1
|
Wang G, Qin J, Verderosa AD, Hor L, Santos-Martin C, Paxman JJ, Martin JL, Totsika M, Heras B. A Buried Water Network Modulates the Activity of the Escherichia coli Disulphide Catalyst DsbA. Antioxidants (Basel) 2023; 12:antiox12020380. [PMID: 36829940 PMCID: PMC9952396 DOI: 10.3390/antiox12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The formation of disulphide bonds is an essential step in the folding of many proteins that enter the secretory pathway; therefore, it is not surprising that eukaryotic and prokaryotic organisms have dedicated enzymatic systems to catalyse this process. In bacteria, one such enzyme is disulphide bond-forming protein A (DsbA), a thioredoxin-like thiol oxidase that catalyses the oxidative folding of proteins required for virulence and fitness. A large body of work on DsbA proteins, particularly Escherichia coli DsbA (EcDsbA), has demonstrated the key role that the Cys30-XX-Cys33 catalytic motif and its unique redox properties play in the thiol oxidase activity of this enzyme. Using mutational and functional analyses, here we identify that a set of charged residues, which form an acidic groove on the non-catalytic face of the enzyme, further modulate the activity of EcDsbA. Our high-resolution structures indicate that these residues form a water-mediated proton wire that can transfer protons from the bulk solvent to the active site. Our results support the view that proton shuffling may facilitate the stabilisation of the buried Cys33 thiolate formed during the redox reaction and promote the correct direction of the EcDsbA-substrate thiol-disulphide exchange. Comparison with other proteins of the same class and proteins of the thioredoxin-superfamily in general suggest that a proton relay system appears to be a conserved catalytic feature among this widespread superfamily of proteins. Furthermore, this study also indicates that the acidic groove of DsbA could be a promising allosteric site to develop novel DsbA inhibitors as antibacterial therapeutics.
Collapse
Affiliation(s)
- Geqing Wang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Carlos Santos-Martin
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| |
Collapse
|
2
|
Moe A, Kovalova T, Król S, Yanofsky DJ, Bott M, Sjöstrand D, Rubinstein JL, Högbom M, Brzezinski P. The respiratory supercomplex from C. glutamicum. Structure 2021; 30:338-349.e3. [PMID: 34910901 DOI: 10.1016/j.str.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Corynebacterium glutamicum is a preferentially aerobic gram-positive bacterium belonging to the phylum Actinobacteria, which also includes the pathogen Mycobacterium tuberculosis. In these bacteria, respiratory complexes III and IV form a CIII2CIV2 supercomplex that catalyzes oxidation of menaquinol and reduction of dioxygen to water. We isolated the C. glutamicum supercomplex and used cryo-EM to determine its structure at 2.9 Å resolution. The structure shows a central CIII2 dimer flanked by a CIV on two sides. A menaquinone is bound in each of the QN and QP sites in each CIII and an additional menaquinone is positioned ∼14 Å from heme bL. A di-heme cyt. cc subunit electronically connects each CIII with an adjacent CIV, with the Rieske iron-sulfur protein positioned with the iron near heme bL. Multiple subunits interact to form a convoluted sub-structure at the cytoplasmic side of the supercomplex, which defines a path for proton transfer into CIV.
Collapse
Affiliation(s)
- Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
3
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Berg J, Liu J, Svahn E, Ferguson-Miller S, Brzezinski P. Structural changes at the surface of cytochrome c oxidase alter the proton-pumping stoichiometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148116. [PMID: 31733183 DOI: 10.1016/j.bbabio.2019.148116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Data from earlier studies showed that minor structural changes at the surface of cytochrome c oxidase, in one of the proton-input pathways (the D pathway), result in dramatically decreased activity and a lower proton-pumping stoichiometry. To further investigate how changes around the D pathway orifice influence functionality of the enzyme, here we modified the nearby C-terminal loop of subunit I of the Rhodobacter sphaeroides cytochrome c oxidase. Removal of 16 residues from this flexible surface loop resulted in a decrease in the proton-pumping stoichiometry to <50% of that of the wild-type enzyme. Replacement of the protonatable residue Glu552, part of the same loop, by an Ala, resulted in a similar decrease in the proton-pumping stoichiometry without loss of the O2-reduction activity or changes in the proton-uptake kinetics. The data show that minor structural changes at the orifice of the D pathway, at a distance of ~40 Å from the proton gate of cytochrome c oxidase, may alter the proton-pumping stoichiometry of the enzyme.
