1
|
Shao H, Liu W, Hong H, Guo K, Chen J, Li Q, Su M, Huang X, Hu J. Evidence for Bxy-npr-21 on controlling juveniles' growth and modulating male sexual arousal: from molecules to behaviors. PEST MANAGEMENT SCIENCE 2025. [PMID: 39822134 DOI: 10.1002/ps.8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Bursaphelenchus xylophilus is considered a quarantine plant nematode species, that causes major damage to pine ecosystems globally. However, there are few reports on the identification and function of the sex pheromone receptors involved in mating. The function of Bxy-npr-21 as a potential sex pheromone receptor gene was verified from molecules to behaviors in this study. RESULTS Here, we firstly report that Bxy-npr-21 is a receptor gene involved in sexual attraction. The bioinformatic analysis indicated that the Bxy-npr-21 gene in B. xylophilus encodes a GPCR. The expression characterization for Bxy-npr-21 showed that it is widely expressed in whole body of larvae and sex organs of adults. The RNAi results suggested that the Bxy-npr-21 gene was involved mainly in movement, feeding, and mating. Sexual arousal experiments further validated that the Bxy-npr-21 gene was involved in the activation of males by female chemical signaling. CONCLUSIONS Our results strongly suggest that the Bxy-npr-21 gene is a key gene that regulates nematode growth, development and reproduction. The results of this study lay the foundation for revealing the molecular mechanisms of growth and reproduction of B. xylophilus. It can also provide an important basis for further control of B. xylophilus. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hudie Shao
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Huan Hong
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kai Guo
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Jing Chen
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Quan Li
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Miao Su
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xiaofang Huang
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Jiafu Hu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
2
|
Yoshina S, Izuhara L, Mashima R, Maejima Y, Kamatani N, Mitani S. Febuxostat ameliorates muscle degeneration and movement disorder of the dystrophin mutant model in Caenorhabditis elegans. J Physiol Sci 2025; 73:28. [PMID: 39842968 DOI: 10.1186/s12576-023-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited disorder with mutations in the dystrophin gene characterized by progressive muscle degeneration and weakness. Therapy such as administration of glucocorticoids, exon skipping of mutant genes and introduction of dystrophin mini-genes have been tried, but there is no radical therapy for DMD. In this study, we used C. elegans carrying mutations in the dys-1 gene as a model of DMD to examine the effects of febuxostat (FBX). We applied FBX to dys-1 mutant animals harboring a marker for muscle nuclei and mitochondria, and found that FBX ameliorates the muscle loss. We next used a severer model dys-1; unc-22 double mutant and found the dys-1 mutation causes a weakened muscle contraction. We applied FBX and other compounds to the double mutant animals and assayed the movement. We found that the administration of FBX in combination of uric acid has the best effects on the DMD model.
Collapse
Affiliation(s)
- Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, 162-8666, Tokyo, Japan
| | - Luna Izuhara
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, 162-8666, Tokyo, Japan
| | - Rei Mashima
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, 162-8666, Tokyo, Japan; Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Yuka Maejima
- Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Naoyuki Kamatani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, 162-8666, Tokyo, Japan; Stagen. Co. Ltd., 4-11-6, Kuramae, Taito-Ku, Tokyo 111-0051, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, 162-8666, Tokyo, Japan.
| |
Collapse
|
3
|
Shalash R, Levi-Ferber M, Cohen C, Dori A, Brodie C, Henis-Korenblit S. Cross-species modeling of muscular dystrophy in Caenorhabditis elegans using patient-derived extracellular vesicles. Dis Model Mech 2024; 17:dmm050412. [PMID: 38501170 PMCID: PMC11007864 DOI: 10.1242/dmm.050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Reliable disease models are critical for medicine advancement. Here, we established a versatile human disease model system using patient-derived extracellular vesicles (EVs), which transfer a pathology-inducing cargo from a patient to a recipient naïve model organism. As a proof of principle, we applied EVs from the serum of patients with muscular dystrophy to Caenorhabditis elegans and demonstrated their capability to induce a spectrum of muscle pathologies, including lifespan shortening and robust impairment of muscle organization and function. This demonstrates that patient-derived EVs can deliver disease-relevant pathologies between species and can be exploited for establishing novel and personalized models of human disease. Such models can potentially be used for disease diagnosis, prognosis, analyzing treatment responses, drug screening and identification of the disease-transmitting cargo of patient-derived EVs and their cellular targets. This system complements traditional genetic disease models and enables modeling of multifactorial diseases and of those not yet associated with specific genetic mutations.
