesions in the nervous system and the clinical manifestations of related encephalopathy. Conclusion: This review clarifies CDKL5's participation in neurodevelopmental diseases as well as its crucial function in dividing cells, cultured neurons, knockout mice, and human iPSC-derived neurons. CDKL5 variants help identify clinical diagnostic biomarkers. Although a few direct substrates of CDKL5 have been identified, more must be found in order to fully comprehend the signaling pathways connected to CDKL5 in the brain and the mechanisms that underlie its activities.
Collapse
Affiliation(s)
- Xuyan Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Tiancheng Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
16
|
Tassinari M, Uguagliati B, Trazzi S, Cerchier CB, Cavina OV, Mottolese N, Loi M, Candini G, Medici G, Ciani E. Early-onset brain alterations during postnatal development in a mouse model of CDKL5 deficiency disorder. Neurobiol Dis 2023; 182:106146. [PMID: 37164289 DOI: 10.1016/j.nbd.2023.106146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Mutations in the CDKL5 gene are the cause of CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental condition characterized by early-onset epilepsy, motor impairment, intellectual disability, and autistic features. A mouse model of CDD, the Cdkl5 KO mouse, that recapitulates several aspects of CDD symptomology, has helped to highlight brain alterations leading to CDD neurological defects. Studies of brain morphogenesis in adult Cdkl5 KO mice showed defects in dendritic arborization of pyramidal neurons and in synaptic connectivity, a hypocellularity of the hippocampal dentate gyrus, and a generalized microglia over-activation. Nevertheless, no studies are available regarding the presence of these brain alterations in Cdkl5 KO pups, and their severity in early stages of life compared to adulthood. A deeper understanding of the CDKL5 deficient brain during an early phase of postnatal development would represent an important milestone for further validation of the CDD mouse model, and for the identification of the optimum time window for treatments that target defects in brain development. In sight of this, we comparatively evaluated the dendritic arborization and spines of cortical pyramidal neurons, cortical excitatory and inhibitory connectivity, microglia activation, and proliferation and survival of granule cells of the hippocampal dentate gyrus in hemizygous Cdkl5 KO male (-/Y) mice aged 7, 14, 21, and 60 days. We found that most of the structural alterations in Cdkl5 -/Y brains are already present in pups aged 7 days and do not worsen with age. In contrast, the difference in the density of excitatory and inhibitory terminals between Cdkl5 -/Y and wild-type mice changes with age, suggesting an age-dependent cortical excitatory/inhibitory synaptic imbalance. Confirming the precocious presence of brain defects, Cdkl5 -/Y pups are characterized by an impairment in neonatal sensory-motor reflexes.
Collapse
Affiliation(s)
- Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy.
| | - Camilla Bruna Cerchier
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Ottavia Vera Cavina
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
18
|
Kontaxi C, Ivanova D, Davenport EC, Kind PC, Cousin MA. Epilepsy-Related CDKL5 Deficiency Slows Synaptic Vesicle Endocytosis in Central Nerve Terminals. J Neurosci 2023; 43:2002-2020. [PMID: 36759195 PMCID: PMC10027047 DOI: 10.1523/jneurosci.1537-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe early-onset epileptic encephalopathy resulting mainly from de novo mutations in the X-linked CDKL5 gene. To determine whether loss of presynaptic CDKL5 function contributes to CDD, we examined synaptic vesicle (SV) recycling in primary hippocampal neurons generated from Cdkl5 knockout rat males. Using a genetically encoded reporter, we revealed that CDKL5 is selectively required for efficient SV endocytosis. We showed that CDKL5 kinase activity is both necessary and sufficient for optimal SV endocytosis, since kinase-inactive mutations failed to correct endocytosis in Cdkl5 knockout neurons, whereas the isolated CDKL5 kinase domain fully restored SV endocytosis kinetics. Finally, we demonstrated that CDKL5-mediated phosphorylation of amphiphysin 1, a putative presynaptic target, is not required for CDKL5-dependent control of SV endocytosis. Overall, our findings reveal a key presynaptic role for CDKL5 kinase activity and enhance our insight into how its dysfunction may culminate in CDD.SIGNIFICANCE STATEMENT Loss of cyclin-dependent kinase like 5 (CDKL5) function is a leading cause of monogenic childhood epileptic encephalopathy. However, information regarding its biological role is scarce. In this study, we reveal a selective presynaptic role for CDKL5 in synaptic vesicle endocytosis and that its protein kinase activity is both necessary and sufficient for this role. The isolated protein kinase domain is sufficient to correct this loss of function, which may facilitate future gene therapy strategies if presynaptic dysfunction is proven to be central to the disorder. It also reveals that a CDKL5-specific substrate is located at the presynapse, the phosphorylation of which is required for optimal SV endocytosis.
Collapse
Affiliation(s)
- Christiana Kontaxi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| |
Collapse
|
19
|
Neuronal hyperexcitability and ion channel dysfunction in CDKL5-deficiency patient iPSC-derived cortical organoids. Neurobiol Dis 2022; 174:105882. [DOI: 10.1016/j.nbd.2022.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022] Open
|
20
|
Zhou B, Wang Y, Zhang L, Shi X, Kong H, Zhang M, Liu Y, Shao X, Liu Z, Song H, Li W, Gao X, Chang Y, Dou C, Guo W, Zhang S, Kang X, Gao J, Liang Y, Zheng J, Kong E. The palmitoylation of AEG-1 dynamically modulates the progression of hepatocellular carcinoma. Theranostics 2022; 12:6898-6914. [PMID: 36276642 PMCID: PMC9576614 DOI: 10.7150/thno.78377] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Rationale: Protein palmitoylation is tightly related to tumorigenesis or tumor progression as many oncogenes or tumor suppressors are palmitoylated. AEG-1, an oncogene, is commonly elevated in a variety of human malignancies, including hepatocellular carcinoma (HCC). Although AEG-1 was suggested to be potentially modified by protein palmitoylation, the regulatory roles of AEG-1 palmitoylation in tumor progression of HCC has not been explored. Methods: Techniques as Acyl-RAC assay and point mutation were used to confirm that AEG-1 is indeed palmitoylated. Moreover, biochemical experiments and immunofluorescent microscopy were applied to examine the cellular functions of AEG-1 palmitoylation in several cell lines. Remarkably, genetically modified knock-in (AEG-1-C75A) and knockout (Zdhhc6-KO) mice were established and subjected to the treatment of DEN to induce the HCC mice model, through which the roles of AEG-1 palmitoylation in HCC is directly addressed. Last, HCQ, a chemical compound, was introduced to prove in principal that elevating the level of AEG-1 palmitoylation might benefit the treatment of HCC in xenograft mouse model. Results: We showed that AEG-1 undergoes palmitoylation on a conserved cysteine residue, Cys-75. Blocking AEG-1 palmitoylation exacerbates the progression of DEN-induced HCC in vivo. Moreover, it was demonstrated that AEG-1 palmitoylation is dynamically regulated by zDHHC6 and PPT1/2. Accordingly, suppressing the level of AEG-1 palmitoylation by the deletion of Zdhhc6 reproduces the enhanced tumor-progression phenotype in DEN-induced HCC mouse model. Mechanistically, we showed that AEG-1 palmitoylation adversely regulates its protein stability and weakens AEG-1 and staphylococcal nuclease and tudor domain containing 1 (SND1) interaction, which might contribute to the alterations of the RISC activity and the expression of tumor suppressors. For intervention, HCQ, an inhibitor of PPT1, was applied to augment the level of AEG-1 palmitoylation, which retards the tumor growth of HCC in xenograft model. Conclusion: Our study suggests an unknown mechanism that AEG-1 palmitoylation dynamically manipulates HCC progression and pinpoints that raising AEG-1 palmitoylation might confer beneficial effect on the treatment of HCC.
