1
|
Crittenden SL, Seidel HS, Kimble J. Analysis of the C. elegans Germline Stem Cell Pool. Methods Mol Biol 2023; 2677:1-36. [PMID: 37464233 DOI: 10.1007/978-1-0716-3259-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The Caenorhabditis elegans germline is an excellent model for studying the genetic and molecular regulation of stem cell self-renewal and progression of cells from a stem cell state to a differentiated state. The germline tissue is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated gametes at the other. A simple mesenchymal niche caps the GSC pool and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Notch signaling activates transcription of the key GSC regulators lst-1 and sygl-1 proteins in a gradient through the GSC pool. LST-1 and SYGL-1 proteins work with PUF RNA regulators in a self-renewal hub to maintain the GSC pool. In this chapter, we present methods for characterizing the C. elegans GSC pool and early stages of germ cell differentiation. The methods include examination of germlines in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutant phenotypes that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.
Collapse
Affiliation(s)
- Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Robinson-Thiewes S, Dufour B, Martel PO, Lechasseur X, Brou AAD, Roy V, Chen Y, Kimble J, Narbonne P. Non-autonomous regulation of germline stem cell proliferation by somatic MPK-1/MAPK activity in C. elegans. Cell Rep 2021; 35:109162. [PMID: 34038716 PMCID: PMC8182673 DOI: 10.1016/j.celrep.2021.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 11/03/2022] Open
Abstract
Extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) is a major positive regulator of cell proliferation, which is often upregulated in cancer. However, few studies have addressed ERK/MAPK regulation of proliferation within a complete organism. The Caenorhabditis elegans ERK/MAPK ortholog MPK-1 is best known for its control of somatic organogenesis and germline differentiation, but it also stimulates germline stem cell proliferation. Here, we show that the germline-specific MPK-1B isoform promotes germline differentiation but has no apparent role in germline stem cell proliferation. By contrast, the soma-specific MPK-1A isoform promotes germline stem cell proliferation non-autonomously. Indeed, MPK-1A functions in the intestine or somatic gonad to promote germline proliferation independent of its other known roles. We propose that a non-autonomous role of ERK/MAPK in stem cell proliferation may be conserved across species and various tissue types, with major clinical implications for cancer and other diseases. The prevailing paradigm is that ERK/MAPK functions autonomously to promote cell proliferation upon mitogen stimulation. Robinson-Thiewes et al. now demonstrate that C. elegans ERK/MAPK acts within somatic tissues to non-autonomously promote the proliferation of germline stem cells. Germline ERK/MAPK is thus dispensable for germline stem cell proliferation.
Collapse
Affiliation(s)
| | - Benjamin Dufour
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Pier-Olivier Martel
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Xavier Lechasseur
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Amani Ange Danielle Brou
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Vincent Roy
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada; Département de Biologie Moléculaire, de Biochimie Médicale et de pathologie, Faculté de Médecine, Université Laval, QC G1R 3S3, Canada
| | - Yunqing Chen
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Judith Kimble
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1580, USA
| | - Patrick Narbonne
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada; Département de Biologie Moléculaire, de Biochimie Médicale et de pathologie, Faculté de Médecine, Université Laval, QC G1R 3S3, Canada.
| |
Collapse
|
3
|
Robinson-Thiewes S, McCloskey J, Kimble J. Two classes of active transcription sites and their roles in developmental regulation. Proc Natl Acad Sci U S A 2020; 117:26812-26821. [PMID: 33033228 PMCID: PMC7604424 DOI: 10.1073/pnas.2013163117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of genes encoding powerful developmental regulators is exquisitely controlled, often at multiple levels. Here, we investigate developmental expression of three conserved genes, Caenorhabditis elegans mpk-1, lag-1, and lag-3/sel-8, which encode homologs of ERK/MAPK and core components of the Notch-dependent transcription complex, respectively. We use single-molecule FISH (smFISH) and MATLAB to visualize and quantify nuclear nascent transcripts and cytoplasmic mRNAs as a function of position along the germline developmental axis. Using differentially labeled probes, one spanning an exceptionally long first intron and the other spanning exons, we identify two classes of active transcription sites (ATS). The iATS class, for "incomplete" ATS, harbors only partial nascent transcripts; the cATS class, for "complete" ATS, harbors full-length nascent transcripts. Remarkably, the frequencies of iATS and cATS are patterned along the germline axis. For example, most mpk-1 ATS are iATS in hermaphrodite germline stem cells, but most are cATS in differentiating stem cell daughters. Thus, mpk-1 ATS class frequencies switch in a graded manner as stem cell daughters begin differentiation. Importantly, the patterns of ATS class frequency are gene-, stage-, and sex-specific, and cATS frequency strongly correlates with transcriptional output. Although the molecular mechanism underlying ATS classes is not understood, their primary difference is the extent of transcriptional progression. To generate only partial nascent transcripts in iATS, progression must be slowed, paused, or aborted midway through the gene. We propose that regulation of ATS class can be a critical mode of developmental gene regulation.