Collapse
Affiliation(s)
- Rewayd Shalash
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mor Levi-Ferber
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Coral Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Amir Dori
- Department of Neurology, Sheba Medical Center, Ramat-Gan 52621, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Chaya Brodie
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
4
|
Soni P, Edwards H, Anupom T, Rahman M, Lesanpezeshki L, Blawzdziewicz J, Cope H, Gharahdaghi N, Scott D, Toh LS, Williams PM, Etheridge T, Szewczyk N, Willis CRG, Vanapalli SA. Spaceflight Induces Strength Decline in Caenorhabditis elegans. Cells 2023; 12:2470. [PMID: 37887314 PMCID: PMC10605753 DOI: 10.3390/cells12202470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Background: Understanding and countering the well-established negative health consequences of spaceflight remains a primary challenge preventing safe deep space exploration. Targeted/personalized therapeutics are at the forefront of space medicine strategies, and cross-species molecular signatures now define the 'typical' spaceflight response. However, a lack of direct genotype-phenotype associations currently limits the robustness and, therefore, the therapeutic utility of putative mechanisms underpinning pathological changes in flight. Methods: We employed the worm Caenorhabditis elegans as a validated model of space biology, combined with 'NemaFlex-S' microfluidic devices for assessing animal strength production as one of the most reproducible physiological responses to spaceflight. Wild-type and dys-1 (BZ33) strains (a Duchenne muscular dystrophy (DMD) model for comparing predisposed muscle weak animals) were cultured on the International Space Station in chemically defined media before loading second-generation gravid adults into NemaFlex-S devices to assess individual animal strength. These same cultures were then frozen on orbit before returning to Earth for next-generation sequencing transcriptomic analysis. Results: Neuromuscular strength was lower in flight versus ground controls (16.6% decline, p < 0.05), with dys-1 significantly more (23% less strength, p < 0.01) affected than wild types. The transcriptional gene ontology signatures characterizing both strains of weaker animals in flight strongly corroborate previous results across species, enriched for upregulated stress response pathways and downregulated mitochondrial and cytoskeletal processes. Functional gene cluster analysis extended this to implicate decreased neuronal function, including abnormal calcium handling and acetylcholine signaling, in space-induced strength declines under the predicted control of UNC-89 and DAF-19 transcription factors. Finally, gene modules specifically altered in dys-1 animals in flight again cluster to neuronal/neuromuscular pathways, suggesting strength loss in DMD comprises a strong neuronal component that predisposes these animals to exacerbated strength loss in space. Conclusions: Highly reproducible gene signatures are strongly associated with space-induced neuromuscular strength loss across species and neuronal changes in calcium/acetylcholine signaling require further study. These results promote targeted medical efforts towards and provide an in vivo model for safely sending animals and people into deep space in the near future.
Collapse
Affiliation(s)
- Purushottam Soni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Hunter Edwards
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Taslim Anupom
- Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
- Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
| | - Nima Gharahdaghi
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
| | - Daniel Scott
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Li Shean Toh
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.T.); (P.M.W.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.T.); (P.M.W.)
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
| | - Nathaniel Szewczyk
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| |
Collapse
|
5
|
Aguayo JS, Shelton JM, Tan W, Rakheja D, Cai C, Shalaby A, Lee J, Iannaccone ST, Xu L, Chen K, Burns DK, Zheng Y. Ectopic PLAG1 induces muscular dystrophy in the mouse. Biochem Biophys Res Commun 2023; 665:159-168. [PMID: 37163936 DOI: 10.1016/j.bbrc.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Even though various genetic mutations have been identified in muscular dystrophies (MD), there is still a need to understand the biology of MD in the absence of known mutations. Here we reported a new mouse model of MD driven by ectopic expression of PLAG1. This gene encodes a developmentally regulated transcription factor known to be expressed in developing skeletal muscle, and implicated as an oncogene in certain cancers including rhabdomyosarcoma (RMS), an aggressive soft tissue sarcoma composed of myoblast-like cells. By breeding loxP-STOP-loxP-PLAG1 (LSL-PLAG1) mice into the MCK-Cre line, we achieved ectopic PLAG1 expression in cardiac and skeletal muscle. The Cre/PLAG1 mice died before 6 weeks of age with evidence of cardiomyopathy significantly limiting left ventricle fractional shortening. Histology of skeletal muscle revealed dystrophic features, including myofiber necrosis, fiber size variation, frequent centralized nuclei, fatty infiltration, and fibrosis, all of which mimic human MD pathology. QRT-PCR and Western blot revealed modestly decreased Dmd mRNA and dystrophin protein in the dystrophic muscle, and immunofluorescence staining showed decreased dystrophin along the cell membrane. Repression of Dmd by ectopic PLAG1 was confirmed in dystrophic skeletal muscle and various cell culture models. In vitro studies showed that excess IGF2 expression, a transcriptional target of PLAG1, phenocopied PLAG1-mediated down-regulation of dystrophin. In summary, we developed a new mouse model of a lethal MD due to ectopic expression of PLAG1 in heart and skeletal muscle. Our data support the potential contribution of excess IGF2 in this model. Further studying these mice may provide new insights into the pathogenesis of MD and perhaps lead to new treatment strategies.
Collapse
Affiliation(s)
- Juan Shugert Aguayo
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei Tan
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ahmed Shalaby
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan T Iannaccone
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth Chen
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanbin Zheng
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Sulfur amino acid supplementation displays therapeutic potential in a C. elegans model of Duchenne muscular dystrophy. Commun Biol 2022; 5:1255. [PMID: 36385509 PMCID: PMC9668843 DOI: 10.1038/s42003-022-04212-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (H2S). Here we show that the C. elegans DMD model displays reduced levels of H2S and expression of genes required for sulfur metabolism. These reductions can be offset by increasing bioavailability of sulfur containing amino acids (L-methionine, L-homocysteine, L-cysteine, L-glutathione, and L-taurine), augmenting healthspan primarily via improved calcium regulation, mitochondrial structure and delayed muscle cell death. Additionally, we show distinct differences in preservation mechanisms between sulfur amino acid vs H2S administration, despite similarities in required health-preserving pathways. Our results suggest that the H2S deficit in DMD is likely caused by altered sulfur metabolism and that modulation of this pathway may improve DMD muscle health via multiple evolutionarily conserved mechanisms. A C. elegans model of Duchenne muscular dystrophy reveals a potential role for disrupted sulfur metabolism in the disease and thus the therapeutic potential of sulfur amino acid supplementation.