Collapse
Affiliation(s)
- Binhui Zhou
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Ying Wang
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hesheng Kong
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Mengjie Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yang Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xia Shao
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Zhilong Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Hongxu Song
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Wushan Li
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xiaoxi Gao
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yanli Chang
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Chenzhuo Dou
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaohong Kang
- Department of Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yinming Liang
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Junfeng Zheng
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Eryan Kong
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
21
|
Zhou B, Hao Q, Liang Y, Kong E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol Oncol 2022; 17:3-26. [PMID: 36018061 PMCID: PMC9812842 DOI: 10.1002/1878-0261.13308] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Protein S-palmitoylation (hereinafter referred to as protein palmitoylation) is a reversible lipid posttranslational modification catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family. The reverse reaction, depalmitoylation, is catalyzed by palmitoyl-protein thioesterases (PPTs), including acyl-protein thioesterases (APT1/2), palmitoyl protein thioesterases (PPT1/2), or alpha/beta hydrolase domain-containing protein 17A/B/C (ABHD17A/B/C). Proteins encoded by several oncogenes and tumor suppressors are modified by palmitoylation, which enhances the hydrophobicity of specific protein subdomains, and can confer changes in protein stability, membrane localization, protein-protein interaction, and signal transduction. The importance for protein palmitoylation in tumorigenesis has just started to be elucidated in the past decade; palmitoylation appears to affect key aspects of cancer, including cancer cell proliferation and survival, cell invasion and metastasis, and antitumor immunity. Here we review the current literature on protein palmitoylation in the various cancer types, and discuss the potential of targeting of palmitoylation enzymes or palmitoylated proteins for tumor treatment.
Collapse
Affiliation(s)
- Binhui Zhou
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina
| | - Qianyun Hao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology IIPeking University Cancer Hospital & InstituteBeijingChina
| | - Yinming Liang
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory MedicineXinxiang Medical UniversityChina
| | - Eryan Kong
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina
| |
Collapse
|
22
|
Van Bergen NJ, Massey S, Quigley A, Rollo B, Harris AR, Kapsa RM, Christodoulou J. CDKL5 deficiency disorder: molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans 2022; 50:1207-1224. [PMID: 35997111 PMCID: PMC9444073 DOI: 10.1042/bst20220791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked brain disorder of young children and is caused by pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene. Individuals with CDD suffer infantile onset, drug-resistant seizures, severe neurodevelopmental impairment and profound lifelong disability. The CDKL5 protein is a kinase that regulates key phosphorylation events vital to the development of the complex neuronal network of the brain. Pathogenic variants identified in patients may either result in loss of CDKL5 catalytic activity or are hypomorphic leading to partial loss of function. Whilst the progressive nature of CDD provides an excellent opportunity for disease intervention, we cannot develop effective therapeutics without in-depth knowledge of CDKL5 function in human neurons. In this mini review, we summarize new findings on the function of CDKL5. These include CDKL5 phosphorylation targets and the consequence of disruptions on signaling pathways in the human brain. This new knowledge of CDKL5 biology may be leveraged to advance targeted drug discovery and rapid development of treatments for CDD. Continued development of effective humanized models will further propel our understanding of CDD biology and may permit the development and testing of therapies that will significantly alter CDD disease trajectory in young children.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R. Harris
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Robert M.I. Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
mGluR5 PAMs rescue cortical and behavioural defects in a mouse model of CDKL5 deficiency disorder. Neuropsychopharmacology 2022; 48:877-886. [PMID: 35945276 PMCID: PMC10156697 DOI: 10.1038/s41386-022-01412-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a devastating rare neurodevelopmental disease without a cure, caused by mutations of the serine/threonine kinase CDKL5 highly expressed in the forebrain. CDD is characterized by early-onset seizures, severe intellectual disabilities, autistic-like traits, sensorimotor and cortical visual impairments (CVI). The lack of an effective therapeutic strategy for CDD urgently demands the identification of novel druggable targets potentially relevant for CDD pathophysiology. To this aim, we studied Class I metabotropic glutamate receptors 5 (mGluR5) because of their important role in the neuropathological signs produced by the lack of CDKL5 in-vivo, such as defective synaptogenesis, dendritic spines formation/maturation, synaptic transmission and plasticity. Importantly, mGluR5 function strictly depends on the correct expression of the postsynaptic protein Homer1bc that we previously found atypical in the cerebral cortex of Cdkl5-/y mice. In this study, we reveal that CDKL5 loss tampers with (i) the binding strength of Homer1bc-mGluR5 complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown by Cdkl5-/y mice. Notably, in the visual cortex of 2 CDD patients we found changes in synaptic organization that recapitulate those of mutant CDKL5 mice, including the reduced expression of mGluR5, suggesting that these receptors represent a promising therapeutic target for CDD.
Collapse
|
24
|
Yao M, Meng M, Yang X, Wang S, Zhang H, Zhang F, Shi L, Zhang Y, Zhang X, Xu Z. POSH regulates assembly of the NMDAR/PSD-95/Shank complex and synaptic function. Cell Rep 2022; 39:110642. [PMID: 35385725 DOI: 10.1016/j.celrep.2022.110642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/01/2022] [Accepted: 03/16/2022] [Indexed: 11/03/2022] Open
Abstract
Mutation or disruption of the Shank/ProSAP family of genes is a high risk factor for autism spectrum disorders (ASDs) and intellectual disability. N-methyl-D-aspartate glutamate receptor (NMDAR) dysfunction contributes to the development of autism-like behaviors. However, the molecular mechanism of Shank-mediated NMDAR modulation is still not clear. Here, we show that the scaffold protein plenty of SH3s (POSH) directly interacts with two other scaffold proteins, PSD95 and SHANK2/3, at excitatory synapses. In POSH conditional knockout (cKO) mice, normal synaptic clustering of NMDAR/PSD-95/SHANK complex is disrupted, accompanied by abnormal dendritic spine development and glutamatergic transmission in hippocampal neurons. POSH cKO mice display profound autism-like behaviors, including impairments in social interactions, social communication, repetitive behaviors, and deficits in learning and memory. Thus, POSH clusters at the postsynaptic density (PSD) with PSD-95 and SHANK2/3 and plays important roles in the signaling mechanisms of the NMDAR/PSD-95/POSH/SHANK complex as well as in spine development and brain function.
