1
|
Matthews SA, Coelho C, Rodriguez Salas EE, Brock EE, Hodge VJ, Walker JA, Wilson LG. Real-time 3D tracking of swimming microbes using digital holographic microscopy and deep learning. PLoS One 2024; 19:e0301182. [PMID: 38669245 PMCID: PMC11051601 DOI: 10.1371/journal.pone.0301182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
The three-dimensional swimming tracks of motile microorganisms can be used to identify their species, which holds promise for the rapid identification of bacterial pathogens. The tracks also provide detailed information on the cells' responses to external stimuli such as chemical gradients and physical objects. Digital holographic microscopy (DHM) is a well-established, but computationally intensive method for obtaining three-dimensional cell tracks from video microscopy data. We demonstrate that a common neural network (NN) accelerates the analysis of holographic data by an order of magnitude, enabling its use on single-board computers and in real time. We establish a heuristic relationship between the distance of a cell from the focal plane and the size of the bounding box assigned to it by the NN, allowing us to rapidly localise cells in three dimensions as they swim. This technique opens the possibility of providing real-time feedback in experiments, for example by monitoring and adapting the supply of nutrients to a microbial bioreactor in response to changes in the swimming phenotype of microbes, or for rapid identification of bacterial pathogens in drinking water or clinical samples.
Collapse
Affiliation(s)
- Samuel A. Matthews
- School of Physics, Engineering and Technology, University of York, Heslington, York, United Kingdom
| | - Carlos Coelho
- School of Physics, Engineering and Technology, University of York, Heslington, York, United Kingdom
| | - Erick E. Rodriguez Salas
- School of Physics, Engineering and Technology, University of York, Heslington, York, United Kingdom
| | - Emma E. Brock
- School of Physics, Engineering and Technology, University of York, Heslington, York, United Kingdom
| | | | - James A. Walker
- Department of Computer Science, Deramore Lane, York, United Kingdom
| | - Laurence G. Wilson
- School of Physics, Engineering and Technology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
2
|
Shimogawa MM, Wijono AS, Wang H, Zhang J, Sha J, Szombathy N, Vadakkan S, Pelayo P, Jonnalagadda K, Wohlschlegel J, Zhou ZH, Hill KL. FAP106 is an interaction hub for assembling microtubule inner proteins at the cilium inner junction. Nat Commun 2023; 14:5225. [PMID: 37633952 PMCID: PMC10460401 DOI: 10.1038/s41467-023-40230-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/14/2023] [Indexed: 08/28/2023] Open
Abstract
Motility of pathogenic protozoa depends on flagella (synonymous with cilia) with axonemes containing nine doublet microtubules (DMTs) and two singlet microtubules. Microtubule inner proteins (MIPs) within DMTs influence axoneme stability and motility and provide lineage-specific adaptations, but individual MIP functions and assembly mechanisms are mostly unknown. Here, we show in the sleeping sickness parasite Trypanosoma brucei, that FAP106, a conserved MIP at the DMT inner junction, is required for trypanosome motility and functions as a critical interaction hub, directing assembly of several conserved and lineage-specific MIPs. We use comparative cryogenic electron tomography (cryoET) and quantitative proteomics to identify MIP candidates. Using RNAi knockdown together with fitting of AlphaFold models into cryoET maps, we demonstrate that one of these candidates, MC8, is a trypanosome-specific MIP required for parasite motility. Our work advances understanding of MIP assembly mechanisms and identifies lineage-specific motility proteins that are attractive targets to consider for therapeutic intervention.
Collapse
Affiliation(s)
- Michelle M Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Angeline S Wijono
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiayan Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Natasha Szombathy
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeeca Vadakkan
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Paula Pelayo
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Alonso A, Kirkegaard JB. Fast detection of slender bodies in high density microscopy data. Commun Biol 2023; 6:754. [PMID: 37468539 PMCID: PMC10356847 DOI: 10.1038/s42003-023-05098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Computer-aided analysis of biological microscopy data has seen a massive improvement with the utilization of general-purpose deep learning techniques. Yet, in microscopy studies of multi-organism systems, the problem of collision and overlap remains challenging. This is particularly true for systems composed of slender bodies such as swimming nematodes, swimming spermatozoa, or the beating of eukaryotic or prokaryotic flagella. Here, we develop a end-to-end deep learning approach to extract precise shape trajectories of generally motile and overlapping slender bodies. Our method works in low resolution settings where feature keypoints are hard to define and detect. Detection is fast and we demonstrate the ability to track thousands of overlapping organisms simultaneously. While our approach is agnostic to area of application, we present it in the setting of and exemplify its usability on dense experiments of swimming Caenorhabditis elegans. The model training is achieved purely on synthetic data, utilizing a physics-based model for nematode motility, and we demonstrate the model's ability to generalize from simulations to experimental videos.
Collapse
Affiliation(s)
- Albert Alonso
- Niels Bohr Institute & Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Julius B Kirkegaard
- Niels Bohr Institute & Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Tai CW, Ahmadzadegan A, Ardekani A, Narsimhan V. A forward reconstruction, holographic method to overcome the lens effect during 3D detection of semi-transparent, non-spherical particles. SOFT MATTER 2022; 19:115-127. [PMID: 36472306 DOI: 10.1039/d2sm00738j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Suspensions of semi-transparent particles such as polystyrene microparticles are commonly used as model systems in the study of micro-rheology, biology, and microfluidics. Holography is a valuable tool that allows one to obtain 3-D information for particle position and orientation, but forward reconstruction techniques often struggle to infer this information accurately for semi-transparent spheroids with an O(1) aspect ratio, since the lens effect from the particle introduces complex patterns. We propose a reconstruction method that uses image moment information to generate a mask over the sharp patterns from the lens effect and gives reasonable estimation of the 3-D position and orientation of the particle. The method proposed in this work uses the average particle geometry information to determine the process parameters and identify the appropriate detection zone. The average detection error for zc is less than 25% of the average particle thickness, and the average errors in the in-plane and out-of-plane orientations ϕ and θ are 2° and 4°, respectively. Our method provides comparable accuracy in the detection of the particle center of mass (xc, yc, zc) and in-plane orientation ϕ as a recent forward reconstruction method for semi-transparent particles proposed by Byeon et al. (H. Byeon, T. Go and S. J. Lee, Appl. Opt., 2016, 54, 2106-2112; H. Byeon, T. Go and S. J. Lee, Opt. Express, 2016, 24, 598-610). This method provides a clearly defined framework for identifying the particle's out-of-plane tilt angle θ. We finally demonstrate the applicability of the method to opaque, slender (aspect ratio AR ≫ 1) particles by analyzing the 3-D motion of E. coli cells from holographic video footage.
Collapse
Affiliation(s)
- Cheng-Wei Tai
- Davidson School of Chemical Engineering, Purdue University, 480 W Stadium Ave, West Lafayette, IN, 47907, USA.
| | - Adib Ahmadzadegan
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA.
| | - Arezoo Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA.
| | - Vivek Narsimhan
- Davidson School of Chemical Engineering, Purdue University, 480 W Stadium Ave, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Plasmodium falciparum Cysteine Rich Secretory Protein uniquely localizes to one end of male gametes. Mol Biochem Parasitol 2022; 248:111447. [PMID: 34998927 PMCID: PMC8904303 DOI: 10.1016/j.molbiopara.2022.111447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 11/20/2022]
Abstract
Fertilization is a central event during the life cycle of most eukaryotic organisms and involves gamete recognition and fusion, ultimately resulting in zygote formation. Gamete fertilization in the malaria-causing Plasmodium parasites occurs inside the mosquito midgut and represents a major bottleneck in the life cycle. Cysteine Rich Secretory Proteins (CRISPs) are key molecules involved in fertilization in vertebrates and the presence of a CRISP ortholog in human malaria infective Plasmodium falciparum suggested a possible role in fertilization. Strikingly, P. falciparum CRISP exhibited a unique terminal localization in the male microgamete. Parasites with a CRISP gene deletion (P. falciparum crisp-) proliferated asexually similar to wildtype NF54 parasites and differentiated into gametocytes. Further analysis showed that Plasmodium falciparum crisp- gametocytes underwent exflagellation to form male gametes and no apparent defect in transmission to the mosquito vector was observed. These data show that P. falciparum CRISP is a marker for the apical end of the microgamete and that it might only have an ancillary or redundant function in the male sexual stages.