Collapse
|
7
|
Wang M, Du G, Fang J, Wang L, Guo Q, Zhang T, Li R. UGT440A1 Is Associated With Motility, Reproduction, and Pathogenicity of the Plant-Parasitic Nematode Bursaphelenchus xylophilus. FRONTIERS IN PLANT SCIENCE 2022; 13:862594. [PMID: 35712574 PMCID: PMC9194688 DOI: 10.3389/fpls.2022.862594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Pine wilt disease (PWD) caused by Bursaphelenchus xylophilus is considered a major threat to pine forests worldwide. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the conjugation of small lipophilic compounds with sugars and play crucial roles in the detoxification and homeostatic processes in all living organisms. We investigated the molecular characteristics and biological functions of the gene UGT440A1 that encodes UGTs in B. xylophilus. The in situ hybridization results indicated that UGT440A1 is expressed in all developmental stages of B. xylophilus, particularly in the head, intestine, and hypodermis of the second-stage of juveniles (J2), third-stage of juveniles (J3) and fourth-stage of juveniles (J4) females and in almost the whole body of J4 males and adults. Recombinant UGT440A1 was observed mainly in the inclusion bodies, and the enzyme activity assay revealed that UGT440A1 could catalyze the glycosylation reaction of two types of flavonols (kaempferol and quercetin). RNA interference (RNAi) of UGT440A1 suppressed motility, feeding, and reproduction of B. xylophilus. Furthermore, UGT440A1 knockdown caused a delay in the development of PWD symptoms in the pine seedlings inoculated with the nematodes. These results suggest that UGT440A1 is involved in the pathogenic process of B. xylophilus and the information may facilitate a better understanding of the molecular mechanism of PWD.
Collapse
Affiliation(s)
- Min Wang
- Medical College, Qingdao University, Qingdao, China
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Junna Fang
- Qingdao JiMo People’s Hospital, Qingdao, China
| | - Linsong Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Tingting Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Molecular characterization and functional analysis of Bxy-octr-1 in Bursaphelenchus xylophilus. Gene 2022; 823:146350. [PMID: 35189249 DOI: 10.1016/j.gene.2022.146350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Bursaphelenchus xylophilus is an invasive plant-parasitic nematode causing the notorious pine wilt disease (PWD) worldwide, which results in huge economic losses. G protein-coupled receptors (GPCRs) play an essential role in mating and reproduction behavior of animals. As a unique biogenic amine in invertebrates, octopamine (OA) can regulate a variety of physiological and behavioral responses by binding specific GPCRs. These specific GPCRs are also called octopamine receptors (OARs), and octr-1 is one of them. However, Bxy-octr-1 is unknown in B. xylophilus. Therefore, we investigated the expression pattern and biological function of Bxy-octr-1. Bioinformatics analysis indicated that Bxy-octr-1 was evolutionarily conserved. The real-time quantitative PCR data revealed that Bxy-octr-1 expression was required throughout the entire life of B. xylophilus. mRNA in situ hybridization showed that Bxy-octr-1 was mainly located in the cephalopharynx, body wall muscle, intestine, and gonadal organs of B. xylophilus. RNA interference (RNAi) showed that embryo hatching rates and locomotion speeds were both dramatically decreased. Obvious abnormal phenotypes were observed in the second-stage of juveniles after RNAi treated. Furthermore, its ontogenesis was stunting. Lack of Bxy-octr-1 reduced fecundity of females, of which 31.25% of them could not successfully ovulate. In addition, the error positioning ratio of the nematode was significantly increased. Our study suggests that Bxy-octr-1 is indispensable for locomotion, early ontogenesis and mating behavior in B. xylophilus.
Collapse
|
9
|
Hrach HC, O'Brien S, Steber HS, Newbern J, Rawls A, Mangone M. Transcriptome changes during the initiation and progression of Duchenne muscular dystrophy in Caenorhabditis elegans. Hum Mol Genet 2021; 29:1607-1623. [PMID: 32227114 PMCID: PMC7322572 DOI: 10.1093/hmg/ddaa055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease characterized by progressive muscle degeneration. The condition is driven by nonsense and missense mutations in the dystrophin gene, leading to instability of the sarcolemma and skeletal muscle necrosis and atrophy. Resulting changes in muscle-specific gene expression that take place in dystrophin's absence remain largely uncharacterized, as they are potentially obscured by the chronic inflammation elicited by muscle damage in humans. Caenorhabditis elegans possess a mild inflammatory response that is not active in the muscle, and lack a satellite cell equivalent. This allows for the characterization of the transcriptome rearrangements affecting disease progression independently of inflammation and regeneration. In effort to better understand these dynamics, we have isolated and sequenced body muscle-specific transcriptomes from C. elegans lacking functional dystrophin at distinct stages of disease progression. We have identified an upregulation of genes involved in mitochondrial function early in disease progression, and an upregulation of genes related to muscle repair in later stages. Our results suggest that in C. elegans, dystrophin may have a signaling role early in development, and its absence may activate compensatory mechanisms that counteract muscle degradation caused by loss of dystrophin. We have also developed a temperature-based screening method for synthetic paralysis that can be used to rapidly identify genetic partners of dystrophin. Our results allow for the comprehensive identification of transcriptome changes that potentially serve as independent drivers of disease progression and may in turn allow for the identification of new therapeutic targets for the treatment of DMD.