Collapse
Affiliation(s)
- Minghui Yao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Meizhen Meng
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiyu Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shuo Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hongsheng Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqing Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China.
| |
Collapse
|
25
|
GABAergic neuronal IL-4R mediates T cell effect on memory. Neuron 2021; 109:3609-3618.e9. [PMID: 34793707 DOI: 10.1016/j.neuron.2021.10.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/12/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Mechanisms governing how immune cells and their derived molecules impact homeostatic brain function are still poorly understood. Here, we elucidate neuronal mechanisms underlying T cell effects on synaptic function and episodic memory. Depletion of CD4 T cells led to memory deficits and impaired long-term potentiation. Severe combined immune-deficient mice exhibited amnesia, which was reversible by repopulation with T cells from wild-type but not from IL-4-knockout mice. Behaviors impacted by T cells were mediated via IL-4 receptors expressed on neurons. Exploration of snRNA-seq of neurons participating in memory processing provided insights into synaptic organization and plasticity-associated pathways regulated by immune cells. IL-4Rα knockout in inhibitory (but not in excitatory) neurons was sufficient to impair contextual fear memory, and snRNA-seq from these mice pointed to IL-4-driven regulation of synaptic function in promoting memory. These findings provide new insights into complex neuroimmune interactions at the transcriptional and functional levels in neurons under physiological conditions.
Collapse
|
26
|
Terzic B, Davatolhagh MF, Ho Y, Tang S, Liu YT, Xia Z, Cui Y, Fuccillo MV, Zhou Z. Temporal manipulation of Cdkl5 reveals essential postdevelopmental functions and reversible CDKL5 deficiency disorder-related deficits. J Clin Invest 2021; 131:143655. [PMID: 34651584 DOI: 10.1172/jci143655] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/05/2021] [Indexed: 12/23/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is an early onset, neurodevelopmental syndrome associated with pathogenic variants in the X-linked gene encoding cyclin-dependent kinase-like 5 (CDKL5). CDKL5 has been implicated in neuronal synapse maturation, yet its postdevelopmental necessity and the reversibility of CDD-associated impairments remain unknown. We temporally manipulated endogenous Cdkl5 expression in male mice and found that postdevelopmental loss of CDKL5 disrupts numerous behavioral domains, hippocampal circuit communication, and dendritic spine morphology, demonstrating an indispensable role for CDKL5 in the adult brain. Accordingly, restoration of Cdkl5 after the early stages of brain development using a conditional rescue mouse model ameliorated CDD-related behavioral impairments and aberrant NMDA receptor signaling. These findings highlight the requirement of CDKL5 beyond early development, underscore the potential for disease reversal in CDD, and suggest that a broad therapeutic time window exists for potential treatment of CDD-related deficits.
Collapse
Affiliation(s)
| | - M Felicia Davatolhagh
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
27
|
Zhang Y, Hell JW, Ames JB. Chemical shift assignments of the N-terminal domain of PSD95 (PSD95-NT). BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:347-350. [PMID: 33929702 PMCID: PMC8481135 DOI: 10.1007/s12104-021-10028-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Postsynaptic density protein-95 (PSD95) contributes to the postsynaptic architecture of neuronal synapses and plays an important role in controlling synaptic plasticity. The N-terminal domain of PSD95 (residues 1-71, called PSD95-NT) interacts with target proteins (calmodulin, α-actinin-1 and CDKL5), which regulate the Ca2+-dependent degradation of glutamate receptors. We report complete backbone NMR chemical shift assignments of PSD95-NT (BMRB No. 50752).
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Chemistry, University of California, Davis, CA, 95616, USA
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
28
|
Zhang Y, Fang X, Ascota L, Li L, Guerra L, Vega A, Salinas A, Gonzalez A, Garza C, Tsin A, Hell JW, Ames JB. Zinc-chelating postsynaptic density-95 N-terminus impairs its palmitoyl modification. Protein Sci 2021; 30:2246-2257. [PMID: 34538002 DOI: 10.1002/pro.4187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
Chemical synaptic transmission represents the most sophisticated dynamic process and is highly regulated with optimized neurotransmitter balance. Imbalanced transmitters can lead to transmission impairments, for example, intracellular zinc accumulation is a hallmark of degenerating neurons. However, the underlying mechanisms remain elusive. Postsynaptic density protein-95 (PSD-95) is a primary postsynaptic membrane-associated protein and the major scaffolding component in the excitatory postsynaptic densities, which performs substantial functions in synaptic development and maturation. Its membrane association induced by palmitoylation contributes largely to its regulatory functions at postsynaptic sites. Unlike other structural domains in PSD-95, the N-terminal region (PSD-95NT) is flexible and interacts with various targets, which modulates its palmitoylation of two cysteines (C3/C5) and glutamate receptor distributions in postsynaptic densities. PSD-95NT contains a putative zinc-binding motif (C2H2) with undiscovered functions. This study is the first effort to investigate the interaction between Zn2+ and PSD-95NT. The NMR titration of 15 N-labeled PSD-95NT by ZnCl2 was performed and demonstrated Zn2+ binds to PSD-95NT with a binding affinity (Kd ) in the micromolar range. The zinc binding was confirmed by fluorescence and mutagenesis assays, indicating two cysteines and two histidines (H24, H28) are critical residues for the binding. These results suggested the concentration-dependent zinc binding is likely to influence PSD-95 palmitoylation since the binding site overlaps the palmitoylation sites, which was verified by the mimic PSD-95 palmitoyl modification and intact cell palmitoylation assays. This study reveals zinc as a novel modulator for PSD-95 postsynaptic membrane association by chelating its N-terminal region, indicative of its importance in postsynaptic signaling.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Xiaoqian Fang
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Luis Ascota
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA.,Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Libo Li
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA.,Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, China
| | - Lili Guerra
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Audrey Vega
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Amanda Salinas
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Andrea Gonzalez
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Claudia Garza
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Andrew Tsin
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
29
|
Siri B, Varesio C, Freri E, Darra F, Gana S, Mei D, Porta F, Fontana E, Galati G, Solazzi R, Niceta M, Veggiotti P, Alfei E. CDKL5 deficiency disorder in males: Five new variants and review of the literature. Eur J Paediatr Neurol 2021; 33:9-20. [PMID: 33989939 DOI: 10.1016/j.ejpn.2021.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 11/30/2022]
Abstract
The X-linked Cyclin-Dependent Kinase-Like 5 (CDKL5) gene encodes a serine-threonine kinase highly expressed in the developing brain. Loss of function of CDKL5 is pointed out to underlie the CDKL5 Deficiency Disorder (CDD), an X-linked dominant disease characterized by early-onset epileptic encephalopathy and developmental delay, usually affecting females more than males. To the best to our knowledge, only 45 males with CDD have been reported so far. Type and position of CDKL5 variants with different impact on the protein are reported to influence the clinical presentation. X-chromosome inactivation occurring in females and post-zygotic mosaicism in males are also believed to contribute to this variability. Based on these issues, genotype-phenotype correlations are still challenging. Here, we describe clinical features of five additional affected males with unreported CDKL5 variants, expanding the molecular spectrum of the disorder. We also reviewed the clinical profile of the previously reported 45 males with molecularly confirmed CDD. Severe developmental delay, cortical visual impairment, and early-onset refractory epilepsy characterize the CDD picture in males. By assessing the molecular spectrum, we confirm that germ-line truncating CDKL5 variants, equally distributed across the coding sequence, are the most recurrent mutations in CDD, and cause the worsen phenotype. While recurrence and relevance of missense substitutions within C-terminal remain still debated, disease-causing missense changes affecting the N-terminal catalytic domain correlate to a severe clinical phenotype. Finally, our data provide evidence that post-zygotic CDKL5 mosaicism may result in milder phenotypes and, at least in a subset of subjects, in variable response to antiepileptic treatments.