Collapse
|
6
|
Powar S, Parast FY, Nandagiri A, Gaikwad AS, Potter DL, O'Bryan MK, Prabhakar R, Soria J, Nosrati R. Unraveling the Kinematics of Sperm Motion by Reconstructing the Flagellar Wave Motion in 3D. SMALL METHODS 2022; 6:e2101089. [PMID: 35138044 DOI: 10.1002/smtd.202101089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Sperm swim through the female reproductive tract by propagating a 3D flagellar wave that is self-regulatory in nature and driven by dynein motors. Traditional microscopy methods fail to capture the full dynamics of sperm flagellar activity as they only image and analyze sperm motility in 2D. Here, an automated platform to analyze sperm swimming behavior in 3D by using thin-lens approximation and high-speed dark field microscopy to reconstruct the flagellar waveform in 3D is presented. It is found that head-tethered mouse sperm exhibit a rolling beating behavior in 3D with the beating frequency of 6.2 Hz using spectral analysis. The flagellar waveform bends in 3D, particularly in the distal regions, but is only weakly nonplanar and ambidextrous in nature, with the local helicity along the flagellum fluctuating between clockwise and counterclockwise handedness. These findings suggest a nonpersistent flagellar helicity. This method provides new opportunities for the accurate measurement of the full motion of eukaryotic flagella and cilia which is essential for a biophysical understanding of their activation by dynein motors.
Collapse
Affiliation(s)
- Sushant Powar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Farin Yazdan Parast
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ashwin Nandagiri
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Avinash S Gaikwad
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David L Potter
- Monash Micro-Imaging, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Julio Soria
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Laboratory for Turbulence Research in Aerospace & Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
7
|
Hansen JN, Gong A, Wachten D, Pascal R, Turpin A, Jikeli JF, Kaupp UB, Alvarez L. Multifocal imaging for precise, label-free tracking of fast biological processes in 3D. Nat Commun 2021; 12:4574. [PMID: 34321468 PMCID: PMC8319204 DOI: 10.1038/s41467-021-24768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Many biological processes happen on a nano- to millimeter scale and within milliseconds. Established methods such as confocal microscopy are suitable for precise 3D recordings but lack the temporal or spatial resolution to resolve fast 3D processes and require labeled samples. Multifocal imaging (MFI) allows high-speed 3D imaging but is limited by the compromise between high spatial resolution and large field-of-view (FOV), and the requirement for bright fluorescent labels. Here, we provide an open-source 3D reconstruction algorithm for multi-focal images that allows using MFI for fast, precise, label-free tracking spherical and filamentous structures in a large FOV and across a high depth. We characterize fluid flow and flagellar beating of human and sea urchin sperm with a z-precision of 0.15 µm, in a volume of 240 × 260 × 21 µm, and at high speed (500 Hz). The sampling volume allowed to follow sperm trajectories while simultaneously recording their flagellar beat. Our MFI concept is cost-effective, can be easily implemented, and does not rely on object labeling, which renders it broadly applicable.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany.
| | - An Gong
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - René Pascal
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany
| | - Alex Turpin
- School of Computing Science, University of Glasgow, Glasgow, UK
| | - Jan F Jikeli
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Luis Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany.
| |
Collapse
|
8
|
Gaffney EA, Ishimoto K, Walker BJ. Modelling Motility: The Mathematics of Spermatozoa. Front Cell Dev Biol 2021; 9:710825. [PMID: 34354994 PMCID: PMC8329702 DOI: 10.3389/fcell.2021.710825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
In one of the first examples of how mechanics can inform axonemal mechanism, Machin's study in the 1950s highlighted that observations of sperm motility cannot be explained by molecular motors in the cell membrane, but would instead require motors distributed along the flagellum. Ever since, mechanics and hydrodynamics have been recognised as important in explaining the dynamics, regulation, and guidance of sperm. More recently, the digitisation of sperm videomicroscopy, coupled with numerous modelling and methodological advances, has been bringing forth a new era of scientific discovery in this field. In this review, we survey these advances before highlighting the opportunities that have been generated for both recent research and the development of further open questions, in terms of the detailed characterisation of the sperm flagellum beat and its mechanics, together with the associated impact on cell behaviour. In particular, diverse examples are explored within this theme, ranging from how collective behaviours emerge from individual cell responses, including how these responses are impacted by the local microenvironment, to the integration of separate advances in the fields of flagellar analysis and flagellar mechanics.
Collapse
Affiliation(s)
- Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
| | - Benjamin J. Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Structure of the trypanosome paraflagellar rod and insights into non-planar motility of eukaryotic cells. Cell Discov 2021; 7:51. [PMID: 34257277 PMCID: PMC8277818 DOI: 10.1038/s41421-021-00281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic flagella (synonymous with cilia) rely on a microtubule-based axoneme, together with accessory filaments to carryout motility and signaling functions. While axoneme structures are well characterized, 3D ultrastructure of accessory filaments and their axoneme interface are mostly unknown, presenting a critical gap in understanding structural foundations of eukaryotic flagella. In the flagellum of the protozoan parasite Trypanosoma brucei (T. brucei), the axoneme is accompanied by a paraflagellar rod (PFR) that supports non-planar motility and signaling necessary for disease transmission and pathogenesis. Here, we employed cryogenic electron tomography (cryoET) with sub-tomographic averaging, to obtain structures of the PFR, PFR-axoneme connectors (PACs), and the axonemal central pair complex (CPC). The structures resolve how the 8 nm repeat of the axonemal tubulin dimer interfaces with the 54 nm repeat of the PFR, which consist of proximal, intermediate, and distal zones. In the distal zone, stacked "density scissors" connect with one another to form a "scissors stack network (SSN)" plane oriented 45° to the axoneme axis; and ~370 parallel SSN planes are connected by helix-rich wires into a paracrystalline array with ~90% empty space. Connections from these wires to the intermediate zone, then to overlapping layers of the proximal zone and to the PACs, and ultimately to the CPC, point to a contiguous pathway for signal transmission. Together, our findings provide insights into flagellum-driven, non-planar helical motility of T. brucei and have broad implications ranging from cell motility and tensegrity in biology, to engineering principles in bionics.
Collapse
|
10
|
Gong A, Rode S, Gompper G, Kaupp UB, Elgeti J, Friedrich BM, Alvarez L. Reconstruction of the three-dimensional beat pattern underlying swimming behaviors of sperm. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:87. [PMID: 34196906 PMCID: PMC8249298 DOI: 10.1140/epje/s10189-021-00076-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
The eukaryotic flagellum propels sperm cells and simultaneously detects physical and chemical cues that modulate the waveform of the flagellar beat. Most previous studies have characterized the flagellar beat and swimming trajectories in two space dimensions (2D) at a water/glass interface. Here, using refined holographic imaging methods, we report high-quality recordings of three-dimensional (3D) flagellar bending waves. As predicted by theory, we observed that an asymmetric and planar flagellar beat results in a circular swimming path, whereas a symmetric and non-planar flagellar beat results in a twisted-ribbon swimming path. During swimming in 3D, human sperm flagella exhibit torsion waves characterized by maxima at the low curvature regions of the flagellar wave. We suggest that these torsion waves are common in nature and that they are an intrinsic property of beating axonemes. We discuss how 3D beat patterns result in twisted-ribbon swimming paths. This study provides new insight into the axoneme dynamics, the 3D flagellar beat, and the resulting swimming behavior.
Collapse
Affiliation(s)
- A Gong
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - S Rode
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - G Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - U B Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - J Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - B M Friedrich
- Biological Algorithms Group, TU Dresden, Cluster of Excellence 'Physics of Life' and Center for Advancing Electronics Dresden (cfaed), Helmholtzstr. 18, 01069, Dresden, Germany
| | - L Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
11
|
Findlay RC, Osman M, Spence KA, Kaye PM, Walrad PB, Wilson LG. High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective Leishmania parasites. eLife 2021; 10:65051. [PMID: 34180835 PMCID: PMC8238501 DOI: 10.7554/elife.65051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/08/2021] [Indexed: 12/04/2022] Open
Abstract
Cellular motility is an ancient eukaryotic trait, ubiquitous across phyla with roles in predator avoidance, resource access, and competition. Flagellar motility is seen in various parasitic protozoans, and morphological changes in flagella during the parasite life cycle have been observed. We studied the impact of these changes on motility across life cycle stages, and how such changes might serve to facilitate human infection. We used holographic microscopy to image swimming cells of different Leishmania mexicana life cycle stages in three dimensions. We find that the human-infective (metacyclic promastigote) forms display ‘run and tumble’ behaviour in the absence of stimulus, reminiscent of bacterial motion, and that they specifically modify swimming direction and speed to target host immune cells in response to a macrophage-derived stimulus. Non-infective (procyclic promastigote) cells swim more slowly, along meandering helical paths. These findings demonstrate adaptation of swimming phenotype and chemotaxis towards human cells.