Collapse
Affiliation(s)
- Heather C Hrach
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA.,Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Shannon O'Brien
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.,Barrett Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85281, USA
| | - Hannah S Steber
- Barrett Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85281, USA
| | - Jason Newbern
- School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA
| | - Alan Rawls
- School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA
| | - Marco Mangone
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
10
|
Ellwood RA, Piasecki M, Szewczyk NJ. Caenorhabditis elegans as a Model System for Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22094891. [PMID: 34063069 PMCID: PMC8125261 DOI: 10.3390/ijms22094891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
The nematode worm Caenorhabditis elegans has been used extensively to enhance our understanding of the human neuromuscular disorder Duchenne Muscular Dystrophy (DMD). With new arising clinically relevant models, technologies and treatments, there is a need to reconcile the literature and collate the key findings associated with this model.
Collapse
Affiliation(s)
- Rebecca A. Ellwood
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Mathew Piasecki
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence:
| |
Collapse
|
11
|
Ellwood RA, Hewitt JE, Torregrossa R, Philp AM, Hardee JP, Hughes S, van de Klashorst D, Gharahdaghi N, Anupom T, Slade L, Deane CS, Cooke M, Etheridge T, Piasecki M, Antebi A, Lynch GS, Philp A, Vanapalli SA, Whiteman M, Szewczyk NJ. Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model. Proc Natl Acad Sci U S A 2021; 118:e2018342118. [PMID: 33627403 PMCID: PMC7936346 DOI: 10.1073/pnas.2018342118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.
Collapse
MESH Headings
- Animals
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Humans
- Hydrogen Sulfide/metabolism
- Hydrogen Sulfide/pharmacology
- Locomotion/drug effects
- Locomotion/genetics
- Male
- Mice
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Morpholines/metabolism
- Morpholines/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Organophosphorus Compounds/metabolism
- Organophosphorus Compounds/pharmacology
- Organothiophosphorus Compounds/metabolism
- Organothiophosphorus Compounds/pharmacology
- Prednisone/pharmacology
- Sirtuins/genetics
- Sirtuins/metabolism
- Thiones/metabolism
- Thiones/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Utrophin/deficiency
- Utrophin/genetics
Collapse
Affiliation(s)
- Rebecca A Ellwood
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Jennifer E Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Roberta Torregrossa
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Ashleigh M Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales (UNSW) Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Samantha Hughes
- HAN BioCentre, HAN University of Applied Sciences, Nijmegen 6525EM, The Netherlands
| | | | - Nima Gharahdaghi
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Taslim Anupom
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409
| | - Luke Slade
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Colleen S Deane
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
- Living System Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Michael Cooke
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Mathew Piasecki
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Adam Antebi
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales (UNSW) Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom;
| | - Nathaniel J Szewczyk
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom;
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH 45701
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| |
Collapse
|
12
|
Build-UPS and break-downs: metabolism impacts on proteostasis and aging. Cell Death Differ 2021; 28:505-521. [PMID: 33398091 PMCID: PMC7862225 DOI: 10.1038/s41418-020-00682-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5′ adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions. ![]()
Collapse
|
13
|
Liu J, Wang H, Liu X, Zhang G, Liu Z. Chinese liquor extract attenuates oxidative damage in HepG2 cells and extends lifespan of Caenorhabditis elegans. Food Sci Nutr 2020; 8:3164-3172. [PMID: 32724581 PMCID: PMC7382174 DOI: 10.1002/fsn3.1564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 11/08/2022] Open
Abstract
Chinese liquor is obtained from various grains by fermentation and complex processes. Chinese liquor contains complex ingredients. However, the low contents and presence of ethanol restricted the flavor substances function study. In current study, a flavor substance, homofuraneol (HOMO) was isolated from the Chinese liquor and the potency against H2O2-induced oxidative damage in HepG2 cells and lifespan-extending ability in Caenorhabditis elegans were explored. Results indicated that HOMO increased the HepG2 cells cytoactive by eliminating excessive intracellular free radicals, upregulating antioxidant enzyme activity and inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs) pathway. Further study revealed that HOMO extended the lifespan of N2 nematodes under normal and oxidative stress conditions. Moreover, RT-PCR results showed that paraquat activated the expression of PMK-1 and SKN-1 was significantly regulated by HOMO. Of note, our results indicated that HOMO recovered the redox states of HepG2 cells by targeting MAPKs and upregulating the stress resistance of nematodes by modulating the expression of stress-responsive genes, such as DAF-16.