Collapse
Affiliation(s)
- Barbara Siri
- Department of Paediatrics, Ospedale Infantile Regina Margherita, University of Torino, Italy; Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Italy.
| | - Elena Freri
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Darra
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, AOUI Verona, Verona, Italy
| | - Simone Gana
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Italy
| | - Francesco Porta
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Italy
| | - Elena Fontana
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, AOUI Verona, Verona, Italy
| | - Giulia Galati
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, AOUI Verona, Verona, Italy
| | - Roberta Solazzi
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Pierangelo Veggiotti
- L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Paediatric Neurology Unit V. Buzzi Children's Hospital Milan, Italy
| | - Enrico Alfei
- Paediatric Neurology Unit V. Buzzi Children's Hospital Milan, Italy
| |
Collapse
|
30
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
31
|
Van Bergen NJ, Massey S, Stait T, Ellery M, Reljić B, Formosa LE, Quigley A, Dottori M, Thorburn D, Stroud DA, Christodoulou J. Abnormalities of mitochondrial dynamics and bioenergetics in neuronal cells from CDKL5 deficiency disorder. Neurobiol Dis 2021; 155:105370. [PMID: 33905871 DOI: 10.1016/j.nbd.2021.105370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 01/29/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental disorder caused by pathogenic variants in the Cyclin-dependent kinase-like 5 (CDKL5) gene, resulting in dysfunctional CDKL5 protein. It predominantly affects females and causes seizures in the first few months of life, ultimately resulting in severe intellectual disability. In the absence of targeted therapies, treatment is currently only symptomatic. CDKL5 is a serine/threonine kinase that is highly expressed in the brain, with a critical role in neuronal development. Evidence of mitochondrial dysfunction in CDD is gathering, but has not been studied extensively. We used human patient-derived induced pluripotent stem cells with a pathogenic truncating mutation (p.Arg59*) and CRISPR/Cas9 gene-corrected isogenic controls, differentiated into neurons, to investigate the impact of CDKL5 mutation on cellular function. Quantitative proteomics indicated mitochondrial defects in CDKL5 p.Arg59* neurons, and mitochondrial bioenergetics analysis confirmed decreased activity of mitochondrial respiratory chain complexes. Additionally, mitochondrial trafficking velocity was significantly impaired, and there was a higher percentage of stationary mitochondria. We propose mitochondrial dysfunction is contributing to CDD pathology, and should be a focus for development of targeted treatments for CDD.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Tegan Stait
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Molly Ellery
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Boris Reljić
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3010, Australia; Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - David Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
32
|
Ciccia LM, Scalia B, Venti V, Pizzo F, Pappalardo MG, La Mendola FMC, Falsaperla R, Praticò AD. CDKL5 Gene: Beyond Rett Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
CDKL5 is a gene located in the X-chromosome (Xp22) encoding a serine/threonine kinase involved in various signaling pathways, implicated in cell proliferation, axon development, dendrite growth, synapse formation, and maintenance. Mutations occurring in this gene have been associated with drug-resistant early-onset epilepsy, with multiple seizures type, and deep cognitive and motor development delay with poor or absent speech, ataxic gait or inability to walk, hand stereotypies and in a few cases decrement of head growth. Many aspects remain unclear about the CDKL5 deficiency disorders, research will be fundamental to better understand the pathogenesis of neurological damage and consequently developed more targeted and profitable therapies, as there is not, at the present, a gene-based treatment and the seizures are in most of the cases drug resistant. In this article, we summarize the actual knowledge about CDKL5 gene function and mostly the consequence given by its dysfunction, also examining the possible therapeutic approaches.
Collapse
Affiliation(s)
- Lina Maria Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Grazia Pappalardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Hozumi T, Sawai S, Jitsuishi T, Kitajo K, Inage K, Eguchi Y, Shiga Y, Narita M, Orita S, Ohtori S, Yamaguchi A. Gene expression profiling of the spinal cord at the chronic pain phase identified CDKL5 as a candidate gene for neural remodeling. Neurosci Lett 2021; 749:135772. [PMID: 33636287 DOI: 10.1016/j.neulet.2021.135772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Chronic pain is a highly refractory and complicated condition that persists even without nociception. Several genome-wide gene expression analyses have shown that the immune response and inflammatory cytokines affect chronic pain establishment in the acute pain phase. However, compared with the acute phase, the chronic phase has a poorly elucidated gene expression profile. This study aimed to determine the gene expression profile in the spinal cord of a neuropathic pain mouse model in the chronic phase to elucidate the chronic pain characteristics. METHODS We established a sciatic nerve cuff mouse model as a neuropathic pain model by placing a 2-mm section of a split PE-20 polyethylene tube around the sciatic nerve. The spinal cord was harvested at the L4-6 level at 28 postoperative days. Next, we examined differentially expressed genes (DEGs) through RNA sequencing (RNA-seq) compared with the sham group; moreover, we conducted enrichment analyses of the expressed genes. To reveal the chronic pain characteristics, we compared the gene expression profiles of the spinal cord between the acute and chronic phases in the neuropathic pain model. Among the chronic pain-related genes categorized in the dendrites, we focused on cyclin-dependent kinase-like 5 (CDKL5). We analyzed CDKL5 expression and function using real-time polymerase chain reaction (PCR), immunohistochemistry, and neurite extension assay in Neuro 2a (N2a) cells. We used three types of CDKL5 plasmids: wild type, nuclear localization signal-attached, and K42R kinase-dead CDKL5. RESULTS We identified 403 DEGs, including 104 upregulated and 43 downregulated genes (false discovery rate < 0.01). Rather than inflammation or immune response, the most enriched terms in the chronic phase were "regulation of plasma membrane-bounded cell projection organization" and "dendrite." Real-time PCR assay confirmed increased CDKL5 expression in the ipsilateral dorsal horn. CDKL5 was broadly expressed in the ipsilateral dorsal horn across all layers. The neurite extension assay revealed that the cytoplasmic kinase function of CDKL5 was necessary for neurite outgrowth in N2a cells. CONCLUSION RNA-seq of the spinal cord revealed that the most enriched genes during the chronic pain phase were involved in regulating axon and dendrite morphogenesis, including CDKL5. Our findings suggest that neural remodeling affects chronic pain establishment. Since patients with CDKL5 mutations have shown reduced pain perception, our findings suggest that CDKL5 in the spinal cord could result in neural remodeling during the chronic pain phase through cytoplasmic kinase activity.