Collapse
Affiliation(s)
- Rachel C Findlay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom.,Department of Physics, University of York, York, United Kingdom
| | - Mohamed Osman
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Kirstin A Spence
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|
12
|
Gibson T, Bedrossian M, Serabyn E, Lindensmith C, Nadeau JL. Using the Gouy phase anomaly to localize and track bacteria in digital holographic microscopy 4D images. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:A11-A18. [PMID: 33690523 DOI: 10.1364/josaa.404004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Described over 100 years ago, the Gouy phase anomaly refers to the additional π phase shift that is accumulated as a wave passes through focus. It is potentially useful in analyzing any type of phase-sensitive imaging; in light microscopy, digital holographic microscopy (DHM) provides phase information in the encoded hologram. One limitation of DHM is the weak contrast generated by many biological cells, especially unpigmented bacteria. We demonstrate here that the Gouy phase anomaly may be detected directly in the phase image using the z-derivative of the phase, allowing for precise localization of unlabeled, micrometer-sized bacteria. The use of dyes that increase phase contrast does not improve detectability. This approach is less computationally intensive than other procedures such as deconvolution and is relatively insensitive to reconstruction parameters. The software is implemented in an open-source FIJI plug-in.
Collapse
|
13
|
Zheng C, Jin D, He Y, Lin H, Hu J, Yaqoob Z, So PTC, Zhou R. High spatial and temporal resolution synthetic aperture phase microscopy. ADVANCED PHOTONICS 2020; 2:065002. [PMID: 33870104 PMCID: PMC8049284 DOI: 10.1117/1.ap.2.6.065002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new optical microscopy technique, termed high spatial and temporal resolution synthetic aperture phase microscopy (HISTR-SAPM), is proposed to improve the lateral resolution of wide-field coherent imaging. Under plane wave illumination, the resolution is increased by twofold to around 260 nm, while achieving millisecond-level temporal resolution. In HISTR-SAPM, digital micromirror devices are used to actively change the sample illumination beam angle at high speed with high stability. An off-axis interferometer is used to measure the sample scattered complex fields, which are then processed to reconstruct high-resolution phase images. Using HISTR-SAPM, we are able to map the height profiles of subwavelength photonic structures and resolve the period structures that have 198 nm linewidth and 132 nm gap (i.e., a full pitch of 330 nm). As the reconstruction averages out laser speckle noise while maintaining high temporal resolution, HISTR-SAPM further enables imaging and quantification of nanoscale dynamics of live cells, such as red blood cell membrane fluctuations and subcellular structure dynamics within nucleated cells. We envision that HISTR-SAPM will broadly benefit research in material science and biology.
Collapse
Affiliation(s)
- Cheng Zheng
- The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts, United States
| | - Di Jin
- Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, United States
| | - Yanping He
- The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
| | - Hongtao Lin
- Zhejiang University, College of Information Science and Electronic Engineering, Hangzhou, China
| | - Juejun Hu
- Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, Massachusetts, United States
| | - Zahid Yaqoob
- Massachusetts Institute of Technology, Laser Biomedical Research Center, Cambridge, Massachusetts, United States
| | - Peter T. C So
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts, United States
- Massachusetts Institute of Technology, Laser Biomedical Research Center, Cambridge, Massachusetts, United States
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, United States
| | - Renjie Zhou
- The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
- The Chinese University of Hong Kong, Shun Hing Institute of Advanced Engineering, Hong Kong, China
- Address all correspondence to Renjie Zhou,
| |
Collapse
|
14
|
Guasto JS, Estrada JB, Menolascina F, Burton LJ, Patel M, Franck C, Hosoi AE, Zimmer RK, Stocker R. Flagellar kinematics reveals the role of environment in shaping sperm motility. J R Soc Interface 2020; 17:20200525. [PMID: 32900303 DOI: 10.1098/rsif.2020.0525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Swimming spermatozoa from diverse organisms often have very similar morphologies, yet different motilities as a result of differences in the flagellar waveforms used for propulsion. The origin of these differences has remained largely unknown. Using high-speed video microscopy and mathematical analysis of flagellar shape dynamics, we quantitatively compare sperm flagellar waveforms from marine invertebrates to humans by means of a novel phylokinematic tree. This new approach revealed that genetically dissimilar sperm can exhibit strikingly similar flagellar waveforms and identifies two dominant flagellar waveforms among the deuterostomes studied here, corresponding to internal and external fertilizers. The phylokinematic tree shows marked discordance from the phylogenetic tree, indicating that physical properties of the fluid environment, more than genetic relatedness, act as an important selective pressure in shaping the evolution of sperm motility. More broadly, this work provides a physical axis to complement morphological and genetic studies to understand evolutionary relationships.
Collapse
Affiliation(s)
- Jeffrey S Guasto
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jonathan B Estrada
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,School of Engineering, Brown University, Providence, RI 02912, USA
| | - Filippo Menolascina
- School of Engineering, Institute for Bioengineering, University of Edinburgh, King's Buildings, EH9 3BF Edinburgh, UK.,Synthsy - Centre for Systems and Synthetic Biology, University of Edinburgh, King's Buildings, EH9 3BF Edinburgh, UK
| | - Lisa J Burton
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| | - Mohak Patel
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Christian Franck
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - A E Hosoi
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| | - Richard K Zimmer
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA.,School of Biological Sciences, University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia
| | - Roman Stocker
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, MIT, Cambridge, MA 02139, USA.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
Thornton KL, Butler JK, Davis SJ, Baxter BK, Wilson LG. Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments. Nat Commun 2020; 11:4453. [PMID: 32901025 PMCID: PMC7478972 DOI: 10.1038/s41467-020-18253-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/05/2020] [Indexed: 01/18/2023] Open
Abstract
Archaea have evolved to survive in some of the most extreme environments on earth. Life in extreme, nutrient-poor conditions gives the opportunity to probe fundamental energy limitations on movement and response to stimuli, two essential markers of living systems. Here we use three-dimensional holographic microscopy and computer simulations to reveal that halophilic archaea achieve chemotaxis with power requirements one hundred-fold lower than common eubacterial model systems. Their swimming direction is stabilised by their flagella (archaella), enhancing directional persistence in a manner similar to that displayed by eubacteria, albeit with a different motility apparatus. Our experiments and simulations reveal that the cells are capable of slow but deterministic chemotaxis up a chemical gradient, in a biased random walk at the thermodynamic limit.