Collapse
Affiliation(s)
| | - John McCloskey
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
4
|
Wang X, Voronina E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front Cell Dev Biol 2020; 8:29. [PMID: 32117964 PMCID: PMC7015873 DOI: 10.3389/fcell.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
5
|
Park Y, O'Rourke S, Taki FA, Alfhili MA, Lee MH. Dose-Dependent Effects of GLD-2 and GLD-1 on Germline Differentiation and Dedifferentiation in the Absence of PUF-8. Front Cell Dev Biol 2020; 8:5. [PMID: 32039211 PMCID: PMC6992537 DOI: 10.3389/fcell.2020.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022] Open
Abstract
PUMILIO/FBF (PUF) proteins have a conserved function in stem cell regulation. Caenorhabditis elegans PUF-8 protein inhibits the translation of target mRNAs by interacting with PUF binding element (PBE) in the 3′ untranslated region (3′ UTR). In this work, an in silico analysis has identified gld-2 [a poly(A) polymerase] as a putative PUF-8 target. Biochemical and reporter analyses showed that PUF-8 specifically binds to a PBE in gld-2 3′ UTR and represses a GFP reporter gene carrying gld-2 3′ UTR in the C. elegans mitotic germ cells. GLD-2 enhances meiotic entry at least in part by activating GLD-1 (a KH motif-containing RNA-binding protein). Our genetic analyses also demonstrated that heterozygous gld-2(+/−) gld-1(+/−) genes in the absence of PUF-8 are competent for meiotic entry (early differentiation), but haplo-insufficient for the meiotic division (terminal differentiation) of spermatocytes. Indeed, the arrested spermatocytes return to mitotic cells via dedifferentiation, which results in germline tumors. Since these regulators are broadly conserved, we thus suggest that similar molecular mechanisms may control differentiation, dedifferentiation, and tumorigenesis in other organisms, including humans.
Collapse
Affiliation(s)
- Youngyong Park
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Samuel O'Rourke
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Faten A Taki
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | - Mohammad A Alfhili
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Myon Hee Lee
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| |
Collapse
|
6
|
MPK-1/ERK regulatory network controls the number of sperm by regulating timing of sperm-oocyte switch in C. elegans germline. Biochem Biophys Res Commun 2017; 491:1077-1082. [PMID: 28782521 DOI: 10.1016/j.bbrc.2017.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022]
Abstract
The precise regulation of germline sexual fate is crucial for animal fertility. In C. elegans, the production of either type of gamete, sperm or oocyte, becomes mutually exclusive beyond the larval stage. Hermaphrodites initially produce sperm and then switch to produce oocytes. This change of fate during germline development is tightly controlled by several regulators. In C. elegans hermaphrodites, FBF-1 and FBF-2 (>95% identical, members of the Pumilio RNA-binding protein family) proteins function redundantly to promote the sperm-oocyte switch. Here, we demonstrate that loss of LIP-1 (dual specificity phosphatase) in fbf-1(ok91) single mutants leads to excess sperm production due to a delayed sperm-oocyte switch. This phenotype was dramatically rescued by depletion of MPK-1 (an ERK homolog). In contrast, loss of LIP-1 in fbf-2(q738) single mutants leads to a premature sperm-oocyte switch and loss of sperm. Notably, fbf-1 fbf-2; lip-1 triple mutants produce excess sperm. These results suggest that the MPK-1/ERK regulatory network, including FBF-1, FBF-2, and LIP-1, controls the number of sperm by regulating the timing of the sperm-oocyte switch in C. elegans.
Collapse
|
7
|
Abstract
The Caenorhabditis elegans germline is an excellent model for studying the regulation of a pool of stem cells and progression of cells from a stem cell state to a differentiated state. At the tissue level, the germline is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated cells at the other. A simple mesenchymal niche caps the GSC region of the germline and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Downstream of Notch signaling, key regulators include novel LST-1 and SYGL-1 proteins and a network of RNA regulatory proteins. In this chapter we present methods for characterizing the C. elegans GSC pool and early germ cell differentiation. The methods include examination of the germline in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutants that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.