Collapse
Affiliation(s)
- Takashi Hozumi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Setsu Sawai
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Jitsuishi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keiko Kitajo
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyako Narita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan; Center for Medical Engineering, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Yamaguchi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
34
|
Zuarez-Chamba M, Puma L, Bermeo J, Andrade E, Bermúdez-Puga SA, Naranjo-Briceño L. Genomic benchmarking studies reveal variations of the polyubiquitination domain of the PSD95 protein in Homo neanderthalensis and other primates of the Hominidae family: Possible implications in cognitive functions? BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Modern humans' unique cognitive abilities regarding Neanderthals and other primate's lineages are frequently attributed to the differences in brain size development and evolution. However, recent studies have established the critical role of genomic and genetic benchmarking in analyzing the cognitive evolution between modern humans and primates, focused mainly on searching for involved genes in neurogenesis. PSD95 protein (named PSD95p) has a key role in modulating synaptic plasticity, learning, and memory skills. Thus, the present study aimed to determine the possible variations of the PSD95 gene between modern humans, Neanderthals, and other hominid primate species using bioinformatics tools. The results showed 14 polymorphisms compared with the contemporary human PSD95 gene, of which 13 were silent mutations, and only one was a non-silent mutation at the nucleotide position 281. Despite polymorphisms found at the nucleotide sequences, the PSD95p of humans and chimpanzees are 100% identical. Likewise, the gorilla and orangutan PSD95p are 100% identical, although a 103-amino acid deletion characterizes them at the N-terminal end (1-103), suggesting that it behaves like a non-functional protein. Interestingly, the single nucleotide polymorphism (SNP) found at position 281 in the Neanderthal PSD95 gene leads to a change of the E94 to valine V94 in the polyubiquitination domain (PEST) and variation in the three-dimensional structure of PSD95 protein. We prompt that this structural change in the PEST domain could induce a loss of PSD95p function and, therefore, an alteration in synaptic plasticity forms such as long-term potentiation (LTP) and long-term depression (LTD). These findings open a possible hypothesis supporting the idea that humans' cognitive evolution after separating our last common ancestor with Neanderthals lineage could have been accompanied by discrete changes in the PSD95p polyubiquitination domain.
Collapse
Affiliation(s)
- Michael Zuarez-Chamba
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Luis Puma
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Jorge Bermeo
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Eugenio Andrade
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Stalin A. Bermúdez-Puga
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Leopoldo Naranjo-Briceño
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| |
Collapse
|
35
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
36
|
Shimell JJ, Shah BS, Cain SM, Thouta S, Kuhlmann N, Tatarnikov I, Jovellar DB, Brigidi GS, Kass J, Milnerwood AJ, Snutch TP, Bamji SX. The X-Linked Intellectual Disability Gene Zdhhc9 Is Essential for Dendrite Outgrowth and Inhibitory Synapse Formation. Cell Rep 2020; 29:2422-2437.e8. [PMID: 31747610 DOI: 10.1016/j.celrep.2019.10.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/09/2019] [Accepted: 10/13/2019] [Indexed: 11/29/2022] Open
Abstract
Palmitoylation is a reversible post-translational lipid modification that facilitates vesicular transport and subcellular localization of modified proteins. This process is catalyzed by ZDHHC enzymes that are implicated in several neurological and neurodevelopmental disorders. Loss-of-function mutations in ZDHHC9 have been identified in patients with X-linked intellectual disability (XLID) and associated with increased epilepsy risk. Loss of Zdhhc9 function in hippocampal cultures leads to shorter dendritic arbors and fewer inhibitory synapses, altering the ratio of excitatory-to-inhibitory inputs formed onto Zdhhc9-deficient cells. While Zdhhc9 promotes dendrite outgrowth through the palmitoylation of the GTPase Ras, it promotes inhibitory synapse formation through the palmitoylation of another GTPase, TC10. Zdhhc9 knockout mice exhibit seizure-like activity together with increased frequency and amplitude of both spontaneous and miniature excitatory and inhibitory postsynaptic currents. These findings present a plausible mechanism for how the loss of ZDHHC9 function may contribute to XLID and epilepsy.
Collapse
Affiliation(s)
- Jordan J Shimell
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Bhavin S Shah
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Stuart M Cain
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samrat Thouta
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Naila Kuhlmann
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Igor Tatarnikov
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - D Blair Jovellar
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - G Stefano Brigidi
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer Kass
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Austen J Milnerwood
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
37
|
Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible Cellular Signalling Targets and Involvement in CDKL5 Deficiency Disorder. Neural Plast 2020; 2020:6970190. [PMID: 32587608 PMCID: PMC7293752 DOI: 10.1155/2020/6970190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5, also known as STK9) is a serine/threonine protein kinase originally identified in 1998 during a transcriptional mapping project of the human X chromosome. Thereafter, a mutation in CDKL5 was reported in individuals with the atypical Rett syndrome, a neurodevelopmental disorder, suggesting that CDKL5 plays an important regulatory role in neuronal function. The disease associated with CDKL5 mutation has recently been recognised as CDKL5 deficiency disorder (CDD) and has been distinguished from the Rett syndrome owing to its symptomatic manifestation. Because CDKL5 mutations identified in patients with CDD cause enzymatic loss of function, CDKL5 catalytic activity is likely strongly associated with the disease. Consequently, the exploration of CDKL5 substrate characteristics and regulatory mechanisms of its catalytic activity are important for identifying therapeutic target molecules and developing new treatment. In this review, we summarise recent findings on the phosphorylation of CDKL5 substrates and the mechanisms of CDKL5 phosphorylation and dephosphorylation. We also discuss the relationship between changes in the phosphorylation signalling pathways and the Cdkl5 knockout mouse phenotype and consider future prospects for the treatment of mental and neurological disease associated with CDKL5 mutations.
Collapse
|
38
|
Kim JY, Bai Y, Jayne LA, Hector RD, Persaud AK, Ong SS, Rojesh S, Raj R, Feng MJHH, Chung S, Cianciolo RE, Christman JW, Campbell MJ, Gardner DS, Baker SD, Sparreboom A, Govindarajan R, Singh H, Chen T, Poi M, Susztak K, Cobb SR, Pabla NS. A kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury. Nat Commun 2020; 11:1924. [PMID: 32317630 PMCID: PMC7174303 DOI: 10.1038/s41467-020-15638-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/21/2020] [Indexed: 12/18/2022] Open
Abstract
Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI. Protein kinases have emerged as critical regulators of disease pathogenesis. Here, the authors have utilized kinome-wide screening approaches to reveal a pathogenic role of CDKL5 kinase in acute kidney injury, which is dependent on suppression of a SOX9-associated transcriptional network.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yuntao Bai
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Laura A Jayne
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ralph D Hector
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Avinash K Persaud
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Su Sien Ong
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shreshtha Rojesh
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Radhika Raj
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mei Ji He Ho Feng
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sangwoon Chung
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, USA
| | - Rachel E Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - John W Christman
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, USA
| | - Moray J Campbell
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, UK
| | - Sharyn D Baker
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Poi
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart R Cobb
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Navjot Singh Pabla
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
39
|
Lupori L, Sagona G, Fuchs C, Mazziotti R, Stefanov A, Putignano E, Napoli D, Strettoi E, Ciani E, Pizzorusso T. Site-specific abnormalities in the visual system of a mouse model of CDKL5 deficiency disorder. Hum Mol Genet 2020; 28:2851-2861. [PMID: 31108505 PMCID: PMC6736061 DOI: 10.1093/hmg/ddz102] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a neurodevelopmental disorder characterized by a severe global developmental delay and early-onset seizures. Notably, patients show distinctive visual abnormalities often clinically diagnosed as cortical visual impairment. However, the involvement of cerebral cortical dysfunctions in the origin of the symptoms is poorly understood. CDD mouse models also display visual deficits, and cortical visual responses can be used as a robust biomarker in CDKL5 mutant mice. A deeper understanding of the circuits underlying the described visual deficits is essential for directing preclinical research and translational approaches. Here, we addressed this question in two ways: first, we performed an in-depth morphological analysis of the visual pathway, from the retina to the primary visual cortex (V1), of CDKL5 null mice. We found that the lack of CDKL5 produced no alteration in the organization of retinal circuits. Conversely, CDKL5 mutants showed reduced density and altered morphology of spines and decreased excitatory synapse marker PSD95 in the dorsal lateral geniculate nucleus and in V1. An increase in the inhibitory marker VGAT was selectively present in V1. Second, using a conditional CDKL5 knockout model, we showed that selective cortical deletion of CDKL5 from excitatory cells is sufficient to produce abnormalities of visual cortical responses, demonstrating that the normal function of cortical circuits is dependent on CDKL5. Intriguingly, these deficits were associated with morphological alterations of V1 excitatory and inhibitory synaptic contacts. In summary, this work proposes cortical circuit structure and function as a critically important target for studying CDD.
