1
|
Dasgupta A, Deschamps J, Matti U, Hübner U, Becker J, Strauss S, Jungmann R, Heintzmann R, Ries J. Direct supercritical angle localization microscopy for nanometer 3D superresolution. Nat Commun 2021; 12:1180. [PMID: 33608524 PMCID: PMC7896076 DOI: 10.1038/s41467-021-21333-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology. Supercritical angle localisation microscopy (SALM) allows the z-positions of single fluorophores to be extracted from the intensity of supercritical angle fluorescence. Here the authors improve the z-resolution of SALM, and report nanometre isotropic localisation precision on DNA origami structures.
Collapse
Affiliation(s)
- Anindita Dasgupta
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University, Jena, Germany.,Leibniz Institute of Photonic Technology, Jena, Germany
| | - Joran Deschamps
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ulf Matti
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Uwe Hübner
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Jan Becker
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller-University, Jena, Germany.,Abbe Center of Photonics, Friedrich-Schiller-University, Jena, Germany
| | - Jonas Ries
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
2
|
Liu Z, Agarwal K. Silicon substrate significantly alters dipole-dipole resolution in coherent microscope. OPTICS EXPRESS 2020; 28:39713-39726. [PMID: 33379515 DOI: 10.1364/oe.409629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Considering a coherent microscopy setup, influences of the substrate below the sample in the imaging performances are studied, with a focus on high refractive index substrate such as silicon. Analytical expression of 3D full-wave vectorial point spread function, i.e. the dyadic Green's function is derived for the optical setup together with the substrate. Numerical analysis are performed in order to understand and compare magnification, depth of field, and resolution when using silicon substrate versus the conventional glass substrate or usually modelled condition of no substrate. Novel insights are generated about the scope of resolution improvement due to near field effect of the silicon substrate. Importantly, we show that the expected resolution varies greatly with the position of the sources and the substrate interface relative to the focal plane. Both better and worse resolution as compared to glass substrate may be expected with small changes in their positions. Therefore, our studies show that deriving a single indicative number of expected resolution is neither possible nor judicious for the case of silicon substrate.
Collapse
|
3
|
Heil HS, Schreiber B, Götz R, Emmerling M, Dabauvalle MC, Krohne G, Höfling S, Kamp M, Sauer M, Heinze KG. Sharpening emitter localization in front of a tuned mirror. LIGHT, SCIENCE & APPLICATIONS 2018; 7:99. [PMID: 30534368 PMCID: PMC6279778 DOI: 10.1038/s41377-018-0104-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 05/23/2023]
Abstract
Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2-4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.
Collapse
Affiliation(s)
- Hannah S. Heil
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, 97080 Würzburg, Germany
| | - Benjamin Schreiber
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, 97080 Würzburg, Germany
| | - Ralph Götz
- Department of Biotechnology and Biophysics, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Monika Emmerling
- Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marie-Christine Dabauvalle
- Division of Electron Microscopy, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Georg Krohne
- Division of Electron Microscopy, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sven Höfling
- Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS UK
| | - Martin Kamp
- Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Katrin G. Heinze
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Tinning PW, Scrimgeour R, McConnell G. Widefield standing wave microscopy of red blood cell membrane morphology with high temporal resolution. BIOMEDICAL OPTICS EXPRESS 2018; 9:1745-1761. [PMID: 29675316 PMCID: PMC5905920 DOI: 10.1364/boe.9.001745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 05/10/2023]
Abstract
We report the first demonstration of widefield standing wave (SW) microscopy of fluorescently labelled red blood cells at high speeds that allow for the rapid imaging of membrane deformations. Using existing and custom MATLAB functions, we also present a method to generate 2D and 3D reconstructions of the SW data for improved visualization of the cell. We compare our technique with standard widefield epifluorescence imaging and show that the SW technique not only reveals more topographical information about the specimen but does so without increasing toxicity or the rate of photobleaching and could make this a powerful technique for the diagnosis or study of red blood cell morphology and biomechanical characteristics.