Collapse
Affiliation(s)
- Johan Berg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Jang H, Pawate AS, Bhargava R, Kenis PJA. Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events. LAB ON A CHIP 2019; 19:2598-2609. [PMID: 31259340 DOI: 10.1039/c9lc00182d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Early reaction intermediates in protein folding, such as those resulting in β-amyloid formation due to transient misfolding, emerge within a few hundred microseconds. Here, we report a method to obtain sub-millisecond temporal resolution and molecular structural information of protein (mis-)folding events by using a microfluidic continuous-flow mixer (MCFM) in combination with Fourier transform infrared (FT-IR) imaging. The MCFMs are made out of cyclic olefin copolymer (COC) films, because this approach allows for rapid prototyping of different mixer designs. Furthermore, COC offers high IR transparency between 1500 and 2500 cm-1, thus maximizing the signal to noise ratio of the IR data obtained from a sample of interest. By combining narrow and wide channel widths in MCFM design, the platform provides fast mixing (460 μs) to induce protein (mis-)folding, and it maximizes the residence time in the observing area, so a wide range of reaction timescales can be captured in a single image. We validated the platform for its ability to induce and observe sub-millisecond processes by studying two systems: (i) the mixing of H2O and D2O and (ii) the mixing induced deprotonation of carboxylic acid. First, we observed excellent agreement between simulated and experimental data of the on-chip mixing of H2O and D2O, which verifies the distance-reaction time relationships based on simulation. Second, deprotonation of carboxylic acid by on-chip mixing with sodium hydroxide solution validates the ability of the platform to induce rapid pH jump that is needed for some biomolecular reactions. Finally, we studied the methanol-induced partial-unfolding of ubiquitin to show that our platform can be used to study biomolecular events 'on-pathway' using FT-IR imaging. We successfully extracted kinetic and structural details of the conformational changes along the channel. Our results are in agreement with prior studies that required more elaborate stopped flow approaches to acquire data for different time points. In summary, the reported method uses an easy-to-fabricate microfluidic mixer platform integrated with hyperspectral FT-IR imaging for rapid acquisition of structural details and kinetic parameters of biomolecular reactions. This approach does not need stopped flow or molecular imaging probes, as required respectively for alternative FT-IR spectroscopy and fluorescence approaches.
Collapse
Affiliation(s)
- Hyukjin Jang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, IL, USA. and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| | - Ashtamurthy S Pawate
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, USA
| | - Rohit Bhargava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, IL, USA. and Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, USA and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| | - Paul J A Kenis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, IL, USA. and Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, USA and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| |
Collapse
|
6
|
Cai X, Haider K, Lu J, Radic S, Son CY, Cui Q, Gunner M. Network analysis of a proposed exit pathway for protons to the P-side of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:997-1005. [DOI: 10.1016/j.bbabio.2018.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
|
7
|
Cavity hydration dynamics in cytochrome c oxidase and functional implications. Proc Natl Acad Sci U S A 2017; 114:E8830-E8836. [PMID: 28973914 DOI: 10.1073/pnas.1707922114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase (CcO) is a transmembrane protein that uses the free energy of O2 reduction to generate the proton concentration gradient across the membrane. The regulation of competitive proton transfer pathways has been established to be essential to the vectorial transport efficiency of CcO, yet the underlying mechanism at the molecular level remains lacking. Recent studies have highlighted the potential importance of hydration-level change in an internal cavity that connects the proton entrance channel, the site of O2 reduction, and the putative proton exit route. In this work, we use atomistic molecular dynamics simulations to investigate the energetics and timescales associated with the volume fluctuation and hydration-level change in this central cavity. Extensive unrestrained molecular dynamics simulations (accumulatively [Formula: see text]4 [Formula: see text]s) and free energy computations for different chemical states of CcO support a model in which the volume and hydration level of the cavity are regulated by the protonation state of a propionate group of heme a3 and, to a lesser degree, the redox state of heme a and protonation state of Glu286. Markov-state model analysis of [Formula: see text]2-[Formula: see text]s trajectories suggests that hydration-level change occurs on the timescale of 100-200 ns before the proton-loading site is protonated. The computed energetic and kinetic features for the cavity wetting transition suggest that reversible hydration-level change of the cavity can indeed be a key factor that regulates the branching of proton transfer events and therefore contributes to the vectorial efficiency of proton transport.