Collapse
Affiliation(s)
- Jie Liu
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Huailing Wang
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Guohao Zhang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Zhigang Liu
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| |
Collapse
|
14
|
Oh KH, Sheoran S, Richmond JE, Kim H. Alcohol induces mitochondrial fragmentation and stress responses to maintain normal muscle function in Caenorhabditis elegans. FASEB J 2020; 34:8204-8216. [PMID: 32294300 DOI: 10.1096/fj.201903166r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Chronic excessive ethanol consumption has distinct toxic and adverse effects on a variety of tissues. In skeletal muscle, ethanol causes alcoholic myopathy, which is characterized by myofiber atrophy and the loss of muscle strength. Alcoholic myopathy is more prevalent than all inherited muscle diseases combined. Current evidence indicates that ethanol directly impairs muscle organization and function. However, the underlying mechanism by which ethanol causes toxicity in muscle is poorly understood. Here, we show that the nematode Caenorhabditis elegans exhibits the key features of alcoholic myopathy when exposed to ethanol. As in mammals, ethanol exposure impairs muscle strength and induces the expression of protective genes, including oxidative stress response genes. In addition, ethanol exposure causes the fragmentation of mitochondrial networks aligned with myofibril lattices. This ethanol-induced mitochondrial fragmentation is dependent on the mitochondrial fission factor DRP-1 (dynamin-related protein 1) and its receptor proteins on the outer mitochondrial membrane. Our data indicate that this fragmentation contributes to the activation of the mitochondrial unfolded protein response (UPR). We also found that robust, perpetual mitochondrial UPR activation effectively reduces muscle weakness caused by ethanol exposure. Our results strongly suggest that the modulation of mitochondrial stress responses may provide a method to ameliorate alcohol toxicity and damage to muscle.
Collapse
Affiliation(s)
- Kelly H Oh
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Seema Sheoran
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Janet E Richmond
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Hongkyun Kim
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
15
|
Tang J, Ma R, Zhu N, Guo K, Guo Y, Bai L, Yu H, Hu J, Zhang X. Bxy-fuca encoding α-L-fucosidase plays crucial roles in development and reproduction of the pathogenic pinewood nematode, Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2020; 76:205-214. [PMID: 31140718 DOI: 10.1002/ps.5497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/04/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The pine wood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of pine wilt disease (PWD). This disease is a serious threat to pine forests globally. The fuca gene encodes α-L-fucosidase, which plays crucial roles in numerous biological and pathological processes in bacteria, fungi, plants and animals. To find promising control strategies against PWD, we investigated the expression and functions of Bxy-fuca in B. xylophilus. RESULTS Bxy-fuca encoding α-L-fucosidase is highly conserved within the deduced functional domains and key residues. It is expressed continuously across all developmental stages of B. xylophilus. mRNA in situ hybridization demonstrated that Bxy-fuca was mainly localized in the body wall muscles and intestine. RNA interference indicated that the zygotic expression of Bxy-fuca was indispensable for embryogenesis. The rate of B. xylophilus egg hatch was significantly decreased after Bxy-fuca was interfered. Postembryonic silence of Bxy-fuca resulted in a dramatic decrease in the longevity of and the total number of eggs produced by B. xylophilus. In addition, the motility of the nematode was greatly hampered with a significant drop in head thrashing frequency. CONCLUSION Bxy-fuca plays crucial roles in development, lifespan and reproduction of B. xylophilus. Our results provide promising hints for control of PWD by blocking embryogenesis and ontogenesis, decreasing nematode fecundity, and disrupting the connection between B. xylophilus and its vector beetle by preventing nematode movement into the tracheal system. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Tang
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Ruoqing Ma
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Najie Zhu
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Kai Guo
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Yiqing Guo
- Division of Nephrology Department Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Liqun Bai
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Hongshi Yu
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Jiafu Hu
- College of Forestry, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Xingyao Zhang
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
16
|
Physical exertion exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2019; 116:3508-3517. [PMID: 30755520 DOI: 10.1073/pnas.1811379116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by loss of the protein dystrophin. In humans, DMD has early onset, causes developmental delays, muscle necrosis, loss of ambulation, and death. Current animal models have been challenged by their inability to model the early onset and severity of the disease. It remains unresolved whether increased sarcoplasmic calcium observed in dystrophic muscles follows or leads the mechanical insults caused by the muscle's disrupted contractile machinery. This knowledge has important implications for patients, as potential physiotherapeutic treatments may either help or exacerbate symptoms, depending on how dystrophic muscles differ from healthy ones. Recently we showed how burrowing dystrophic (dys-1) C. elegans recapitulate many salient phenotypes of DMD, including loss of mobility and muscle necrosis. Here, we report that dys-1 worms display early pathogenesis, including dysregulated sarcoplasmic calcium and increased lethality. Sarcoplasmic calcium dysregulation in dys-1 worms precedes overt structural phenotypes (e.g., mitochondrial, and contractile machinery damage) and can be mitigated by reducing calmodulin expression. To learn how dystrophic musculature responds to altered physical activity, we cultivated dys-1 animals in environments requiring high intensity or high frequency of muscle exertion during locomotion. We find that several muscular parameters (e.g., size) improve with increased activity. However, longevity in dystrophic animals was negatively associated with muscular exertion, regardless of effort duration. The high degree of phenotypic conservation between dystrophic worms and humans provides a unique opportunity to gain insight into the pathology of the disease as well as the initial assessment of potential treatment strategies.