Collapse
Affiliation(s)
- Peter W Tinning
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 ONG, UK
| | - Ross Scrimgeour
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 ONG, UK
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 ONG, UK
| |
Collapse
|
5
|
Geyer SH, Maurer-Gesek B, Reissig LF, Weninger WJ. High-resolution Episcopic Microscopy (HREM) - Simple and Robust Protocols for Processing and Visualizing Organic Materials. J Vis Exp 2017. [PMID: 28715372 PMCID: PMC5609318 DOI: 10.3791/56071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We provide simple protocols for generating digital volume data with the high-resolution episcopic microscopy (HREM) method. HREM is capable of imaging organic materials with volumes up to 5 x 5 x 7 mm3 in typical numeric resolutions between 1 x 1 x 1 and 5 x 5 x 5 µm3. Specimens are embedded in methacrylate resin and sectioned on a microtome. After each section an image of the block surface is captured with a digital video camera that sits on the phototube connected to the compound microscope head. The optical axis passes through a green fluorescent protein (GFP) filter cube and is aligned with a position, at which the bock holder arm comes to rest after each section. In this way, a series of inherently aligned digital images, displaying subsequent block surfaces are produced. Loading such an image series in three-dimensional (3D) visualization software facilitates the immediate conversion to digital volume data, which permit virtual sectioning in various orthogonal and oblique planes and the creation of volume and surface rendered computer models. We present three simple, tissue specific protocols for processing various groups of organic specimens, including mouse, chick, quail, frog and zebra fish embryos, human biopsy material, uncoated paper and skin replacement material.
Collapse
Affiliation(s)
- Stefan H Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Barbara Maurer-Gesek
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Lukas F Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna;
| |
Collapse
|
6
|
Yang X, Xie H, Alonas E, Liu Y, Chen X, Santangelo PJ, Ren Q, Xi P, Jin D. Mirror-enhanced super-resolution microscopy. LIGHT, SCIENCE & APPLICATIONS 2016; 5. [PMID: 27398242 PMCID: PMC4936537 DOI: 10.1038/lsa.2016.134] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation, super-resolution microscopy. STimulated Emission Depletion (STED) nanoscopy offers lateral super-resolution using a donut-beam depletion, but its axial resolution is still over 500 nm. Total internal reflection fluorescence microscopy is widely used for single-molecule localization, but its ability to detect molecules is limited to within the evanescent field of ~ 100 nm from the cell attachment surface. We find here that the axial thickness of the point spread function (PSF) during confocal excitation can be easily improved to 110 nm by replacing the microscopy slide with a mirror. The interference of the local electromagnetic field confined the confocal PSF to a 110-nm spot axially, which enables axial super-resolution with all laser-scanning microscopes. Axial sectioning can be obtained with wavelength modulation or by controlling the spacer between the mirror and the specimen. With no additional complexity, the mirror-assisted excitation confinement enhanced the axial resolution six-fold and the lateral resolution two-fold for STED, which together achieved 19-nm resolution to resolve the inner rim of a nuclear pore complex and to discriminate the contents of 120 nm viral filaments. The ability to increase the lateral resolution and decrease the thickness of an axial section using mirror-enhanced STED without increasing the laser power is of great importance for imaging biological specimens, which cannot tolerate high laser power.
Collapse
Affiliation(s)
- Xusan Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Hao Xie
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Eric Alonas
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Yujia Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Xuanze Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Philip J Santangelo
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dayong Jin
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Amor R, Mahajan S, Amos WB, McConnell G. Standing-wave-excited multiplanar fluorescence in a laser scanning microscope reveals 3D information on red blood cells. Sci Rep 2014; 4:7359. [PMID: 25483987 PMCID: PMC4258645 DOI: 10.1038/srep07359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/19/2014] [Indexed: 12/03/2022] Open
Abstract
Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a plane reflector close to the specimen. We report here a variation in the intensity of fluorescence of successive planes related to the Stokes shift of the dye. We show by the use of dyes specific for the cell membrane how standing-wave excitation can be exploited to generate precise contour maps of the surface membrane of red blood cells, with an axial resolution of ≈90 nm. The method, which requires only the addition of a plane mirror to an existing confocal laser scanning microscope, may well prove useful in studying diseases which involve the red cell membrane, such as malaria.
Collapse
Affiliation(s)
- Rumelo Amor
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Sumeet Mahajan
- Institute of Life Sciences and Department of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - William Bradshaw Amos
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 2QH, United Kingdom
| | - Gail McConnell
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| |
Collapse
|
8
|
Plasmon based super resolution imaging for single molecular detection: Breaking the diffraction limit. Biomed Eng Lett 2014. [DOI: 10.1007/s13534-014-0154-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|