Collapse
|
8
|
Liang R, Swanson JMJ, Wikström M, Voth GA. Understanding the essential proton-pumping kinetic gates and decoupling mutations in cytochrome c oxidase. Proc Natl Acad Sci U S A 2017; 114:5924-5929. [PMID: 28536198 PMCID: PMC5468613 DOI: 10.1073/pnas.1703654114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome c oxidase (CcO) catalyzes the reduction of oxygen to water and uses the released free energy to pump protons against the transmembrane proton gradient. To better understand the proton-pumping mechanism of the wild-type (WT) CcO, much attention has been given to the mutation of amino acid residues along the proton translocating D-channel that impair, and sometimes decouple, proton pumping from the chemical catalysis. Although their influence has been clearly demonstrated experimentally, the underlying molecular mechanisms of these mutants remain unknown. In this work, we report multiscale reactive molecular dynamics simulations that characterize the free-energy profiles of explicit proton transport through several important D-channel mutants. Our results elucidate the mechanisms by which proton pumping is impaired, thus revealing key kinetic gating features in CcO. In the N139T and N139C mutants, proton back leakage through the D-channel is kinetically favored over proton pumping due to the loss of a kinetic gate in the N139 region. In the N139L mutant, the bulky L139 side chain inhibits timely reprotonation of E286 through the D-channel, which impairs both proton pumping and the chemical reaction. In the S200V/S201V double mutant, the proton affinity of E286 is increased, which slows down both proton pumping and the chemical catalysis. This work thus not only provides insight into the decoupling mechanisms of CcO mutants, but also explains how kinetic gating in the D-channel is imperative to achieving high proton-pumping efficiency in the WT CcO.
Collapse
Affiliation(s)
- Ruibin Liang
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Jessica M J Swanson
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637;
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Programme for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637;
| |
Collapse
|
9
|
Abstract
Measurements of voltage changes in response to charge separation within membrane proteins can offer fundamental information on spectroscopically "invisible" steps. For example, results from studies of voltage changes associated with electron and proton transfer in cytochrome c oxidase could, in principle, be used to discriminate between different theoretical models describing the molecular mechanism of proton pumping. Earlier analyses of data from these measurements have been based on macroscopic considerations that may not allow for exploring the actual molecular mechanisms. Here, we have used a coarse-grained model describing the relation between observed voltage changes and specific charge-transfer reactions, which includes an explicit description of the membrane, the electrolytes, and the electrodes. The results from these calculations offer mechanistic insights at the molecular level. Our main conclusion is that previously assumed mechanistic evidence that was based on electrogenic measurements is not unique. However, the ability of our calculations to obtain reliable voltage changes means that we have a tool that can be used to describe a wide range of electrogenic charge transfers in channels and transporters, by combining voltage measurements with other experiments and simulations to analyze new mechanistic proposals.
Collapse
|
10
|
Narayanan M, Sakyiama JA, Elguindy MM, Nakamaru-Ogiso E. Roles of subunit NuoL in the proton pumping coupling mechanism of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. J Biochem 2016; 160:205-215. [PMID: 27118783 DOI: 10.1093/jb/mvw027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/09/2016] [Indexed: 01/13/2023] Open
Abstract
Respiratory complex I has an L-shaped structure formed by the hydrophilic arm responsible for electron transfer and the membrane arm that contains protons pumping machinery. Here, to gain mechanistic insights into the role of subunit NuoL, we investigated the effects of Mg2+, Zn2+ and the Na+/H+ antiporter inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on proton pumping activities of various isolated NuoL mutant complex I after reconstitution into Escherichia coli double knockout (DKO) membrane vesicles lacking complex I and the NADH dehydrogenase type 2. We found that Mg2+ was critical for proton pumping activity of complex I. At 2 µM Zn2+, proton pumping of the wild-type was selectively inhibited without affecting electron transfer; no inhibition in proton pumping of D178N and D400A was observed, suggesting the involvement of these residues in Zn2+ binding. Fifteen micromolar of EIPA caused up to ∼40% decrease in the proton pumping activity of the wild-type, D303A and D400A/E, whereas no significant change was detected in D178N, indicating its possible involvement in the EIPA binding. Furthermore, when menaquinone-rich DKO membranes were used, the proton pumping efficiency in the wild-type was decreased significantly (∼50%) compared with NuoL mutants strongly suggesting that NuoL is involved in the high efficiency pumping mechanism in complex I.
