1
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
2
|
Tabrizi SG, Pelmenschikov V, Noodleman L, Kaupp M. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study. J Chem Theory Comput 2015; 12:174-87. [PMID: 26598030 PMCID: PMC4819768 DOI: 10.1021/acs.jctc.5b00854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
An unprecedented [4Fe-3S] cluster
proximal to the regular [NiFe]
active site has recently been found to be responsible for the ability
of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the
presence of ambient levels of oxygen. Starting from proximal cluster
models of a recent DFT study on the redox-dependent structural transformation
of the [4Fe-3S] cluster, 57Fe Mössbauer parameters
(electric field gradients, isomer shifts, and nuclear hyperfine couplings)
were calculated using DFT. Our results revise the previously reported
correspondence of Mössbauer signals and iron centers in the
[4Fe-3S]3+ reduced-state proximal cluster. Similar conflicting
assignments are also resolved for the [4Fe-3S]5+ superoxidized
state with particular regard to spin-coupling in the broken-symmetry
DFT calculations. Calculated 57Fe hyperfine coupling (HFC)
tensors expose discrepancies in the experimental set of HFC tensors
and substantiate the need for additional experimental work on the
magnetic properties of the MBH proximal cluster in its reduced and
superoxidized redox states.
Collapse
Affiliation(s)
- Shadan Ghassemi Tabrizi
- Technical University of Berlin , Institute for Chemistry and Theoretical Chemistry, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Vladimir Pelmenschikov
- Technical University of Berlin , Institute for Chemistry and Theoretical Chemistry, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, CB213, La Jolla, California 92037, United States
| | - Martin Kaupp
- Technical University of Berlin , Institute for Chemistry and Theoretical Chemistry, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
3
|
Pelmenschikov V, Kaupp M. Redox-Dependent Structural Transformations of the [4Fe-3S] Proximal Cluster in O2-Tolerant Membrane-Bound [NiFe]-Hydrogenase: A DFT Study. J Am Chem Soc 2013; 135:11809-23. [DOI: 10.1021/ja402159u] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Vladimir Pelmenschikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie, Sekr. C7, Strasse
des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie, Sekr. C7, Strasse
des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|