Collapse
Affiliation(s)
- Katie L Thornton
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
| | - Jaimi K Butler
- Great Salt Lake Institute, Westminster College, 1840 South 1300 East, Salt Lake City, UT, 84105, USA
| | - Seth J Davis
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster College, 1840 South 1300 East, Salt Lake City, UT, 84105, USA
| | - Laurence G Wilson
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
16
|
Gallagher MT, Cupples G, Ooi EH, Kirkman-Brown JC, Smith DJ. Rapid sperm capture: high-throughput flagellar waveform analysis. Hum Reprod 2020; 34:1173-1185. [PMID: 31170729 PMCID: PMC6613345 DOI: 10.1093/humrep/dez056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Can flagellar analyses be scaled up to provide automated tracking of motile sperm, and does knowledge of the flagellar waveform provide new insight not provided by routine head tracking? SUMMARY ANSWER High-throughput flagellar waveform tracking and analysis enable measurement of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses, which are not possible by tracking the sperm head alone. WHAT IS KNOWN ALREADY The clinical gold standard for sperm motility analysis comprises a manual analysis by a trained professional, with existing automated sperm diagnostics [computer-aided sperm analysis (CASA)] relying on tracking the sperm head and extrapolating measures. It is not currently possible with either of these approaches to track the sperm flagellar waveform for large numbers of cells in order to unlock the potential wealth of information enclosed within. STUDY DESIGN, SIZE, DURATION The software tool in this manuscript has been developed to enable high-throughput, repeatable, accurate and verifiable analysis of the sperm flagellar beat. PARTICIPANTS/MATERIALS, SETTING, METHODS Using the software tool [Flagellar Analysis and Sperm Tracking (FAST)] described in this manuscript, we have analysed 176 experimental microscopy videos and have tracked the head and flagellum of 205 progressive cells in diluted semen (DSM), 119 progressive cells in a high-viscosity medium (HVM) and 42 stuck cells in a low-viscosity medium. Unscreened donors were recruited at Birmingham Women's and Children's NHS Foundation Trust after giving informed consent. MAIN RESULTS AND THE ROLE OF CHANCE We describe fully automated tracking and analysis of flagellar movement for large cell numbers. The analysis is demonstrated on freely motile cells in low- and high-viscosity fluids and validated on published data of tethered cells undergoing pharmacological hyperactivation. Direct analysis of the flagellar beat reveals that the CASA measure 'beat cross frequency' does not measure beat frequency; attempting to fit a straight line between the two measures gives ${\mathrm{R}}^2$ values of 0.042 and 0.00054 for cells in DSM and HVM, respectively. A new measurement, track centroid speed, is validated as an accurate differentiator of progressive motility. Coupled with fluid mechanics codes, waveform data enable extraction of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses. We provide a powerful and accessible research tool, enabling connection of the mechanical activity of the sperm to its motility and effect on its environment. LARGE SCALE DATA The FAST software package and all documentation can be downloaded from www.flagellarCapture.com. LIMITATIONS, REASONS FOR CAUTION The FAST software package has only been tested for use with negative phase contrast microscopy. Other imaging modalities, with bright cells on a dark background, have not been tested but may work. FAST is not designed to analyse raw semen; it is specifically for precise analysis of flagellar kinematics, as that is the promising area for computer use. Flagellar capture will always require that cells are at a dilution where their paths do not frequently cross. WIDER IMPLICATIONS OF THE FINDINGS Combining tracked flagella with mathematical modelling has the potential to reveal new mechanistic insight. By providing the capability as a free-to-use software package, we hope that this ability to accurately quantify the flagellar waveform in large populations of motile cells will enable an abundant array of diagnostic, toxicological and therapeutic possibilities, as well as creating new opportunities for assessing and treating male subfertility. STUDY FUNDING/COMPETING INTEREST(S) M.T.G., G.C., J.C.K-B. and D.J.S. gratefully acknowledge funding from the Engineering and Physical Sciences Research Council, Healthcare Technologies Challenge Award (Rapid Sperm Capture EP/N021096/1). J.C.K-B. is funded by a National Institute of Health Research (NIHR) and Health Education England, Senior Clinical Lectureship Grant: The role of the human sperm in healthy live birth (NIHRDH-HCS SCL-2014-05-001). This article presents independent research funded in part by the NIHR and Health Education England. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The data for experimental set (2) were funded through a Wellcome Trust-University of Birmingham Value in People Fellowship Bridging Award (E.H.O.).The authors declare no competing interests.
Collapse
Affiliation(s)
- M T Gallagher
- School of Mathematics.,Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| | - G Cupples
- School of Mathematics.,Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| | - E H Ooi
- School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - J C Kirkman-Brown
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| | - D J Smith
- School of Mathematics.,Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| |
Collapse
|
17
|
Gadêlha H, Hernández-Herrera P, Montoya F, Darszon A, Corkidi G. Human sperm uses asymmetric and anisotropic flagellar controls to regulate swimming symmetry and cell steering. SCIENCE ADVANCES 2020; 6:eaba5168. [PMID: 32789171 PMCID: PMC7399739 DOI: 10.1126/sciadv.aba5168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/18/2020] [Indexed: 05/21/2023]
Abstract
Flagellar beating drives sperm through the female reproductive tract and is vital for reproduction. Flagellar waves are generated by thousands of asymmetric molecular components; yet, paradoxically, forward swimming arises via symmetric side-to-side flagellar movement. This led to the preponderance of symmetric flagellar control hypotheses. However, molecular asymmetries must still dictate the flagellum and be manifested in the beat. Here, we reconcile molecular and microscopic observations, reconnecting structure to function, by showing that human sperm uses asymmetric and anisotropic controls to swim. High-speed three-dimensional (3D) microscopy revealed two coactive transversal controls: An asymmetric traveling wave creates a one-sided stroke, and a pulsating standing wave rotates the sperm to move equally on all sides. Symmetry is thus achieved through asymmetry, creating the optical illusion of bilateral symmetry in 2D microscopy. This shows that the sperm flagellum is asymmetrically controlled and anisotropically regularized by fast-signal transduction. This enables the sperm to swim forward.
Collapse
Affiliation(s)
- Hermes Gadêlha
- Department of Engineering Mathematics, University of Bristol, BS8 1UB Bristol, UK
| | - Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
18
|
Han K, Shields CW, Bharti B, Arratia PE, Velev OD. Active Reversible Swimming of Magnetically Assembled "Microscallops" in Non-Newtonian Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7148-7154. [PMID: 32011137 DOI: 10.1021/acs.langmuir.9b03698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Miniaturized devices capable of active swimming at low Reynolds numbers are of fundamental importance and possess potential biomedical utility. The design of colloidal microswimmers requires not only miniaturizing reconfigurable structures but also understanding their interactions with media at low Reynolds numbers. We investigate the dynamics of "microscallops" made of asymmetric magnetic cubes, which are assembled and actuated using magnetic fields. One approach to achieving directional propulsion is to break the symmetry of the viscous forces by coupling the reciprocal motions of such microswimmers with the nonlinear rheology inherent in non-Newtonian fluids. When placed in shear-thinning fluids, the local viscosity gradient resulting from nonuniform shear stresses exerted by time-asymmetric strokes of the microscallops generates propulsive thrust through an effect we term "self-viscophoresis". Surprisingly, we found that the direction of propulsion changes with the size and structure of these assemblies. We analyze the origins of their directional propulsion and explain the variable propulsion direction in terms of multiple counterbalancing domains of shear dissipation around the microscale structures. The principles governing the locomotion of these microswimmers may be extended to other reconfigurable microbots assembled from colloidal-scale units.
Collapse
Affiliation(s)
- Koohee Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Charles Wyatt Shields
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
19
|
Dardikman-Yoffe G, Mirsky SK, Barnea I, Shaked NT. High-resolution 4-D acquisition of freely swimming human sperm cells without staining. SCIENCE ADVANCES 2020; 6:eaay7619. [PMID: 32300651 PMCID: PMC7148098 DOI: 10.1126/sciadv.aay7619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/09/2020] [Indexed: 05/20/2023]
Abstract
We present a new acquisition method that enables high-resolution, fine-detail full reconstruction of the three-dimensional movement and structure of individual human sperm cells swimming freely. We achieve both retrieval of the three-dimensional refractive-index profile of the sperm head, revealing its fine internal organelles and time-varying orientation, and the detailed four-dimensional localization of the thin, highly-dynamic flagellum of the sperm cell. Live human sperm cells were acquired during free swim using a high-speed off-axis holographic system that does not require any moving elements or cell staining. The reconstruction is based solely on the natural movement of the sperm cell and a novel set of algorithms, enabling the detailed four-dimensional recovery. Using this refractive-index imaging approach, we believe that we have detected an area in the cell that is attributed to the centriole. This method has great potential for both biological assays and clinical use of intact sperm cells.
Collapse
|
20
|
Abstract
Motility analysis of microswimmers has long been limited to a few model cell types and broadly restricted by technical challenges of high-resolution in vivo microscopy. Recently, interdisciplinary interest in detailed analysis of the motile behavior of various species has gained momentum. Here we describe a basic protocol for motility analysis of an important, highly diverse group of eukaryotic flagellate microswimmers, using high spatiotemporal resolution videomicroscopy. Further, we provide a special, time-dependent tomographic approach for the proof of rotational locomotion of periodically oscillating microswimmers, using the same data. Taken together, the methods describe part of an integrative approach to generate decisive information on three-dimensional in vivo motility from standard two-dimensional videomicroscopy data.