Collapse
Affiliation(s)
- Leonardo Lupori
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, Pisa 56124, Italy.,Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Giulia Sagona
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi-Pad. 26, Florence 50135, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa 56128, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi-Pad. 26, Florence 50135, Italy
| | - Antonia Stefanov
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Debora Napoli
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, Pisa 56124, Italy.,Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Enrica Strettoi
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Tommaso Pizzorusso
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, Pisa 56124, Italy.,Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi-Pad. 26, Florence 50135, Italy
| |
Collapse
|
40
|
Gao Y, Irvine EE, Eleftheriadou I, Naranjo CJ, Hearn-Yeates F, Bosch L, Glegola JA, Murdoch L, Czerniak A, Meloni I, Renieri A, Kinali M, Mazarakis ND. Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder. Brain 2020; 143:811-832. [DOI: 10.1093/brain/awaa028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 01/04/2023] Open
Abstract
Abstract
Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females who typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterized the human CDKL5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons. We found that the isoform 1 and to a lesser extent the isoform 2 were expressed in human brain, and both neuronal and glial cell types. These isoforms were subsequently cloned into recombinant adeno-associated viral (AAV) vector genome and high-titre viral vectors were produced. Intrajugular delivery of green fluorescence protein via AAV vector serotype PHP.B in adult wild-type male mice transduced neurons and astrocytes throughout the brain more efficiently than serotype 9. Cdkl5 knockout male mice treated with isoform 1 via intrajugular injection at age 28–30 days exhibited significant behavioural improvements compared to green fluorescence protein-treated controls (1012 vg per animal, n = 10 per group) with PHP.B vectors. Brain expression of the isoform 1 transgene was more abundant in hindbrain than forebrain and midbrain. Transgene brain expression was sporadic at the cellular level and most prominent in hippocampal neurons and cerebellar Purkinje cells. Correction of postsynaptic density protein 95 cerebellar misexpression, a major fine cerebellar structural abnormality in Cdkl5 knockout mice, was found in regions of high transgene expression within the cerebellum. AAV vector serotype DJ efficiently transduced CDKL5-mutant human induced pluripotent stem cell-derived neural progenitors, which were subsequently differentiated into mature neurons. When treating CDKL5-mutant neurons, isoform 1 expression led to an increased density of synaptic puncta, while isoform 2 ameliorated the calcium signalling defect compared to green fluorescence protein control, implying distinct functions of these isoforms in neurons. This study provides the first evidence that gene therapy mediated by AAV vectors can be used for treating CDKL5 disorder.
Collapse
Affiliation(s)
- Yunan Gao
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Elaine E Irvine
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Ioanna Eleftheriadou
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Carlos Jiménez Naranjo
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Francesca Hearn-Yeates
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Leontien Bosch
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Justyna A Glegola
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Leah Murdoch
- CBS Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - Ilaria Meloni
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Kinali
- The Portland Hospital, 205-209 Great Portland Street, London, W1W 5AH, UK
| | - Nicholas D Mazarakis
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| |
Collapse
|
41
|
Kadam SD, Sullivan BJ, Goyal A, Blue ME, Smith-Hicks C. Rett Syndrome and CDKL5 Deficiency Disorder: From Bench to Clinic. Int J Mol Sci 2019; 20:ijms20205098. [PMID: 31618813 PMCID: PMC6834180 DOI: 10.3390/ijms20205098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Rett syndrome (RTT) and CDKL5 deficiency disorder (CDD) are two rare X-linked developmental brain disorders with overlapping but distinct phenotypic features. This review examines the impact of loss of methyl-CpG-binding protein 2 (MeCP2) and cyclin-dependent kinase-like 5 (CDKL5) on clinical phenotype, deficits in synaptic- and circuit-homeostatic mechanisms, seizures, and sleep. In particular, we compare the overlapping and contrasting features between RTT and CDD in clinic and in preclinical studies. Finally, we discuss lessons learned from recent clinical trials while reviewing the findings from pre-clinical studies.
Collapse
Affiliation(s)
- Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Brennan J Sullivan
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Archita Goyal
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Mary E Blue
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Constance Smith-Hicks
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Forcelli PA. Reigning in Excitatory Signaling in CDKL5 Deficiency. Epilepsy Curr 2019; 19:341-343. [PMID: 31456437 PMCID: PMC6864573 DOI: 10.1177/1535759719869919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[Box: see text].
Collapse
|
43
|
Pizzo R, Lamarca A, Sassoè-Pognetto M, Giustetto M. Structural Bases of Atypical Whisker Responses in a Mouse Model of CDKL5 Deficiency Disorder. Neuroscience 2019; 445:130-143. [PMID: 31472213 DOI: 10.1016/j.neuroscience.2019.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Mutations in the CDKL5 (cyclin-dependent kinase-like 5) gene cause CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental syndrome where patients exhibit early-onset seizures, intellectual disability, stereotypies, limited or absent speech, autism-like symptoms and sensory impairments. Mounting evidences indicate that disrupted sensory perception and processing represent core signs also in mouse models of CDD; however we have very limited knowledge on their underlying causes. In this study, we investigated how CDKL5 deficiency affects synaptic organization and experience-dependent plasticity in the thalamo-cortical (TC) pathway carrying whisker-related tactile information to the barrel cortex (BC). By using synapse-specific antibodies and confocal microscopy, we found that Cdkl5-KO mice display a lower density of TC synapses in the BC that was paralleled by a reduction of cortico-cortical (CC) connections compared to wild-type mice. These synaptic defects were accompanied by reduced BC activation, as shown by a robust decrease of c-fos immunostaining, and atypical behavioral responses to whisker-mediated tactile stimulation. Notably, a 2-day paradigm of enriched whisker stimulation rescued both number and configuration of excitatory synapses in Cdkl5-KO mice, restored cortical activity and normalized behavioral responses to wild-type mice levels. Our findings disclose a novel and unsuspected role of CDKL5 in controlling the organization and experience-induced modifications of excitatory connections in the BC and indicate how mutations of CDKL5 produce failures in higher-order processing of somatosensory stimuli. This article is part of a Special Issue entitled: Animal Models of Neurodevelopmental Disorders.