Collapse
Affiliation(s)
- Sarah L Crittenden
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA.
| | - Hannah S Seidel
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| | - Judith Kimble
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| |
Collapse
|
8
|
Lee MH, Yoon DS. A Phenotype-Based RNAi Screening for Ras-ERK/MAPK Signaling-Associated Stem Cell Regulators in C. elegans. Methods Mol Biol 2017; 1622:207-221. [PMID: 28674811 DOI: 10.1007/978-1-4939-7108-4_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stem cells have the ability to self-renew and to generate differentiated cell types. A regulatory network that controls this balance is critical for stem cell homeostasis and normal animal development. Particularly, Ras-ERK/MAPK signaling pathway is critical for stem cell self-renewal and differentiation in mammals, including humans. Aberrant regulation of Ras-ERK/MAPK signaling pathway results in either stem cell or overproliferation. Therefore, the identification of Ras-ERK/MAPK signaling pathway-associated regulators is critical to understand the mechanism of stem cell (possibly cancer stem cell) control. In this report, using the nematode C. elegans mutants, we developed a methodology for a phenotype-based RNAi screening that identifies stem cell regulator genes associated with Ras-ERK/MAPK signaling within the context of a whole organism. Importantly, this phenotype-based RNAi screening can be applied for other stem cell-associated signaling pathways such as Wnt/β-catenin and Notch using the C. elegans.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Division of Hematology/Oncology, Department of Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Dong Suk Yoon
- Division of Hematology/Oncology, Department of Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| |
Collapse
|
9
|
Lee MH, Mamillapalli SS, Keiper BD, Cha DS. A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification. BMB Rep 2016; 49:93-8. [PMID: 26303971 PMCID: PMC4915122 DOI: 10.5483/bmbrep.2016.49.2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/20/2022] Open
Abstract
Germline stem cells (GSCs) are the best understood adult stem cell types in the nematode Caenorhabditis elegans, and have provided an important model system for studying stem cells and their cell fate in vivo, in mammals. In this review, we propose a mechanism that controls GSCs and their cell fate through selective activation, repression and mobilization of the specific mRNAs. This mechanism is acutely controlled by known signal transduction pathways (e.g., Notch signaling and Ras-ERK MAPK signaling pathways) and P granule (analogous to mammalian germ granule)-associated mRNA regulators (FBF-1, FBF-2, GLD-1, GLD-2, GLD-3, RNP-8 and IFE-1). Importantly, all regulators are highly conserved in many multi-cellular animals. Therefore, GSCs from a simple animal may provide broad insight into vertebrate stem cells (e.g., hematopoietic stem cells) and their cell fate specification. [BMB Reports 2016; 49(2): 93-98]
Collapse
Affiliation(s)
- Myon-Hee Lee
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Srivalli Swathi Mamillapalli
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Dong Seok Cha
- Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonju 55338, Korea
| |
Collapse
|
10
|
Noble DC, Aoki ST, Ortiz MA, Kim KW, Verheyden JM, Kimble J. Genomic Analyses of Sperm Fate Regulator Targets Reveal a Common Set of Oogenic mRNAs in Caenorhabditis elegans. Genetics 2016; 202:221-34. [PMID: 26564160 PMCID: PMC4701086 DOI: 10.1534/genetics.115.182592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
Germ cell specification as sperm or oocyte is an ancient cell fate decision, but its molecular regulation is poorly understood. In Caenorhabditis elegans, the FOG-1 and FOG-3 proteins behave genetically as terminal regulators of sperm fate specification. Both are homologous to well-established RNA regulators, suggesting that FOG-1 and FOG-3 specify the sperm fate post-transcriptionally. We predicted that FOG-1 and FOG-3, as terminal regulators of the sperm fate, might regulate a battery of gamete-specific differentiation genes. Here we test that prediction by exploring on a genomic scale the messenger RNAs (mRNAs) associated with FOG-1 and FOG-3. Immunoprecipitation of the proteins and their associated mRNAs from spermatogenic germlines identifies 81 FOG-1 and 722 FOG-3 putative targets. Importantly, almost all FOG-1 targets are also FOG-3 targets, and these common targets are strongly biased for oogenic mRNAs. The discovery of common target mRNAs suggested that FOG-1 and FOG-3 work together. Consistent with that idea, we find that FOG-1 and FOG-3 proteins co-immunoprecipitate from both intact nematodes and mammalian tissue culture cells and that they colocalize in germ cells. Taking our results together, we propose a model in which FOG-1 and FOG-3 work in a complex to repress oogenic transcripts and thereby promote the sperm fate.