Collapse
Affiliation(s)
- Timothy Krüger
- Lehrstuhl für Zell- und Entwicklungsbiologie, Theodor-Boveri-Institut, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Markus Engstler
- Lehrstuhl für Zell- und Entwicklungsbiologie, Theodor-Boveri-Institut, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, Würzburg, Germany.
| |
Collapse
|
21
|
Abstract
Prokaryotic organisms occupy the most diverse set of environments and conditions on our planet. Their ability to sense and respond to a broad range of external cues remain key research areas in modern microbiology, central to behaviors that underlie beneficial and pathogenic interactions of bacteria with multicellular organisms and within complex ecosystems. Advances in our understanding of the one- and two-component signal transduction systems that underlie these sensing pathways have been driven by advances in imaging the behavior of many individual bacterial cells, as well as visualizing individual proteins and protein arrays within living cells. Cryo-electron tomography continues to provide new insights into the structure and function of chemosensory receptors and flagellar motors, while advances in protein labeling and tracking are applied to understand information flow between receptor and motor. Sophisticated microfluidics allow simultaneous analysis of the behavior of thousands of individual cells, increasing our understanding of how variance between individuals is generated, regulated and employed to maximize fitness of a population. In vitro experiments have been complemented by the study of signal transduction and motility in complex in vivo models, allowing investigators to directly address the contribution of motility, chemotaxis and aggregation/adhesion on virulence during infection. Finally, systems biology approaches have demonstrated previously uncharted areas of protein space in which novel two-component signal transduction pathways can be designed and constructed de novo These exciting experimental advances were just some of the many novel findings presented at the 15th Bacterial Locomotion and Signal Transduction conference (BLAST XV) in January 2019.
Collapse
|
22
|
Walker BJ, Wheeler RJ. High-speed multifocal plane fluorescence microscopy for three-dimensional visualisation of beating flagella. J Cell Sci 2019; 132:jcs231795. [PMID: 31371486 PMCID: PMC6737910 DOI: 10.1242/jcs.231795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Abstract
Analysis of flagellum and cilium beating in three dimensions (3D) is important for understanding cell motility, and using fluorescence microscopy to do so would be extremely powerful. Here, high-speed multifocal plane fluorescence microscopy, where the light path is split to visualise multiple focal planes simultaneously, was used to reconstruct Trypanosoma brucei and Leishmania mexicana movement in 3D. These species are uniflagellate unicellular parasites for which motility is vital. It was possible to use either a fluorescent stain or a genetically-encoded fluorescent protein to visualise flagellum and cell movement at 200 Hz frame rates. This addressed two open questions regarding Trypanosoma and Leishmania flagellum beating, which contributes to their swimming behaviours: 1) how planar is the L. mexicana flagellum beat, and 2) what is the nature of flagellum beating during T. brucei 'tumbling'? We showed that L. mexicana has notable deviations from a planar flagellum beat, and that during tumbling the T. brucei flagellum bends the cell and beats only in the distal portion to achieve cell reorientation. This demonstrates high-speed multifocal plane fluorescence microscopy as a powerful tool for the analysis of beating flagella.
Collapse
Affiliation(s)
- Benjamin J Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
23
|
Zeeshan M, Ferguson DJ, Abel S, Burrrell A, Rea E, Brady D, Daniel E, Delves M, Vaughan S, Holder AA, Le Roch KG, Moores CA, Tewari R. Kinesin-8B controls basal body function and flagellum formation and is key to malaria transmission. Life Sci Alliance 2019; 2:e201900488. [PMID: 31409625 PMCID: PMC6696982 DOI: 10.26508/lsa.201900488] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic flagella are conserved microtubule-based organelles that drive cell motility. Plasmodium, the causative agent of malaria, has a single flagellate stage: the male gamete in the mosquito. Three rounds of endomitotic division in male gametocyte together with an unusual mode of flagellum assembly rapidly produce eight motile gametes. These processes are tightly coordinated, but their regulation is poorly understood. To understand this important developmental stage, we studied the function and location of the microtubule-based motor kinesin-8B, using gene-targeting, electron microscopy, and live cell imaging. Deletion of the kinesin-8B gene showed no effect on mitosis but disrupted 9+2 axoneme assembly and flagellum formation during male gamete development and also completely ablated parasite transmission. Live cell imaging showed that kinesin-8B-GFP did not co-localise with kinetochores in the nucleus but instead revealed a dynamic, cytoplasmic localisation with the basal bodies and the assembling axoneme during flagellum formation. We, thus, uncovered an unexpected role for kinesin-8B in parasite flagellum formation that is vital for the parasite life cycle.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - David Jp Ferguson
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Alana Burrrell
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
| | - Edward Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Emilie Daniel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Michael Delves
- London School of Hygiene and Tropical Medicine, Keppel, London, UK
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
| | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Kühn MJ, Schmidt FK, Farthing NE, Rossmann FM, Helm B, Wilson LG, Eckhardt B, Thormann KM. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat Commun 2018; 9:5369. [PMID: 30560868 PMCID: PMC6299084 DOI: 10.1038/s41467-018-07802-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/22/2018] [Indexed: 11/26/2022] Open
Abstract
Bacterial flagella are helical proteinaceous fibers, composed of the protein flagellin, that confer motility to many bacterial species. The genomes of about half of all flagellated species include more than one flagellin gene, for reasons mostly unknown. Here we show that two flagellins (FlaA and FlaB) are spatially arranged in the polar flagellum of Shewanella putrefaciens, with FlaA being more abundant close to the motor and FlaB in the remainder of the flagellar filament. Observations of swimming trajectories and numerical simulations demonstrate that this segmentation improves motility in a range of environmental conditions, compared to mutants with single-flagellin filaments. In particular, it facilitates screw-like motility, which enhances cellular spreading through obstructed environments. Similar mechanisms may apply to other bacterial species and may explain the maintenance of multiple flagellins to form the flagellar filament.
Collapse
Affiliation(s)
- Marco J Kühn
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Felix K Schmidt
- Fachbereich Physik und LOEWE Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Nicola E Farthing
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| | - Florian M Rossmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Bina Helm
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Laurence G Wilson
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK.
| | - Bruno Eckhardt
- Fachbereich Physik und LOEWE Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, 35032, Marburg, Germany.
| | - Kai M Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany.
| |
Collapse
|
25
|
Abstract
The field of active matter in general and microswimming in particular has experienced a rapid and ongoing expansion over the last decade. A particular interesting aspect is provided by artificial autonomous microswimmers constructed from individual active and inactive functional components into self-propelling complexes. Such modular microswimmers may exhibit directed motion not seen for each individual component. In this review, we focus on the establishment and recent developments in the modular approach to microswimming. We introduce the bound and dynamic prototypes, show mechanisms and types of modular swimming and discuss approaches to control the direction and speed of modular microswimmers. We conclude by highlighting some challenges faced by researchers as well as promising directions for future research in the realm of modular swimming.
Collapse
Affiliation(s)
- Ran Niu
- Institut für Physik, Johannes Gutenberg-Universtät Mainz, Staudingerweg 7, 55128 Mainz, Germany.
| | | |
Collapse
|
26
|
Cyrklaff M, Frischknecht F, Kudryashev M. Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiol Rev 2018; 41:828-853. [PMID: 28962014 DOI: 10.1093/femsre/fux041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, novel imaging approaches revolutionised our understanding of the cellular and molecular biology of microorganisms. These include advances in fluorescent probes, dynamic live cell imaging, superresolution light and electron microscopy. Currently, a major transition in the experimental approach shifts electron microscopy studies from a complementary technique to a method of choice for structural and functional analysis. Here we review functional insights into the molecular architecture of viruses, bacteria and parasites as well as interactions with their respective host cells gained from studies using cryogenic electron tomography and related methodologies.