Collapse
|
17
|
Hewitt JE, Pollard AK, Lesanpezeshki L, Deane CS, Gaffney CJ, Etheridge T, Szewczyk NJ, Vanapalli SA. Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of Caenorhabditis elegans and its functional response to drugs. Dis Model Mech 2018; 11:dmm036137. [PMID: 30396907 PMCID: PMC6307913 DOI: 10.1242/dmm.036137] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Muscle strength is a key clinical parameter used to monitor the progression of human muscular dystrophies, including Duchenne and Becker muscular dystrophies. Although Caenorhabditis elegans is an established genetic model for studying the mechanisms and treatments of muscular dystrophies, analogous strength-based measurements in this disease model are lacking. Here, we describe the first demonstration of the direct measurement of muscular strength in dystrophin-deficient C. elegans mutants using a micropillar-based force measurement system called NemaFlex. We show that dys-1(eg33) mutants, but not dys-1(cx18) mutants, are significantly weaker than their wild-type counterparts in early adulthood, cannot thrash in liquid at wild-type rates, display mitochondrial network fragmentation in the body wall muscles, and have an abnormally high baseline mitochondrial respiration. Furthermore, treatment with prednisone, the standard treatment for muscular dystrophy in humans, and melatonin both improve muscular strength, thrashing rate and mitochondrial network integrity in dys-1(eg33), and prednisone treatment also returns baseline respiration to normal levels. Thus, our results demonstrate that the dys-1(eg33) strain is more clinically relevant than dys-1(cx18) for muscular dystrophy studies in C. elegans This finding, in combination with the novel NemaFlex platform, can be used as an efficient workflow for identifying candidate compounds that can improve strength in the C. elegans muscular dystrophy model. Our study also lays the foundation for further probing of the mechanism of muscle function loss in dystrophin-deficient C. elegans, leading to knowledge translatable to human muscular dystrophy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jennifer E Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Amelia K Pollard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Colleen S Deane
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Christopher J Gaffney
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
- Lancaster Medical School, Furness College, Lancaster University, Lancaster LA1 4YG, UK
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
18
|
Mergoud dit Lamarche A, Molin L, Pierson L, Mariol M, Bessereau J, Gieseler K, Solari F. UNC-120/SRF independently controls muscle aging and lifespan in Caenorhabditis elegans. Aging Cell 2018; 17:e12713. [PMID: 29314608 PMCID: PMC5847867 DOI: 10.1111/acel.12713] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is commonly defined as the loss of global homeostasis, which results from progressive alteration of all organs function. This model is currently challenged by recent data showing that interventions that extend lifespan do not always increase the overall fitness of the organism. These data suggest the existence of tissue-specific factors that regulate the pace of aging in a cell-autonomous manner. Here, we investigated aging of Caenorhabditis elegans striated muscles at the subcellular and the physiological level. Our data show that muscle aging is characterized by a dramatic decrease in the expression of genes encoding proteins required for muscle contraction, followed by a change in mitochondria morphology, and an increase in autophagosome number. Myofilaments, however, remain unaffected during aging. We demonstrated that the conserved transcription factor UNC-120/SRF regulates muscle aging biomarkers. Interestingly, the role of UNC-120/SRF in the control of muscle aging can be dissociated from its broader effect on lifespan. In daf-2/insulin/IGF1 receptor mutants, which exhibit a delayed appearance of muscle aging biomarkers and are long-lived, disruption of unc-120 accelerates muscle aging but does not suppress the lifespan phenotype of daf-2 mutant. Conversely, unc-120 overexpression delays muscle aging but does not increase lifespan. Overall, we demonstrate that UNC-120/SRF controls the pace of muscle aging in a cell-autonomous manner downstream of the insulin/IGF1 receptor.