Collapse
Affiliation(s)
- Daniel C Noble
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Scott T Aoki
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Marco A Ortiz
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Kyung Won Kim
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Jamie M Verheyden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
11
|
Sorokin EP, Gasch AP, Kimble J. Competence for chemical reprogramming of sexual fate correlates with an intersexual molecular signature in Caenorhabditis elegans. Genetics 2014; 198:561-75. [PMID: 25146970 PMCID: PMC4196613 DOI: 10.1534/genetics.114.169409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/10/2014] [Indexed: 01/24/2023] Open
Abstract
In multicellular organisms, genetic programs guide cells to adopt cell fates as tissues are formed during development, maintained in adults, and repaired after injury. Here we explore how a small molecule in the environment can switch a genetic program from one fate to another. Wild-type Caenorhabditis elegans XX adult hermaphrodites make oocytes continuously, but certain mutant XX adults make sperm instead in an otherwise hermaphrodite soma. Thus, puf-8; lip-1 XX adults make only sperm, but they can be switched from sperm to oocyte production by treatment with a small-molecule MEK inhibitor. To ask whether this chemical reprogramming is common, we tested six XX sperm-only mutants, but found only one other capable of cell fate switching, fbf-1; lip-1. Therefore, reprogramming competence relies on genotype, with only certain mutants capable of responding to the MEK inhibitor with a cell fate change. To gain insight into the molecular basis of competence for chemical reprogramming, we compared polyadenylated transcriptomes of competent and noncompetent XX sperm-only mutants in the absence of the MEK inhibitor and hence in the absence of cell fate reprogramming. Despite their cellular production of sperm, competent mutants were enriched for oogenic messenger RNAs relative to mutants lacking competence for chemical reprogramming. In addition, competent mutants expressed the oocyte-specific protein RME-2, whereas those lacking competence did not. Therefore, mutants competent for reprogramming possess an intersexual molecular profile at both RNA and protein levels. We suggest that this intersexual molecular signature is diagnostic of an intermediate network state that poises the germline tissue for changing its cellular fate in response to environmental cues.
Collapse
Affiliation(s)
- Elena P Sorokin
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Judith Kimble
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706 Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
12
|
Datla US, Scovill NC, Brokamp AJ, Kim E, Asch AS, Lee MH. Role of PUF-8/PUF protein in stem cell control, sperm-oocyte decision and cell fate reprogramming. J Cell Physiol 2014; 229:1306-11. [PMID: 24638209 DOI: 10.1002/jcp.24618] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 01/18/2023]
Abstract
Pumilio and FBF (PUF) proteins are conserved stem cell regulators that maintain germline stem cells (GSCs) in worms and flies. Moreover, they are also present in vertebrate stem cells. The nematode Caenorhabditis elegans has multiple PUF proteins with specialized roles. Among them, PUF-8 protein controls multiple cellular processes, including proliferation, differentiation, sperm-oocyte decision, and cell fate reprogramming, depending on the genetic context in the C. elegans germline. In this review, we describe the possible mechanisms of how PUF-8 protein systematically controls multiple cellular processes in the C. elegans germline. Since PUF proteins are evolutionarily conserved, we suggest that a similar mechanism may be involved in controlling stem cell regulation and differentiation in other organisms, including humans.
Collapse
Affiliation(s)
- Udaya Sree Datla
- Program in Biomedical Sciences, Brody School of Medicine, East Carolina University, Greenville, North Carolina; Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | | | | | | | |
Collapse
|
13
|
Handel MA, Eppig JJ, Schimenti JC. Applying "gold standards" to in-vitro-derived germ cells. Cell 2014; 157:1257-1261. [PMID: 24906145 DOI: 10.1016/j.cell.2014.05.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/27/2014] [Accepted: 05/16/2014] [Indexed: 11/29/2022]
Abstract
Germ cells are the ultimate stem cells, and reports of their in vitro derivation generate excitement due to potential applications in reproductive medicine. To date, there is no firm evidence that meiosis, the hallmark of gametogenesis, can be faithfully replicated outside of the gonad. We propose benchmarks for evaluating in vitro derivation of germ cells, facilitating realization of their potential.