Collapse
Affiliation(s)
- Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Strasse 17, 60438 Frankfurt, Germany
| |
Collapse
|
27
|
|
28
|
Daloglu MU, Luo W, Shabbir F, Lin F, Kim K, Lee I, Jiang JQ, Cai WJ, Ramesh V, Yu MY, Ozcan A. Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume. LIGHT, SCIENCE & APPLICATIONS 2018; 7:17121. [PMID: 30839645 PMCID: PMC6107047 DOI: 10.1038/lsa.2017.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 05/24/2023]
Abstract
We report a high-throughput and label-free computational imaging technique that simultaneously measures in three-dimensional (3D) space the locomotion and angular spin of the freely moving heads of microswimmers and the beating patterns of their flagella over a sample volume more than two orders-of-magnitude larger compared to existing optical modalities. Using this platform, we quantified the 3D locomotion of 2133 bovine sperms and determined the spin axis and the angular velocity of the sperm head, providing the perspective of an observer seated at the moving and spinning sperm head. In this constantly transforming perspective, flagellum-beating patterns are decoupled from both the 3D translation and spin of the head, which provides the opportunity to truly investigate the 3D spatio-temporal kinematics of the flagellum. In addition to providing unprecedented information on the 3D locomotion of microswimmers, this computational imaging technique could also be instrumental for micro-robotics and sensing research, enabling the high-throughput quantification of the impact of various stimuli and chemicals on the 3D swimming patterns of sperms, motile bacteria and other micro-organisms, generating new insights into taxis behaviors and the underlying biophysics.
Collapse
Affiliation(s)
- Mustafa Ugur Daloglu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Wei Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Faizan Shabbir
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Francis Lin
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
| | - Kevin Kim
- Chemistry and Biochemistry Department, University of California, Los Angeles, CA 90095, USA
| | - Inje Lee
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
| | - Jia-Qi Jiang
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
| | - Wen-Jun Cai
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Vishwajith Ramesh
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
| | - Meng-Yuan Yu
- Computer Science Department, University of California, Los Angeles, CA 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Kinematics of flagellar swimming in Euglena gracilis: Helical trajectories and flagellar shapes. Proc Natl Acad Sci U S A 2017; 114:13085-13090. [PMID: 29180429 PMCID: PMC5740643 DOI: 10.1073/pnas.1708064114] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The flagellar swimming of euglenids, which are propelled by a single anterior flagellum, is characterized by a generalized helical motion. The 3D nature of this swimming motion, which lacks some of the symmetries enjoyed by more common model systems, and the complex flagellar beating shapes that power it make its quantitative description challenging. In this work, we provide a quantitative, 3D, highly resolved reconstruction of the swimming trajectories and flagellar shapes of specimens of Euglena gracilis We achieved this task by using high-speed 2D image recordings taken with a conventional inverted microscope combined with a precise characterization of the helical motion of the cell body to lift the 2D data to 3D trajectories. The propulsion mechanism is discussed. Our results constitute a basis for future biophysical research on a relatively unexplored type of eukaryotic flagellar movement.
Collapse
|
30
|
Qi M, Song Q, Zhao J, Ma C, Zhang G, Gong X. Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13098-13104. [PMID: 29046061 DOI: 10.1021/acs.langmuir.7b02806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the behavior of bacteria near biodegradable surfaces is critical for the development of biomedical and antibiofouling materials. By using digital holographic microscopy (DHM), we investigated the three-dimensional (3D) behavior of Escherichia coli and Pseudomonas sp. in lipase-containing aquatic environments near dynamic surfaces constructed by biodegradable poly(ε-caprolactone) (PCL)-based polymers in real time. As the enzymatic degradation rate increases, the percentage of near-surface subdiffusive bacteria and consequently, the irreversible adhesion decreases. Atomic force microscopy (AFM) measurements reveal that the adhesion force between bacteria and the surfaces decreases with an increasing degradation rate. In addition, the degradation products elicit a negative chemotactic response in E. coli, further driving them away from the dynamic surfaces through more frequent tumbling motion. Our study clearly demonstrates that bacterial adhesion can be reduced on dynamic surfaces formed by degradable polymers.
Collapse
Affiliation(s)
- Meng Qi
- Faculty of Material Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Qilei Song
- Faculty of Material Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Junpeng Zhao
- Faculty of Material Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Material Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Material Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Xiangjun Gong
- Faculty of Material Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| |
Collapse
|
31
|
Farthing NE, Findlay RC, Jikeli JF, Walrad PB, Bees MA, Wilson LG. Simultaneous two-color imaging in digital holographic microscopy. OPTICS EXPRESS 2017; 25:28489-28500. [PMID: 31956278 PMCID: PMC6968951 DOI: 10.1364/oe.25.028489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/14/2017] [Indexed: 05/24/2023]
Abstract
We demonstrate the use of two-color digital holographic microscopy (DHM) for imaging microbiological subjects. The use of two wavelengths significantly reduces artifacts present in the reconstructed data, allowing us to image weakly-scattering objects in close proximity to strongly-scattering objects. We demonstrate this by reconstructing the shape of the flagellum of a unicellular eukaryotic parasite Leishmania mexicana in close proximity to a more strongly-scattering cell body. Our approach also yields a reduction of approximately one third in the axial position uncertainty when tracking the motion of swimming cells at low magnification, which we demonstrate with a sample of Escherichia coli bacteria mixed with polystyrene beads. The two-wavelength system that we describe introduces minimal additional complexity into the optical system, and provides significant benefits.
Collapse
Affiliation(s)
- Nicola E. Farthing
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| | - Rachel C. Findlay
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Jan F. Jikeli
- Biophysical Imaging, Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Pegine B. Walrad
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Martin A. Bees
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| | - Laurence G. Wilson
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
32
|
Shashkova S, Leake MC. Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep 2017; 37:BSR20170031. [PMID: 28694303 PMCID: PMC5520217 DOI: 10.1042/bsr20170031] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Sviatlana Shashkova
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| | - Mark C Leake
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K.
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| |
Collapse
|
33
|
Abstract
Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.
Collapse
Affiliation(s)
- Raj Kumar Manna
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - R Adhikari
- The Institute of Mathematical Sciences-HBNI, CIT Campus, Chennai 600113, India
| |
Collapse
|
34
|
Alvarez L. The tailored sperm cell. JOURNAL OF PLANT RESEARCH 2017; 130:455-464. [PMID: 28357612 PMCID: PMC5406480 DOI: 10.1007/s10265-017-0936-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 05/28/2023]
Abstract
Sperm are ubiquitous and yet unique. Genes involved in sexual reproduction are more divergent than most genes expressed in non-reproductive tissues. It has been argued that sperm have been altered during evolution more than any somatic cell. Profound variations are found at the level of morphology, motility, search strategy for the egg, and the underlying signalling mechanisms. Sperm evolutionary adaptation may have arisen from sperm competition (sperm from rival males compete within the female's body to fertilize eggs), cryptic female choice (the female's ability to choose among different stored sperm), social cues tuning sperm quality or from the site of fertilization (internal vs. external fertilization), to name a few. Unquestionably, sperm represent an invaluable source for the exploration of biological diversity at the level of signalling, motility, and evolution. Despite the richness in sperm variations, only a few model systems for signalling and motility have been studied in detail. Using fast kinetic techniques, electrophysiological recordings, and optogenetics, the molecular players and the sequence of signalling events of sperm from a few marine invertebrates, mammals, and fish are being elucidated. Furthermore, recent technological advances allow studying sperm motility with unprecedented precision; these studies provide new insights into flagellar motility and navigation in three dimensions (3D). The scope of this review is to highlight variations in motile sperm across species, and discuss the great promise that 3D imaging techniques offer into unravelling sperm mysteries.