Collapse
Affiliation(s)
- Adeline Mergoud dit Lamarche
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laurent Molin
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laura Pierson
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Marie‐Christine Mariol
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Jean‐Louis Bessereau
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
- Hospices Civils de LyonFaculté de Médecine Lyon EstLyonFrance
| | - Kathrin Gieseler
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Florence Solari
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| |
Collapse
|
19
|
Insulin-like growth factor-1 signaling in cardiac aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1931-1938. [PMID: 28847512 DOI: 10.1016/j.bbadis.2017.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in most developed countries. Aging is associated with enhanced risk of CVD. Insulin-like growth factor-1 (IGF-1) binds to its cognate receptor, IGF-1 receptor (IGF-1R), and exerts pleiotropic effects on cell growth, differentiation, development, and tissue repair. Importantly, IGF-1/IGF-1R signaling is implicated in cardiac aging and longevity. Cardiac aging is an intrinsic process that results in cardiac dysfunction, accompanied by molecular and cellular changes. In this review, we summarize the current state of knowledge regarding the link between the IGF-1/IGF-1R system and cardiac aging. The biological effects of IGF-1R and insulin receptor will be discussed and compared. Furthermore, we describe data regarding how deletion of IGF-1R in cardiomyocytes of aged knockout mice may delay the development of senescence-associated myocardial pathologies. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
|
20
|
Oh KH, Haney JJ, Wang X, Chuang CF, Richmond JE, Kim H. ERG-28 controls BK channel trafficking in the ER to regulate synaptic function and alcohol response in C. elegans. eLife 2017; 6. [PMID: 28168949 PMCID: PMC5295816 DOI: 10.7554/elife.24733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/28/2017] [Indexed: 12/14/2022] Open
Abstract
Voltage- and calcium-dependent BK channels regulate calcium-dependent cellular events such as neurotransmitter release by limiting calcium influx. Their plasma membrane abundance is an important factor in determining BK current and thus regulation of calcium-dependent events. In C. elegans, we show that ERG-28, an endoplasmic reticulum (ER) membrane protein, promotes the trafficking of SLO-1 BK channels from the ER to the plasma membrane by shielding them from premature degradation. In the absence of ERG-28, SLO-1 channels undergo aspartic protease DDI-1-dependent degradation, resulting in markedly reduced expression at presynaptic terminals. Loss of erg-28 suppressed phenotypic defects of slo-1 gain-of-function mutants in locomotion, neurotransmitter release, and calcium-mediated asymmetric differentiation of the AWC olfactory neuron pair, and conferred significant ethanol-resistant locomotory behavior, resembling slo-1 loss-of-function mutants, albeit to a lesser extent. Our study thus indicates that the control of BK channel trafficking is a critical regulatory mechanism for synaptic transmission and neural function.
Collapse
Affiliation(s)
- Kelly H Oh
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States
| | - James J Haney
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States.,Department of Biology, Lake Forest College, Lake Forest, United States
| | - Xiaohong Wang
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
| | - Chiou-Fen Chuang
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Hongkyun Kim
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States
| |
Collapse
|
21
|
Gao Y, Xu D, Zhao L, Sun Y. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight. Mutat Res 2017; 795:15-26. [PMID: 28088539 DOI: 10.1016/j.mrfmmm.2017.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/06/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR). The dys-1 mutation induced similar transcriptional changes under both conditions, including the transcriptional distribution and function of altered genes. The majority of alterations were related to metabolic shift under both conditions, including transmembrane transport, lipid metabolic processes and proteolysis. Under SF and SR conditions, 12/14 and 10/13 altered pathways, respectively, were both grouped in the metabolism category. Out of the 778 genes involved in DDR, except eya-1 and ceh-34, 28 altered genes in dys-1 mutant showed no predicted protein interactions, or anti-correlated miRNAs during spaceflight. The ced-1 mutation induced similar changes under SF and SR; however, these effects were stronger than those of the dys-1 mutant. The additional genes identified were related to phosphorous/phosphate metabolic processes and growth rather than, metabolism, especially for environmental information processing under SR. Although the DDR profiles were significantly changed under both conditions, the ced-1 mutation favored DNA repair under SF and apoptosis under SR. Notably, 37 miRNAs were predicted to be involved in the DDR. Our study indicates that, the dys-1 mutation reduced the transcriptional response to SF, and the ced-1 mutation increased the response to SR, when compared with the wild type C. elegans. Although some effects were due to radiosensitivity, microgravity, depending on the dystrophin, exerts predominant effects on transcription in C. elegans during short-duration spaceflight.
Collapse
Affiliation(s)
- Ying Gao
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, China; Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China.
| |
Collapse
|
22
|
Lee EC, Kim H, Ditano J, Manion D, King BL, Strange K. Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis. PLoS One 2016; 11:e0154156. [PMID: 27111894 PMCID: PMC4844114 DOI: 10.1371/journal.pone.0154156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/09/2016] [Indexed: 11/19/2022] Open
Abstract
Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically costly and those costs must be balanced with the energy needs of other physiological functions. Hypertonic stress causes widespread protein damage in C. elegans. Suppression and management of protein damage is essential for optimal survival under hypertonic conditions. ASH chemosensory neurons allow C. elegans to detect and avoid strongly hypertonic environments. We demonstrate that mutations in osm-9 and osm-12 that disrupt ASH mediated hypertonic avoidance behavior or genetic ablation of ASH neurons are associated with enhanced survival during hypertonic stress. Improved survival is not due to altered systemic volume homeostasis or organic osmolyte accumulation. Instead, we find that osm-9(ok1677) mutant and osm-9(RNAi) worms exhibit reductions in hypertonicity induced protein damage in non-neuronal cells suggesting that enhanced proteostasis capacity may account for improved hypertonic stress resistance in worms with defects in osmotic avoidance behavior. RNA-seq analysis revealed that genes that play roles in managing protein damage are upregulated in osm-9(ok1677) worms. Our findings are consistent with a growing body of work demonstrating that intercellular communication between neuronal and non-neuronal cells plays a critical role in integrating cellular stress resistance with other organismal physiological demands and associated energy costs.