Collapse
Affiliation(s)
- Madhavan Narayanan
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Joseph A Sakyiama
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Mahmoud M Elguindy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Samudio BM, Couch V, Stuchebrukhov AA. Monte Carlo Simulations of Glu-242 in Cytochrome c Oxidase. J Phys Chem B 2016; 120:2095-105. [PMID: 26865374 DOI: 10.1021/acs.jpcb.5b10998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monte Carlo (MC) simulations of conformational changes and protonation of Glu-242, a key residue that shuttles protons in cytochrome c oxidase (CcO), are reported. Previous studies suggest that this residue may play a role of the valve of the enzyme proton pump. Here we examine how sensitive the results of simulations are to the computational method used. We applied both molecular mechanic (MM) and hybrid quantum mechanic:molecular mechanic (QM:MM) methods and find that the results are qualitatively different. The results indicate that the mechanism for proton gating in CcO is still an open issue.
Collapse
Affiliation(s)
- Benjamin M Samudio
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Vernon Couch
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexei A Stuchebrukhov
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Goyal P, Yang S, Cui Q. Microscopic basis for kinetic gating in Cytochrome c oxidase: insights from QM/MM analysis. Chem Sci 2015; 6:826-841. [PMID: 25678950 PMCID: PMC4321873 DOI: 10.1039/c4sc01674b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanism of vectorial proton pumping in biomolecules requires establishing the microscopic basis for the regulation of both thermodynamic and kinetic features of the relevant proton transfer steps.
Understanding the mechanism of vectorial proton pumping in biomolecules requires establishing the microscopic basis for the regulation of both thermodynamic and kinetic features of the relevant proton transfer steps. For the proton pump cytochrome c oxidase, while the regulation of thermodynamic driving force for key proton transfers has been discussed in great detail, the microscopic basis for the control of proton transfer kinetics has been poorly understood. Here we carry out extensive QM/MM free energy simulations to probe the kinetics of relevant proton transfer steps and analyze the effects of local structure and hydration level. We show that protonation of the proton loading site (PLS, taken to be a propionate of heme a3) requires a concerted process in which a key glutamic acid (Glu286H) delivers the proton to the PLS while being reprotonated by an excess proton coming from the D-channel. The concerted nature of the mechanism is a crucial feature that enables the loading of the PLS before the cavity containing Glu286 is better hydrated to lower its pKa to experimentally measured range; the charged rather than dipolar nature of the process also ensures a tight coupling with heme a reduction, as emphasized by Siegbahn and Blomberg. In addition, we find that rotational flexibility of the PLS allows its protonation before that of the binuclear center (the site where oxygen gets reduced to water). Together with our recent study (P. Goyal, et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 18886–18891) that focused on the modulation of Glu286 pKa, the current work suggests a mechanism that builds in a natural sequence for the protonation of the PLS prior to that of the binuclear center. This provides microscopic support to the kinetic constraints revealed by kinetic network analysis as essential elements that ensure an efficient vectorial proton transport in cytochrome c oxidase.