Collapse
Affiliation(s)
| | - John J Eppig
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
14
|
Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol 2014; 30:393-415. [PMID: 25068488 DOI: 10.1146/annurev-cellbio-101011-155831] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cytoplasmic polyadenylation element binding (CPEB) proteins are sequence-specific mRNA binding proteins that control translation in development, health, and disease. CPEB1, the founding member of this family, has become an important model for illustrating general principles of translational control by cytoplasmic polyadenylation in gametogenesis, cancer etiology, synaptic plasticity, learning, and memory. Although the biological functions of the other members of this protein family in vertebrates are just beginning to emerge, it is already evident that they, too, mediate important processes, such as cancer etiology and higher cognitive function. In Drosophila, the CPEB proteins Orb and Orb2 play key roles in oogenesis and in neuronal function, as do related proteins in Caenorhabditis elegans and Aplysia. We review the biochemical features of the CPEB proteins, discuss their activities in several biological systems, and illustrate how understanding CPEB activity in model organisms has an important impact on neurological disease.
Collapse
Affiliation(s)
- Maria Ivshina
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | | | | |
Collapse
|
15
|
Chen X, Shen Y, Ellis RE. Dependence of the sperm/oocyte decision on the nucleosome remodeling factor complex was acquired during recent Caenorhabditis briggsae evolution. Mol Biol Evol 2014; 31:2573-85. [PMID: 24987105 PMCID: PMC4166919 DOI: 10.1093/molbev/msu198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The major families of chromatin remodelers have been conserved throughout eukaryotic evolution. Because they play broad, pleiotropic roles in gene regulation, it was not known if their functions could change rapidly. Here, we show that major alterations in the use of chromatin remodelers are possible, because the nucleosome remodeling factor (NURF) complex has acquired a unique role in the sperm/oocyte decision of the nematode Caenorhabditis briggsae. First, lowering the activity of C. briggsae NURF-1 or ISW-1, the core components of the NURF complex, causes germ cells to become oocytes rather than sperm. This observation is based on the analysis of weak alleles and null mutations that were induced with TALENs and on RNA interference. Second, qRT-polymerase chain reaction data show that the C. briggsae NURF complex promotes the expression of Cbr-fog-1 and Cbr-fog-3, two genes that control the sperm/oocyte decision. This regulation occurs in the third larval stage and affects the expression of later spermatogenesis genes. Third, double mutants reveal that the NURF complex and the transcription factor TRA-1 act independently on Cbr-fog-1 and Cbr-fog-3. TRA-1 binds both promoters, and computer analyses predict that these binding sites are buried in nucleosomes, so we suggest that the NURF complex alters chromatin structure to allow TRA-1 access to Cbr-fog-1 and Cbr-fog-3. Finally, lowering NURF activity by mutation or RNA interference does not affect this trait in other nematodes, including the sister species C. nigoni, so it must have evolved recently. We conclude that altered chromatin remodeling could play an important role in evolutionary change.
Collapse
Affiliation(s)
- Xiangmei Chen
- Department of Molecular Biology, Rowan University-SOM Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey
| | - Yongquan Shen
- Department of Molecular Biology, Rowan University-SOM
| | | |
Collapse
|
16
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
17
|
Oocyte differentiation is genetically dissociable from meiosis in mice. Nat Genet 2013; 45:877-83. [PMID: 23770609 PMCID: PMC3747777 DOI: 10.1038/ng.2672] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/24/2013] [Indexed: 12/26/2022]
Abstract
Oogenesis is the process by which ovarian germ cells undertake meiosis and differentiate to become eggs. In mice, Stra8 is required for the chromosomal events of meiosis to occur, but its role in differentiation remains unknown. Here we report Stra8-deficient ovarian germ cells that grow and differentiate into oocyte-like cells that synthesize zonae pellucidae, organize surrounding somatic cells into follicles, are ovulated in response to hormonal stimulation, undergo asymmetric cell division to produce a polar body and cleave to form two-cell embryos upon fertilization. These events occur without premeiotic chromosomal replication, sister chromatid cohesion, synapsis or recombination. Thus, oocyte growth and differentiation are genetically dissociable from the chromosomal events of meiosis. These findings open to study the independent contributions of meiosis and oocyte differentiation to the making of a functional egg.
Collapse
|