1
|
Kametani H, Tong Y, Shimada A, Takeda H, Sushida T, Akiyama M, Kawanishi T. Twisted cell flow facilitates three-dimensional somite morphogenesis in zebrafish. Cells Dev 2024; 180:203969. [PMID: 39191372 DOI: 10.1016/j.cdev.2024.203969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Tissue elongation is a fundamental morphogenetic process to construct complex embryonic structures. In zebrafish, somites rapidly elongate in both dorsal and ventral directions, transforming from a cuboidal to a V-shape within a few hours of development. Despite its significance, the cellular behaviors that directly lead to somite elongation have not been examined at single-cell resolution. Here, we describe the motion and shapes of all cells composing the dorsal half of the somite in three-dimensional space using lightsheet microscopy. We identified two types of cell movements-in horizontal and dorsal directions-that occur simultaneously within individual cells, creating a complex, twisted flow of cells during somite elongation. Chemical inhibition of Sdf1 signaling disrupted the collective movement in both directions and inhibited somite elongation, suggesting that Sdf1 signaling is crucial for this cell flow. Furthermore, three-dimensional computational modeling suggested that horizontal cell rotation accelerates the perpendicular elongation of the somite along the dorsoventral axis. Together, our study offers novel insights into the role of collective cell migration in tissue morphogenesis, which proceeds dynamically in the three-dimensional space of the embryo.
Collapse
Affiliation(s)
- Harunobu Kametani
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yue Tong
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Takamichi Sushida
- Faculty of Informatics, University of Fukuchiyama, Kyoto 620-0886, Japan.
| | - Masakazu Akiyama
- Department of Mathematics, Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
2
|
Ford HZ, Manhart A, Chubb JR. Controlling periodic long-range signalling to drive a morphogenetic transition. eLife 2023; 12:83796. [PMID: 36856269 PMCID: PMC10027319 DOI: 10.7554/elife.83796] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/28/2023] [Indexed: 03/02/2023] Open
Abstract
Cells use signal relay to transmit information across tissue scales. However, the production of information carried by signal relay remains poorly characterised. To determine how the coding features of signal relay are generated, we used the classic system for long-range signalling: the periodic cAMP waves that drive Dictyostelium collective migration. Combining imaging and optogenetic perturbation of cell signalling states, we find that migration is triggered by an increase in wave frequency generated at the signalling centre. Wave frequency is regulated by cAMP wave circulation, which organises the long-range signal. To determine the mechanisms modulating wave circulation, we combined mathematical modelling, the general theory of excitable media, and mechanical perturbations to test competing models. Models in which cell density and spatial patterning modulate the wave frequency cannot explain the temporal evolution of signalling waves. Instead, our evidence leads to a model where wave circulation increases the ability for cells to relay the signal, causing further increase in the circulation rate. This positive feedback between cell state and signalling pattern regulates the long-range signal coding that drives morphogenesis.
Collapse
Affiliation(s)
- Hugh Z Ford
- Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Angelika Manhart
- Department of Mathematics, University College London, London, United Kingdom
- Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Jonathan R Chubb
- Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Assessing the robustness of decentralized gathering: a multi-agent approach on micro-biological systems. SWARM INTELLIGENCE 2020. [DOI: 10.1007/s11721-020-00186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Weingard D, Steinbock O, Bertram R. Expansion of scroll wave filaments induced by chiral mismatch. CHAOS (WOODBURY, N.Y.) 2018; 28:045106. [PMID: 31906655 DOI: 10.1063/1.5008274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In three-dimensional excitable systems, scroll waves are rotating vortex states that consist of smoothly stacked spirals. This stacking occurs along one-dimensional phase singularities called filaments. If the system has a positive filament tension, these curves either straighten or collapse over time. The collapse can be prevented if the filament pins to a nonreactive object or a group of objects, but even in this case, the filament length does not typically grow. Using numerical simulations, we provide examples of filament growth induced by pinning, such as a scroll ring pinning to an inert trefoil knot, and explain the mechanism of this growth. Surprisingly, the corresponding filament loop thus not only persists in time but also steadily extends far from the pinning object.
Collapse
Affiliation(s)
- Daniel Weingard
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA
| |
Collapse
|
5
|
Weingard D, Blanco W, Steinbock O, Bertram R. Stabilization of collapsing scroll waves in systems with random heterogeneities. CHAOS (WOODBURY, N.Y.) 2017; 27:043108. [PMID: 28456180 DOI: 10.1063/1.4980076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In three-dimensional reaction-diffusion systems, excitation waves may form and rotate around a one-dimensional phase singularity called the filament. If the filament forms a closed curve, it will shrink over time and eventually collapse. However, filaments may pin to non-reactive objects present in the medium, reducing their rate of collapse or even allowing them to persist indefinitely. We use numerical simulations to study how different arrangements of non-reactive spheres affect the dynamics of circular filaments. As the filament contracts, it gets closer to and eventually touches and pins to objects in its path. This causes two possible behaviors. The filament can detach from the spheres in its path, slowing down the rate of contraction, or it can remain pinned to a collection of spheres. In general, more or larger spheres increase the chance that the filament remains pinned, but there are exceptions. It is possible for a small number of small spheres to support the filament and possible for the filament to pass through a large number of large spheres. Our work yields insights into the pinning of scroll waves in excitable tissue such as cardiac muscle, where scar tissue acts in a way similar to the non-reactive domains.
Collapse
Affiliation(s)
- Daniel Weingard
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA
| | - Wilfredo Blanco
- Department of Computer Science, State University of Rio Grande do Norte, Natal, Brazil
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA
| |
Collapse
|
6
|
Nakouzi E, Totz JF, Zhang Z, Steinbock O, Engel H. Hysteresis and drift of spiral waves near heterogeneities: From chemical experiments to cardiac simulations. Phys Rev E 2016; 93:022203. [PMID: 26986327 DOI: 10.1103/physreve.93.022203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 06/05/2023]
Abstract
Dissipative patterns in excitable reaction-diffusion systems can be strongly affected by spatial heterogeneities. Using the photosensitive Belousov-Zhabotinsky reaction, we show a hysteresis effect in the transition between free and pinned spiral rotation. The latter state involves the rotation around a disk-shaped obstacle with an impermeable and inert boundary. The transition is controlled by changes in light intensity. For permeable heterogeneities of higher excitability, we observe spiral drift along both linear and circular boundaries. Our results confirm recent theoretical predictions and, in the case of spiral drift, are further reproduced by numerical simulations with a modified Oregonator model. Additional simulations with a cardiac model show that orbital motion can also exist in anisotropic and three-dimensional systems.
Collapse
Affiliation(s)
- Elias Nakouzi
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA
| | - Jan Frederik Totz
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Zhihui Zhang
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA
| | - Oliver Steinbock
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA
| | - Harald Engel
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|