Collapse
Affiliation(s)
- Puja Goyal
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Shuo Yang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|
13
|
Griese JJ, Srinivas V, Högbom M. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. J Biol Inorg Chem 2014; 19:759-74. [PMID: 24771036 PMCID: PMC4118035 DOI: 10.1007/s00775-014-1140-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/14/2014] [Indexed: 11/23/2022]
Abstract
The ferritin superfamily contains several protein groups that share a common fold and metal coordinating ligands. The different groups utilize different dinuclear cofactors to perform a diverse set of reactions. Several groups use an oxygen-activating di-iron cluster, while others use di-manganese or heterodinuclear Mn/Fe cofactors. Given the similar primary ligand preferences of Mn and Fe as well as the similarities between the binding sites, the basis for metal specificity in these systems remains enigmatic. Recent data for the heterodinuclear cluster show that the protein scaffold per se is capable of discriminating between Mn and Fe and can assemble the Mn/Fe center in the absence of any potential assembly machineries or metal chaperones. Here we review the current understanding of the assembly of the heterodinuclear cofactor in the two different protein groups in which it has been identified, ribonucleotide reductase R2c proteins and R2-like ligand-binding oxidases. Interestingly, although the two groups form the same metal cluster they appear to employ partly different mechanisms to assemble it. In addition, it seems that both the thermodynamics of metal binding and the kinetics of oxygen activation play a role in achieving metal specificity.
Collapse
Affiliation(s)
- Julia J. Griese
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Vivek Srinivas
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Martin Högbom
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
14
|
Svahn E, Faxén K, Gennis RB, Brzezinski P. Proton pumping by an inactive structural variant of cytochrome c oxidase. J Inorg Biochem 2014; 140:6-11. [PMID: 25042731 DOI: 10.1016/j.jinorgbio.2014.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The aa3-type cytochrome c oxidases (CytcOs) from e.g. Rhodobacter sphaeroides and Paracoccus denitrificans harbor two proton-transfer pathways. The K pathway is used for proton uptake upon reduction of the CytcO, while the D pathway is used after binding of O2 to the catalytic site. The aim of the present study was to determine whether or not CytcO in which the K pathway is blocked (by e.g. the Lys362Met replacement) is capable of pumping protons. The process can not be studied using conventional assays because the O2-reduction activity is too low when the K pathway is blocked. Consequently, proton pumping with a blocked K pathway has not been demonstrated directly. Here, the Lys362Met and Ser299Glu structural variants were reconstituted in liposomes and allowed to (slowly) become completely reduced. Then, the reaction with O2 was studied with μs time resolution after flash photolysis of a blocking CO ligand bound to heme a3. The data show that with both the inactive Lys362Met and partly active Ser299Glu variants proton release occurred with the same time constants as with the wild-type oxidase, i.e. ~200μs and ~3ms, corresponding in time to formation of the ferryl and oxidized states, respectively. Thus, the data show that the K pathway is not required for proton pumping, suggesting that D and K pathways operate independently of each other after binding of O2 to the catalytic site.
Collapse
Affiliation(s)
- Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kristina Faxén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, Urbana, IL 61801, United States
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
15
|
DeCoursey TE, Hosler J. Philosophy of voltage-gated proton channels. J R Soc Interface 2014; 11:20130799. [PMID: 24352668 PMCID: PMC3899857 DOI: 10.1098/rsif.2013.0799] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/22/2013] [Indexed: 02/02/2023] Open
Abstract
In this review, voltage-gated proton channels are considered from a mainly teleological perspective. Why do proton channels exist? What good are they? Why did they go to such lengths to develop several unique hallmark properties such as extreme selectivity and ΔpH-dependent gating? Why is their current so minuscule? How do they manage to be so selective? What is the basis for our belief that they conduct H(+) and not OH(-)? Why do they exist in many species as dimers when the monomeric form seems to work quite well? It is hoped that pondering these questions will provide an introduction to these channels and a way to logically organize their peculiar properties as well as to understand how they are able to carry out some of their better-established biological functions.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| | - Jonathan Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
16
|