Collapse
Affiliation(s)
- R Pizzo
- Department of Neuroscience, University of Turin, Corso Massimo D'Azeglio 52, 10126 Turin, Italy
| | - A Lamarca
- Department of Neuroscience, University of Turin, Corso Massimo D'Azeglio 52, 10126 Turin, Italy
| | - M Sassoè-Pognetto
- Department of Neuroscience, University of Turin, Corso Massimo D'Azeglio 52, 10126 Turin, Italy; National Institute of Neuroscience-Italy, Corso Massimo D'Azeglio 52, 10126 Turin, Italy
| | - M Giustetto
- Department of Neuroscience, University of Turin, Corso Massimo D'Azeglio 52, 10126 Turin, Italy; National Institute of Neuroscience-Italy, Corso Massimo D'Azeglio 52, 10126 Turin, Italy.
| |
Collapse
|
44
|
Fuchs C, Gennaccaro L, Ren E, Galvani G, Trazzi S, Medici G, Loi M, Conway E, Devinsky O, Rimondini R, Ciani E. Pharmacotherapy with sertraline rescues brain development and behavior in a mouse model of CDKL5 deficiency disorder. Neuropharmacology 2019; 167:107746. [PMID: 31469994 DOI: 10.1016/j.neuropharm.2019.107746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a severe neurodevelopmental disorder, CDKL5 deficiency disorder (CDD). CDKL5 is fundamental for correct brain development and function, but the molecular mechanisms underlying aberrant neurologic dysfunction in CDD are incompletely understood. Here we show a dysregulation of hippocampal and cortical serotonergic (5-HT) receptor expression in heterozygous Cdkl5 knockout (KO) female mice, suggesting that impaired 5-HT neurotransmission contributes to CDD. We demonstrate that targeting impaired 5-HT signaling via the selective serotonin reuptake inhibitor (SSRI) sertraline rescues CDD-related neurodevelopmental and behavioral defects in heterozygous Cdkl5 KO female mice. In particular, chronic treatment with sertraline normalized locomotion, stereotypic and autistic-like features, and spatial memory in Cdkl5 KO mice. These positive behavioral effects were accompanied by restored neuronal survival, dendritic development and synaptic connectivity. At a molecular level, sertraline increased brain-derived neurotrophic factor (BDNF) expression and restored abnormal phosphorylation levels of tyrosine kinase B (TrkB) and its downstream target the extracellular signal-regulated kinase (ERK1/2). Since sertraline is an FDA-approved drug with an extensive safety and tolerability data package, even for children, our findings suggest that sertraline may improve neurodevelopment in children with CDD. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Erin Conway
- Department of Neurology, NYU Langone Health, New York, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Health, New York, USA
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
45
|
Barbiero I, De Rosa R, Kilstrup-Nielsen C. Microtubules: A Key to Understand and Correct Neuronal Defects in CDKL5 Deficiency Disorder? Int J Mol Sci 2019; 20:E4075. [PMID: 31438497 PMCID: PMC6747382 DOI: 10.3390/ijms20174075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy caused by mutations in the X-linked CDKL5 gene that encodes a serine/threonine kinase. CDD is characterised by the early onset of seizures and impaired cognitive and motor skills. Loss of CDKL5 in vitro and in vivo affects neuronal morphology at early and late stages of maturation, suggesting a link between CDKL5 and the neuronal cytoskeleton. Recently, various microtubule (MT)-binding proteins have been identified as interactors of CDKL5, indicating that its roles converge on regulating MT functioning. MTs are dynamic structures that are important for neuronal morphology, migration and polarity. The delicate control of MT dynamics is fundamental for proper neuronal functions, as evidenced by the fact that aberrant MT dynamics are involved in various neurological disorders. In this review, we highlight the link between CDKL5 and MTs, discussing how CDKL5 deficiency may lead to deranged neuronal functions through aberrant MT dynamics. Finally, we discuss whether the regulation of MT dynamics through microtubule-targeting agents may represent a novel strategy for future pharmacological approaches in the CDD field.
Collapse
Affiliation(s)
- Isabella Barbiero
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy
| | - Roberta De Rosa
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy
| | - Charlotte Kilstrup-Nielsen
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy.
| |
Collapse
|
46
|
Olson HE, Demarest ST, Pestana-Knight EM, Swanson LC, Iqbal S, Lal D, Leonard H, Cross JH, Devinsky O, Benke TA. Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: Clinical Review. Pediatr Neurol 2019; 97:18-25. [PMID: 30928302 PMCID: PMC7120929 DOI: 10.1016/j.pediatrneurol.2019.02.015] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/21/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental encephalopathy caused by pathogenic variants in the gene CDKL5. This unique disorder includes early infantile onset refractory epilepsy, hypotonia, developmental intellectual and motor disabilities, and cortical visual impairment. We review the clinical presentations and genetic variations in CDD based on a systematic literature review and experience in the CDKL5 Centers of Excellence. We propose minimum diagnostic criteria. Pathogenic variants include deletions, truncations, splice variants, and missense variants. Pathogenic missense variants occur exclusively within the kinase domain or affect splice sites. The CDKL5 protein is widely expressed in the brain, predominantly in neurons, with roles in cell proliferation, neuronal migration, axonal outgrowth, dendritic morphogenesis, and synapse development. The molecular biology of CDD is revealing opportunities in precision therapy, with phase 2 and 3 clinical trials underway or planned to assess disease specific and disease modifying treatments.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.
| | - Scott T Demarest
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado
| | - Elia M Pestana-Knight
- Cleveland Clinic Neurological Institute Epilepsy Center, Cleveland Clinic Neurological Institute Pediatric Neurology Department, Neurogenetics, Cleveland Clinic Children's, Cleveland, Ohio
| | - Lindsay C Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sumaiya Iqbal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - J Helen Cross
- UCL Great Ormond Street NIHR BRC Institute of Child Health, London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Health, New York, New York
| | - Tim A Benke
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pharmacology, University of Colorado, School of Medicine, Aurora, Colorado; Department of Neurology, University of Colorado, School of Medicine, Aurora, Colorado; Department of Otolaryngology, University of Colorado, School of Medicine, Aurora, Colorado
| |
Collapse
|
47
|
Altered NMDAR signaling underlies autistic-like features in mouse models of CDKL5 deficiency disorder. Nat Commun 2019; 10:2655. [PMID: 31201320 PMCID: PMC6572855 DOI: 10.1038/s41467-019-10689-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is characterized by epilepsy, intellectual disability, and autistic features, and CDKL5-deficient mice exhibit a constellation of behavioral phenotypes reminiscent of the human disorder. We previously found that CDKL5 dysfunction in forebrain glutamatergic neurons results in deficits in learning and memory. However, the pathogenic origin of the autistic features of CDD remains unknown. Here, we find that selective loss of CDKL5 in GABAergic neurons leads to autistic-like phenotypes in mice accompanied by excessive glutamatergic transmission, hyperexcitability, and increased levels of postsynaptic NMDA receptors. Acute, low-dose inhibition of NMDAR signaling ameliorates autistic-like behaviors in GABAergic knockout mice, as well as a novel mouse model bearing a CDD-associated nonsense mutation, CDKL5 R59X, implicating the translational potential of this mechanism. Together, our findings suggest that enhanced NMDAR signaling and circuit hyperexcitability underlie autistic-like features in mouse models of CDD and provide a new therapeutic avenue to treat CDD-related symptoms. Mouse models of CDKL5 deficiency disorder (CDD) recapitulate multiple clinical symptoms of CDD, such as intellectual disability and autism. Here, the authors show that selective loss of CDKL5 from GABAergic neurons leads to social deficits and stereotypic behaviors, which can be ameliorated through inhibition of NMDAR signaling.