Collapse
Affiliation(s)
- Luis Alvarez
- Center of Advanced European Studies and Research (caesar). Institute affiliated with the Max Planck Society, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
35
|
Klug D, Frischknecht F. Motility precedes egress of malaria parasites from oocysts. eLife 2017; 6. [PMID: 28115054 PMCID: PMC5262382 DOI: 10.7554/elife.19157] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Malaria is transmitted when an infected Anopheles mosquito deposits Plasmodium sporozoites in the skin during a bite. Sporozoites are formed within oocysts at the mosquito midgut wall and are released into the hemolymph, from where they invade the salivary glands and are subsequently transmitted to the vertebrate host. We found that a thrombospondin-repeat containing sporozoite-specific protein named thrombospondin-releated protein 1 (TRP1) is important for oocyst egress and salivary gland invasion, and hence for the transmission of malaria. We imaged the release of sporozoites from oocysts in situ, which was preceded by active motility. Parasites lacking TRP1 failed to migrate within oocysts and did not egress, suggesting that TRP1 is a vital component of the events that precede intra-oocyst motility and subsequently sporozoite egress and salivary gland invasion. DOI:http://dx.doi.org/10.7554/eLife.19157.001 Malaria is caused by a parasite transmitted by certain types of mosquito. The parasite lives in different organs within its vertebrate animal and insect hosts and to cope with these different environments it has a complex life cycle with several highly specialized life stages. To move from an infected mosquito into vertebrates the parasite produces spore-like cells called sporozoites that are able to enter different tissues and move very fast. These cells develop inside parasite-made structures called oocysts, which form at the stomach wall of the mosquito. After emerging from the oocyst, sporozoites float through the mosquito’s circulatory system and eventually enter the salivary glands where they can be transmitted to vertebrates when the mosquito bites. Efforts to develop malaria treatments and vaccines have focused on understanding the parasite’s life cycle and identifying ways to control or eradicate key stages. Most researchers focus on the stage where the parasite is living in the vertebrate and actively causing disease, while the events in the mosquito are less intensely investigated. While several parasite proteins have been shown to be important for the release of sporozoites from oocysts, the molecular events leading to this release have not yet been fully resolved. Klug and Frischknecht used time-lapse microscopy to film the release of the sporozoites of a malaria parasite known as Plasmodium berghei. The experiments show that the sporozoites can leave oocysts in several different ways. Furthermore, Klug and Frischknecht identified a new parasite protein named TRP1 that is essential for the sporozoites to leave oocysts and invade the salivary glands. Sporozoites lacking TRP1 were not able to move and they were unable to leave the oocyst or invade the salivary glands. Klug and Frischknecht propose a new working model of the molecular events that govern sporozoite release in which TRP1 is required for sporozoites to move prior to their exit from oocysts. In the future, using the same techniques to analyze genetically modified parasites will help to reveal more details about sporozoite release. DOI:http://dx.doi.org/10.7554/eLife.19157.002
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| |
Collapse
|
36
|
Abstract
Over the past decade, major advances in imaging techniques have enhanced our understanding of Plasmodium spp. parasites and their interplay with mammalian hosts and mosquito vectors. Cryoelectron tomography, cryo-X-ray tomography and super-resolution microscopy have shifted paradigms of sporozoite and gametocyte structure, the process of erythrocyte invasion by merozoites, and the architecture of Maurer's clefts. Intravital time-lapse imaging has been revolutionary for our understanding of pre-erythrocytic stages of rodent Plasmodium parasites. Furthermore, high-speed imaging has revealed the link between sporozoite structure and motility, and improvements in time-lapse microscopy have enabled imaging of the entire Plasmodium falciparum erythrocytic cycle and the complete Plasmodium berghei pre-erythrocytic stages for the first time. In this Review, we discuss the contribution of key imaging tools to these and other discoveries in the malaria field over the past 10 years.
Collapse
|
37
|
Wang A, Garmann RF, Manoharan VN. Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy. OPTICS EXPRESS 2016; 24:23719-23725. [PMID: 27828208 DOI: 10.1364/oe.24.023719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use in-line digital holographic microscopy to image freely swimming E. coli. We show that fitting a light scattering model to E. coli holograms can yield quantitative information about the bacterium's body rotation and tumbles, offering a precise way to track fine details of bacterial motility. We are able to extract the cell's three-dimensional (3D) position and orientation and recover behavior such as body angle rotation during runs, tumbles, and pole reversal. Our technique is label-free and capable of frame rates limited only by the camera.
Collapse
|
38
|
Lawniczak MKN, Eckhoff PA. A computational lens for sexual-stage transmission, reproduction, fitness and kinetics in Plasmodium falciparum. Malar J 2016; 15:487. [PMID: 27653663 PMCID: PMC5031309 DOI: 10.1186/s12936-016-1538-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022] Open
Abstract
Background The burden of falciparum malaria remains unacceptably high in much of sub-Saharan Africa and massive efforts are underway to eliminate the parasite. While symptoms of malaria are caused by asexual reproduction of the parasite, transmission to new human hosts relies entirely on male and female sexual-stage parasites, known as gametocytes. Successful transmission can be observed at very low gametocyte densities, which raises the question of whether transmission-enhancing mechanisms exist in the human host, the mosquito, or both. Methods A new computational model was developed to investigate the probability of fertilization over a range of overdispersion parameters and male gamete exploration rates. Simulations were used to fit a likelihood surface for data on rates of mosquito infection across a wide range of host gametocyte densities. Results The best fit simultaneously requires very strong overdispersion and faster gamete exploration than is possible with random swimming in order to explain typical prevalence levels in mosquitoes. Gametocyte overdispersion or clustering in the human host and faster gamete exploration of the mosquito blood meal are highly probably given these results. Conclusions Density-dependent gametocyte clustering in the human host, and non-random searching (e.g., chemotaxis) in the mosquito are probable. Future work should aim to discover these mechanisms, as disrupting parasite development in the mosquito will play a critical role in eliminating malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1538-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Philip A Eckhoff
- Institute for Disease Modeling, 3150 139th Avenue SE, Bellevue, WA, 98005, USA.
| |
Collapse
|
39
|
Nadeau JL, Cho YB, Kühn J, Liewer K. Improved Tracking and Resolution of Bacteria in Holographic Microscopy Using Dye and Fluorescent Protein Labeling. Front Chem 2016; 4:17. [PMID: 27242995 PMCID: PMC4874365 DOI: 10.3389/fchem.2016.00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/31/2016] [Indexed: 11/15/2022] Open
Abstract
Digital holographic microscopy (DHM) is an emerging imaging technique that permits instantaneous capture of a relatively large sample volume. However, large volumes usually come at the expense of lower spatial resolution, and the technique has rarely been used with prokaryotic cells due to their small size and low contrast. In this paper we demonstrate the use of a Mach-Zehnder dual-beam instrument for imaging of labeled and unlabeled bacteria and microalgae. Spatial resolution of 0.3 μm is achieved, providing a sampling of several pixels across a typical prokaryotic cell. Both cellular motility and morphology are readily recorded. The use of dyes provides both amplitude and phase contrast improvement and is of use to identify cells in dense samples.
Collapse
Affiliation(s)
- Jay L Nadeau
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA; Department of Biomedical Engineering, McGill UniversityMontreal, QC, Canada
| | - Yong Bin Cho
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA; Department of Biomedical Engineering, McGill UniversityMontreal, QC, Canada
| | - Jonas Kühn
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA; Institute for Astronomy, ETH ZürichZürich, Switzerland
| | - Kurt Liewer
- Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
40
|
Carter LM, Pollitt LC, Wilson LG, Reece SE. Ecological influences on the behaviour and fertility of malaria parasites. Malar J 2016; 15:220. [PMID: 27091194 PMCID: PMC4835847 DOI: 10.1186/s12936-016-1271-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/01/2016] [Indexed: 12/26/2022] Open
Abstract
Background Sexual reproduction in the mosquito is essential for the transmission of malaria parasites and a major target for transmission-blocking interventions. Male gametes need to locate and fertilize females in the challenging environment of the mosquito blood meal, but remarkably little is known about the ecology and behaviour of male gametes. Methods Here, a series of experiments explores how some aspects of the chemical and physical environment experienced during mating impacts upon the production, motility, and fertility of male gametes. Results and conclusions Specifically, the data confirm that: (a) rates of male gametogenesis vary when induced by the family of compounds (tryptophan metabolites) thought to trigger gamete differentiation in nature; and (b) complex relationships between gametogenesis and mating success exist across parasite species. In addition, the data reveal that (c) microparticles of the same size as red blood cells negatively affect mating success; and (d) instead of swimming in random directions, male gametes may be attracted by female gametes. Understanding the mating ecology of malaria parasites, may offer novel approaches for blocking transmission and explain adaptation to different species of mosquito vectors. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1271-0) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Abstract
Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer’s Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over the ventral floor, showing how this vortical flow is stabilised by dorsal tilt of equatorial cilia, and (b) show that anterior clustering of dorsal cilia leads to around 40 % faster flow in the anterior over the posterior corner. We argue that these flow features are supportive of symmetry breaking through mechano-sensory cilia, and suggest a novel experiment to test this hypothesis. From our new understanding of the flow, we propose a further experiment to reverse the flow within KV to potentially induce situs inversus.