Collapse
Affiliation(s)
- Elaine C. Lee
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
- University of Connecticut, Storrs, CT, 06269, United States of America
| | - Heejung Kim
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
| | - Jennifer Ditano
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
| | - Dacie Manion
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
| | - Benjamin L. King
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
| | - Kevin Strange
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
- * E-mail:
| |
Collapse
|
23
|
Beron C, Vidal-Gadea AG, Cohn J, Parikh A, Hwang G, Pierce-Shimomura JT. The burrowing behavior of the nematode Caenorhabditis elegans: a new assay for the study of neuromuscular disorders. GENES BRAIN AND BEHAVIOR 2016; 14:357-68. [PMID: 25868909 DOI: 10.1111/gbb.12217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans has been a powerful model system for the study of key muscle genes relevant to human neuromuscular function and disorders. The behavioral robustness of C. elegans, however, has hindered its use in the study of certain neuromuscular disorders because many worm models of human disease show only subtle phenotypes while crawling. By contrast, in their natural habitat, C. elegans likely spends much of the time burrowing through the soil matrix. We developed a burrowing assay to challenge motor output by placing worms in agar-filled pipettes of increasing densities. We find that burrowing involves distinct kinematics and turning strategies from crawling that vary with the properties of the substrate. We show that mutants mimicking Duchenne muscular dystrophy by lacking a functional ortholog of the dystrophin protein, DYS-1, crawl normally but are severely impaired in burrowing. Muscular degeneration in the dys-1 mutant is hastened and exacerbated by burrowing, while wild type shows no such damage. To test whether neuromuscular integrity might be compensated genetically in the dys-1 mutant, we performed a genetic screen and isolated several suppressor mutants with proficient burrowing in a dys-1 mutant background. Further study of burrowing in C. elegans will enhance the study of diseases affecting neuromuscular integrity, and will provide insights into the natural behavior of this and other nematodes.
Collapse
Affiliation(s)
- C Beron
- Department of Neuroscience, Center for Brain, Behavior & Evolution; Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hesp K, Smant G, Kammenga JE. Caenorhabditis elegans DAF-16/FOXO transcription factor and its mammalian homologs associate with age-related disease. Exp Gerontol 2015; 72:1-7. [DOI: 10.1016/j.exger.2015.09.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 11/29/2022]
|
25
|
Brouilly N, Lecroisey C, Martin E, Pierson L, Mariol MC, Qadota H, Labouesse M, Streichenberger N, Mounier N, Gieseler K. Ultra-structural time-course study in the C. elegans model for Duchenne muscular dystrophy highlights a crucial role for sarcomere-anchoring structures and sarcolemma integrity in the earliest steps of the muscle degeneration process. Hum Mol Genet 2015; 24:6428-45. [PMID: 26358775 DOI: 10.1093/hmg/ddv353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects. Fundamental research is still needed to reveal the mechanisms involved in the disease that could be exploited as therapeutic targets. By studying a Caenorhabditis elegans model for DMD, we show here that dystrophin-dependent muscle degeneration is likely to be cell autonomous and affects the muscle cells the most involved in locomotion. We demonstrate that muscle degeneration is dependent on exercise and force production. Exhaustive studies by electron microscopy allowed establishing for the first time the chronology of subcellular events occurring during the entire process of muscle degeneration. This chronology highlighted the crucial role for dystrophin in stabilizing sarcomeric anchoring structures and the sarcolemma. Our results suggest that the disruption of sarcomeric anchoring structures and sarcolemma integrity, observed at the onset of the muscle degeneration process, triggers subcellular consequences that lead to muscle cell death. An ultra-structural analysis of muscle biopsies from DMD patients suggested that the chronology of subcellular events established in C. elegans models the pathogenesis in human. Finally, we found that the loss of sarcolemma integrity was greatly reduced after prednisone treatment suggesting a role for this molecule in plasma membrane stabilization.
Collapse
Affiliation(s)
- Nicolas Brouilly
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Claire Lecroisey
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Edwige Martin
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Laura Pierson
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Marie-Christine Mariol
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Hiroshi Qadota
- Department of Pathology, Emory University, 615 Michael Street, Whitehead 165, Atlanta, GA 30322, USA
| | - Michel Labouesse
- Intitut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 964, 1 rue Laurent Fries, BP 10142, 67404 Illkirch CEDEX, France and
| | | | - Nicole Mounier
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Kathrin Gieseler
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France,
| |
Collapse
|
26
|
Dystrophin induced cognitive impairment: mechanisms, models and therapeutic strategies. Ann Neurosci 2015; 22:108-18. [PMID: 26130916 PMCID: PMC4480258 DOI: 10.5214/ans.0972.7531.221210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
Existence of conserved domains in dystrophin and its associated complexes provide an opportunity to understand the role of dystrophin associated signalling and its association with neuronal metabolism in a variety of model organisms. We critically reviewed the studies till 2013 through established search engines and databases. Thus, we review the role of dystrophin and its isoforms in different animal models at developmental stages in the neuronal metabolism to enhance the therapeutic strategies. Dystrophin interacts with other proteins in such a way that, when affected, it results in co-morbidities including autism and other neuropsychiatric disorders. It is speculated that various signalling molecules may converge to disrupt neuronal metabolism not adequately studied. TGF-β, RhoGAP and CAM mediated signalling molecules are the chief cause of mortalities due to respiratory and cardiac involvement but remain underevaluated targets for cognitive impairment in DMD/BMD. Manipulation of these signalling pathways could be potent intervention in dystrophin induced cognitive impairment while complementary therapeutic approaches may also be helpful in the treatment of cognitive impairment associated with DMD/BMD.
Collapse
|