Collapse
|
48
|
Yennawar M, White RS, Jensen FE. AMPA Receptor Dysregulation and Therapeutic Interventions in a Mouse Model of CDKL5 Deficiency Disorder. J Neurosci 2019; 39:4814-4828. [PMID: 30952813 PMCID: PMC6561688 DOI: 10.1523/jneurosci.2041-18.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 01/28/2023] Open
Abstract
Pathogenic mutations in cyclin-dependent kinase-like 5 (CDKL5) result in CDKL5 deficiency disorder (CDD), a rare disease marked by early-life seizures, autistic behaviors, and intellectual disability. Although mouse models of CDD exhibit dendritic instability and alterations in synaptic scaffolding proteins, studies of glutamate receptor levels and function are limited. Here we used a novel mouse model of CDD, the Cdkl5R59X knock-in mouse (R59X), to investigate changes in synaptic glutamate receptor subunits and functional consequences. Male mice were used for all experiments to avoid the confounding effects of X-inactivation that would be present in female heterozygous mice. We showed that adult male R59X mice recapitulated the behavioral outcomes observed in other mouse models of CDD, including social deficits and memory and learning impairments, and exhibited decreased latency to seizure upon pentylenetetrazol administration. Furthermore, we observed a specific increase in GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-type glutamate receptors (AMPARs) in the adult R59X hippocampus, which is accompanied electrophysiologically by increased rectification ratio of AMPAR EPSCs and elevated early-phase long term potentiation (LTP). Finally, we showed that acute treatment with the GluA2-lacking AMPAR blocker IEM-1460 decreased AMPAR currents, and rescued social deficits, working memory impairments, and seizure behavior latency in R59X mice.SIGNIFICANCE STATEMENT CDKL5 deficiency disorder (CDD) is a rare disease marked by autistic-like behaviors, intellectual disability, and seizures. While synaptic dysfunction has been observed in mouse models of CDD, there is limited information on how synaptic alterations contribute to behavioral and functional changes in CDD. Here we reveal elevated hippocampal GluA2-lacking AMPAR expression in a novel mouse model of CDD that is accompanied by changes in synaptic AMPAR function and plasticity. We also show, for the first time, that acutely targeting GluA2-lacking AMPAR dysregulation rescues core synaptic and neurobehavioral deficits in CDD.
Collapse
MESH Headings
- Adult
- Animals
- Behavior, Animal
- Child, Preschool
- Disease Models, Animal
- Epileptic Syndromes/drug therapy
- Epileptic Syndromes/genetics
- Epileptic Syndromes/psychology
- Excitatory Postsynaptic Potentials/genetics
- Female
- Gene Knock-In Techniques
- Humans
- Learning Disabilities/genetics
- Learning Disabilities/psychology
- Male
- Memory Disorders/genetics
- Memory Disorders/psychology
- Mice
- Mice, Inbred C57BL
- Mice, Neurologic Mutants
- Mutation/genetics
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Psychomotor Performance
- Receptors, AMPA/deficiency
- Receptors, AMPA/drug effects
- Receptors, AMPA/genetics
- Seizures/chemically induced
- Seizures/physiopathology
- Social Behavior
- Spasms, Infantile/drug therapy
- Spasms, Infantile/genetics
- Spasms, Infantile/psychology
Collapse
Affiliation(s)
| | - Rachel S White
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Frances E Jensen
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
49
|
Ren E, Roncacé V, Trazzi S, Fuchs C, Medici G, Gennaccaro L, Loi M, Galvani G, Ye K, Rimondini R, Aicardi G, Ciani E. Functional and Structural Impairments in the Perirhinal Cortex of a Mouse Model of CDKL5 Deficiency Disorder Are Rescued by a TrkB Agonist. Front Cell Neurosci 2019; 13:169. [PMID: 31114483 PMCID: PMC6503158 DOI: 10.3389/fncel.2019.00169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/09/2019] [Indexed: 11/24/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental encephalopathy caused by mutations in the CDKL5 gene and characterized by early-onset epilepsy and intellectual and motor impairments. No cure is currently available for CDD patients, as limited knowledge of the pathology has hindered the development of therapeutics. Cdkl5 knockout (KO) mouse models, recently created to investigate the role of CDKL5 in the etiology of CDD, recapitulate various features of the disorder. Previous studies have shown alterations in synaptic plasticity and dendritic pattern in the cerebral cortex and in the hippocampus, but the knowledge of the molecular substrates underlying these alterations is still limited. Here, we have examined for the first time synaptic function and plasticity, dendritic morphology, and signal transduction pathways in the perirhinal cortex (PRC) of this mouse model. Being interconnected with a wide range of cortical and subcortical structures and involved in various cognitive processes, PRC provides a very interesting framework for examining how CDKL5 mutation leads to deficits at the synapse, circuit, and behavioral level. We found that long-term potentiation (LTP) was impaired, and that the TrkB/PLCγ1 pathway could be mechanistically involved in this alteration. PRC neurons in mutant mice showed a reduction in dendritic length, dendritic branches, PSD-95-positive puncta, GluA2-AMPA receptor levels, and spine density and maturation. These functional and structural deficits were associated with impairment in visual recognition memory. Interestingly, an in vivo treatment with a TrkB agonist (the 7,8-DHF prodrug R13) to trigger the TrkB/PLCγ1 pathway rescued defective LTP, dendritic pattern, PSD-95 and GluA2-AMPA receptor levels, and restored visual recognition memory in Cdkl5 KO mice. Present findings demonstrate a critical role of TrkB signaling in the synaptic development alterations due to CDKL5 mutation, and suggest the possibility of TrkB-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Roncacé
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Keqiang Ye
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Roberto Rimondini
- Department of Biomedical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy.,Interdepartmental Center "Luigi Galvani" for Integrated Studies of Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
50
|
Koster KP, Francesconi W, Berton F, Alahmadi S, Srinivas R, Yoshii A. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. eLife 2019; 8:40316. [PMID: 30946007 PMCID: PMC6464704 DOI: 10.7554/elife.40316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 03/31/2019] [Indexed: 12/20/2022] Open
Abstract
Protein palmitoylation and depalmitoylation alter protein function. This post-translational modification is critical for synaptic transmission and plasticity. Mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) causes infantile neuronal ceroid lipofuscinosis (CLN1), a pediatric neurodegenerative disease. However, the role of protein depalmitoylation in synaptic maturation is unknown. Therefore, we studied synapse development in Ppt1-/- mouse visual cortex. We demonstrate that the developmental N-methyl-D-aspartate receptor (NMDAR) subunit switch from GluN2B to GluN2A is stagnated in Ppt1-/- mice. Correspondingly, Ppt1-/- neurons exhibit immature evoked NMDAR currents and dendritic spine morphology in vivo. Further, dissociated Ppt1-/- cultured neurons show extrasynaptic, diffuse calcium influxes and enhanced vulnerability to NMDA-induced excitotoxicity, reflecting the predominance of GluN2B-containing receptors. Remarkably, Ppt1-/- neurons demonstrate hyperpalmitoylation of GluN2B as well as Fyn kinase, which regulates surface retention of GluN2B. Thus, PPT1 plays a critical role in postsynapse maturation by facilitating the GluN2 subunit switch and proteostasis of palmitoylated proteins.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Walter Francesconi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Fulvia Berton
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Sami Alahmadi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Roshan Srinivas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Akira Yoshii
- Department of Pediatrics, University of Illinois at Chicago, Chicago, United States.,Department of Neurology, University of Illinois at Chicago, Chicago, United States
| |
Collapse
|