Collapse
|
42
|
Linck RW, Chemes H, Albertini DF. The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility. J Assist Reprod Genet 2016; 33:141-56. [PMID: 26825807 PMCID: PMC4759005 DOI: 10.1007/s10815-016-0652-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/03/2016] [Indexed: 01/08/2023] Open
Affiliation(s)
- Richard W Linck
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Hector Chemes
- Center for Research in Endocrinology, National Research Council, CEDIE-CONICET, Endocrinology Division, Buenos Aires Children's Hospital, Gallo 1330, C1425SEFD, Buenos Aires, Argentina.
| | - David F Albertini
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,The Center for Human Reproduction, New York, NY, USA.
| |
Collapse
|
43
|
Thornton KL, Findlay RC, Walrad PB, Wilson LG. Investigating the Swimming of Microbial Pathogens Using Digital Holography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:17-32. [PMID: 27193535 DOI: 10.1007/978-3-319-32189-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To understand much of the behaviour of microbial pathogens, it is necessary to image living cells, their interactions with each other and with host cells. Species such as Escherichia coli are difficult subjects to image: they are typically microscopic, colourless and transparent. Traditional cell visualisation techniques such as fluorescent tagging or phase-contrast microscopy give excellent information on cell behaviour in two dimensions, but no information about cells moving in three dimensions. We review the use of digital holographic microscopy for three-dimensional imaging at high speeds, and demonstrate its use for capturing the shape and swimming behaviour of three important model pathogens: E. coli, Plasmodium spp. and Leishmania spp.
Collapse
Affiliation(s)
- K L Thornton
- Department of Physics, University of York, Heslington, York, YO10 5DD, England
| | - R C Findlay
- Department of Physics, University of York, Heslington, York, YO10 5DD, England.,Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, YO10 5DD, England
| | - P B Walrad
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, YO10 5DD, England
| | - L G Wilson
- Department of Physics, University of York, Heslington, York, YO10 5DD, England.
| |
Collapse
|
44
|
Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells. Proc Natl Acad Sci U S A 2015; 112:15904-9. [PMID: 26655343 DOI: 10.1073/pnas.1515159112] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream swimming of mammalian sperm cells along solid surfaces, suggesting a robust physical mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself relative to an ambient flow is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments at different shear rates and viscosities. Using a 3D reconstruction algorithm to identify the flagellar beat patterns causing left or right turning, we present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this 3D analysis uncovers ambidextrous flagellar waveforms and shows that the cell's turning direction is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror symmetry in the midpiece section, likely arising from a buckling instability. These results challenge current theoretical models of sperm locomotion.
Collapse
|
45
|
Silva-Villalobos F, Pimentel JA, Darszon A, Corkidi G. Imaging of the 3D dynamics of flagellar beating in human sperm. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:190-3. [PMID: 25569929 DOI: 10.1109/embc.2014.6943561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The study of the mechanical and environmental factors that regulate a fundamental event such as fertilization have been subject of multiple studies. Nevertheless, the microscopical size of the spermatozoa and the high beating frequency of their flagella (up to 20 Hz) impose a series of technological challenges for the study of the mechanical factors implicated. Traditionally, due to the inherent characteristics of the rapid sperm movement, and to the technological limitations of microscopes (optical or confocal) to follow in three dimensions (3D) their movement, the analysis of their dynamics has been studied in two dimensions, when the head is confined to a surface. Flagella propel sperm and while their head can be confined to a surface, flagellar movement is not restricted to 2D, always displaying 3D components. In this work, we present a highly novel and useful tool to analyze sperm flagella dynamics in 3D. The basis of the method is a 100 Hz oscillating objective mounted on a bright field optical microscope covering a 16 microns depth space at a rate of ~ 5000 images per second. The best flagellum focused subregions were associated to their respective Z real 3D position. Unprecedented graphical results making evident the 3D movement of the flagella are shown in this work and supplemental material illustrating a 3D animation using the obtained experimental results is also included.
Collapse
|
46
|
Krüger T, Engstler M. Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol 2015; 46:113-27. [DOI: 10.1016/j.semcdb.2015.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
47
|
Nadeau JL, Cho YB, Lindensmith CA. Use of dyes to increase phase contrast for biological holographic microscopy. OPTICS LETTERS 2015; 40:4114-4117. [PMID: 26368725 DOI: 10.1364/ol.40.004114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Holographic microscopy is an emerging biological technique that provides amplitude and quantitative phase imaging, though the contrast provided by many cell types and organelles is low, and until now no dyes were known that increased contrast. Here we show that the metallocorrole Ga(tpfc)(SO3)2, which has a strong Soret band absorption, increases contrast in both amplitude and phase and facilitates tracking of Escherichia coli with minimal toxicity. The change in phase contrast may be calculated from the dye-absorbance spectrum using the Kramers-Kronig relations, and represents a general principle that may be applied to any dye or cell type. This enables the use of holographic microscopy for all applications in which specific labeling is desired.
Collapse
|
48
|
Jikeli JF, Alvarez L, Friedrich BM, Wilson LG, Pascal R, Colin R, Pichlo M, Rennhack A, Brenker C, Kaupp UB. Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat Commun 2015; 6:7985. [PMID: 26278469 PMCID: PMC4557273 DOI: 10.1038/ncomms8985] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/02/2015] [Indexed: 12/17/2022] Open
Abstract
Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an ‘off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes. Sperm use external cues to find the egg using ill-defined principles. Here the authors use holographic microscopy and optochemical tools to study sperm swimming in light-sculpted chemical 3D landscapes; they show that sperm translate the temporal stimulation pattern into multiple swimming behaviours to orient deterministically in a gradient.
Collapse
Affiliation(s)
- Jan F Jikeli
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Luis Alvarez
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Benjamin M Friedrich
- Biological Physics, Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Laurence G Wilson
- Department of Physics, University of York, YO10 5DD Heslington, York, UK
| | - René Pascal
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 16, 35043 Marburg, Germany
| | - Magdalena Pichlo
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Andreas Rennhack
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University of Muenster, 48149 Muenster, Germany
| | - U Benjamin Kaupp
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
49
|
Colin R, Zhang R, Wilson LG. Fast, high-throughput measurement of collective behaviour in a bacterial population. J R Soc Interface 2015; 11:20140486. [PMID: 25030384 DOI: 10.1098/rsif.2014.0486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Swimming bacteria explore their environment by performing a random walk, which is biased in response to, for example, chemical stimuli, resulting in a collective drift of bacterial populations towards 'a better life'. This phenomenon, called chemotaxis, is one of the best known forms of collective behaviour in bacteria, crucial for bacterial survival and virulence. Both single-cell and macroscopic assays have investigated bacterial behaviours. However, theories that relate the two scales have previously been difficult to test directly. We present an image analysis method, inspired by light scattering, which measures the average collective motion of thousands of bacteria simultaneously. Using this method, a time-varying collective drift as small as 50 nm s(-1) can be measured. The method, validated using simulations, was applied to chemotactic Escherichia coli bacteria in linear gradients of the attractant α-methylaspartate. This enabled us to test a coarse-grained minimal model of chemotaxis. Our results clearly map the onset of receptor methylation, and the transition from linear to logarithmic sensing in the bacterial response to an external chemoeffector. Our method is broadly applicable to problems involving the measurement of collective drift with high time resolution, such as cell migration and fluid flows measurements, and enables fast screening of tactic behaviours.
Collapse
Affiliation(s)
- R Colin
- The Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, MA 02142, USA
| | - R Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - L G Wilson
- The Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, MA 02142, USA
| |
Collapse
|
50
|
Sinden RE. The cell biology of malaria infection of mosquito: advances and opportunities. Cell Microbiol 2015; 17:451-66. [PMID: 25557077 PMCID: PMC4409862 DOI: 10.1111/cmi.12413] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023]
Abstract
Recent reviews (Feachem et al.; Alonso et al.) have concluded that in order to have a sustainable impact on the global burden of malaria, it is essential that we knowingly reduce the global incidence of infected persons. To achieve this we must reduce the basic reproductive rate of the parasites to < 1 in diverse epidemiological settings. This can be achieved by impacting combinations of the following parameters: the number of mosquitoes relative to the number of persons, the mosquito/human biting rate, the proportion of mosquitoes carrying infectious sporozoites, the daily survival rate of the infectious mosquito and the ability of malaria-infected persons to infect mosquito vectors. This paper focuses on our understanding of parasite biology underpinning the last of these terms: infection of the mosquito. The article attempts to highlight central issues that require further study to assist in the discovery of useful transmission-blocking measures.
Collapse
Affiliation(s)
- R E Sinden
- Department of Life Sciences, Imperial College London and the Jenner Institute, The University of Oxford, Oxford, UK
| |
Collapse
|