Alnajjar KS, Hosler J, Prochaska L. Role of the N-terminus of subunit III in proton uptake in cytochrome c oxidase of Rhodobacter sphaeroides. Biochemistry 2014; 53:496-504. [PMID: 24397338 DOI: 10.1021/bi401535q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The catalytic core of cytochrome c oxidase consists of three subunits that are conserved across species. The N-terminus of subunit III contains three histidine residues (3, 7, and 10) that are surface-exposed, have physiologically relevant pKa values, and are in close proximity of the mouth of the D-channel in subunit I. A triple-histidine mutation (to glutamine) was created in Rhodobacter sphaeroides. The mutant enzyme retains 60% of wild-type activity. Absorbance during steady-state turnover indicates that electrons accumulate at heme a in the mutant, accompanied by accumulation of the oxoferryl intermediate. When reconstituted into liposomes, the mutant enzyme pumps protons with an efficiency that is half that of the wild type. Finally, the mutant exhibits a lower cytochrome c peroxidation rate. Our results indicate that the mutation lowers activity indirectly by slowing the uptake of protons through the D-channel and that the three histidine residues stabilize the interactions between subunit I and subunit III.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University , Dayton, Ohio 45435, United States
| | | | | |
Collapse
|
17
|
Morgan D, Musset B, Kulleperuma K, Smith SME, Rajan S, Cherny VV, Pomès R, DeCoursey TE. Peregrination of the selectivity filter delineates the pore of the human voltage-gated proton channel hHV1. ACTA ACUST UNITED AC 2013; 142:625-40. [PMID: 24218398 PMCID: PMC3840923 DOI: 10.1085/jgp.201311045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Extraordinary selectivity is crucial to all proton-conducting molecules, including the human voltage-gated proton channel (hHV1), because the proton concentration is >106 times lower than that of other cations. Here we use “selectivity filter scanning” to elucidate the molecular requirements for proton-specific conduction in hHV1. Asp112, in the middle of the S1 transmembrane helix, is an essential part of the selectivity filter in wild-type (WT) channels. After neutralizing Asp112 by mutating it to Ala (D112A), we introduced Asp at each position along S1 from 108 to 118, searching for “second site suppressor” activity. Surprisingly, most mutants lacked even the anion conduction exhibited by D112A. Proton-specific conduction was restored only with Asp or Glu at position 116. The D112V/V116D channel strikingly resembled WT in selectivity, kinetics, and ΔpH-dependent gating. The S4 segment of this mutant has similar accessibility to WT in open channels, because R211H/D112V/V116D was inhibited by internally applied Zn2+. Asp at position 109 allowed anion permeation in combination with D112A but did not rescue function in the nonconducting D112V mutant, indicating that selectivity is established externally to the constriction at F150. The three positions that permitted conduction all line the pore in our homology model, clearly delineating the conduction pathway. Evidently, a carboxyl group must face the pore directly to enable conduction. Molecular dynamics simulations indicate reorganization of hydrogen bond networks in the external vestibule in D112V/V116D. At both positions where it produces proton selectivity, Asp frequently engages in salt linkage with one or more Arg residues from S4. Surprisingly, mean hydration profiles were similar in proton-selective, anion-permeable, and nonconducting constructs. That the selectivity filter functions in a new location helps to define local environmental features required to produce proton-selective conduction.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Smirnova I, Chang HY, von Ballmoos C, Ädelroth P, Gennis RB, Brzezinski P. Single mutations that redirect internal proton transfer in the ba3 oxidase from Thermus thermophilus. Biochemistry 2013; 52:7022-30. [PMID: 24004023 DOI: 10.1021/bi4008726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound proton pump. Results from earlier studies have shown that with the aa3-type oxidases proton uptake to the catalytic site and "pump site" occurs simultaneously. However, with ba3 oxidase the pump site is loaded before proton transfer to the catalytic site because the proton transfer to the latter is slower than that with the aa3 oxidases. In addition, the timing of formation and decay of catalytic intermediates is different in the two types of oxidases. In the present study, we have investigated two mutant ba3 CytcOs in which residues of the proton pathway leading to the catalytic site as well as the pump site were exchanged, Thr312Val and Tyr244Phe. Even though ba3 CytcO uses only a single proton pathway for transfer of the substrate and "pumped" protons, the amino-acid residue substitutions had distinctly different effects on the kinetics of proton transfer to the catalytic site and the pump site. The results indicate that the rates of these reactions can be modified independently by replacement of single residues within the proton pathway. Furthermore, the data suggest that the Thr312Val and Tyr244Phe mutations interfere with a structural rearrangement in the proton pathway that is rate limiting for proton transfer to the catalytic site.
Collapse
Affiliation(s)
- Irina Smirnova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|