1
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Sobrido-Cameán D, Oswald MCW, Bailey DMD, Mukherjee A, Landgraf M. Activity-regulated growth of motoneurons at the neuromuscular junction is mediated by NADPH oxidases. Front Cell Neurosci 2023; 16:1106593. [PMID: 36713781 PMCID: PMC9880070 DOI: 10.3389/fncel.2022.1106593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Neurons respond to changes in the levels of activity they experience in a variety of ways, including structural changes at pre- and postsynaptic terminals. An essential plasticity signal required for such activity-regulated structural adjustments are reactive oxygen species (ROS). To identify sources of activity-regulated ROS required for structural plasticity in vivo we used the Drosophila larval neuromuscular junction as a highly tractable experimental model system. For adjustments of presynaptic motor terminals, we found a requirement for both NADPH oxidases, Nox and dual oxidase (Duox), that are encoded in the Drosophila genome. This contrasts with the postsynaptic dendrites from which Nox is excluded. NADPH oxidases generate ROS to the extracellular space. Here, we show that two aquaporins, Bib and Drip, are necessary ROS conduits in the presynaptic motoneuron for activity regulated, NADPH oxidase dependent changes in presynaptic motoneuron terminal growth. Our data further suggest that different aspects of neuronal activity-regulated structural changes might be regulated by different ROS sources: changes in bouton number require both NADPH oxidases, while activity-regulated changes in the number of active zones might be modulated by other sources of ROS. Overall, our results show NADPH oxidases as important enzymes for mediating activity-regulated plasticity adjustments in neurons.
Collapse
|
3
|
Heckman EL, Doe CQ. Presynaptic contact and activity opposingly regulate postsynaptic dendrite outgrowth. eLife 2022; 11:82093. [PMID: 36448675 PMCID: PMC9728994 DOI: 10.7554/elife.82093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The organization of neural circuits determines nervous system function. Variability can arise during neural circuit development (e.g. neurite morphology, axon/dendrite position). To ensure robust nervous system function, mechanisms must exist to accommodate variation in neurite positioning during circuit formation. Previously, we developed a model system in the Drosophila ventral nerve cord to conditionally induce positional variability of a proprioceptive sensory axon terminal, and used this model to show that when we altered the presynaptic position of the sensory neuron, its major postsynaptic interneuron partner modified its dendritic arbor to match the presynaptic contact, resulting in functional synaptic input (Sales et al., 2019). Here, we investigate the cellular mechanisms by which the interneuron dendrites detect and match variation in presynaptic partner location and input strength. We manipulate the presynaptic sensory neuron by (a) ablation; (b) silencing or activation; or (c) altering its location in the neuropil. From these experiments we conclude that there are two opposing mechanisms used to establish functional connectivity in the face of presynaptic variability: presynaptic contact stimulates dendrite outgrowth locally, whereas presynaptic activity inhibits postsynaptic dendrite outgrowth globally. These mechanisms are only active during an early larval critical period for structural plasticity. Collectively, our data provide new insights into dendrite development, identifying mechanisms that allow dendrites to flexibly respond to developmental variability in presynaptic location and input strength.
Collapse
Affiliation(s)
- Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
4
|
Dhawan S, Myers P, Bailey DMD, Ostrovsky AD, Evers JF, Landgraf M. Reactive Oxygen Species Mediate Activity-Regulated Dendritic Plasticity Through NADPH Oxidase and Aquaporin Regulation. Front Cell Neurosci 2021; 15:641802. [PMID: 34290589 PMCID: PMC8288108 DOI: 10.3389/fncel.2021.641802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Neurons utilize plasticity of dendritic arbors as part of a larger suite of adaptive plasticity mechanisms. This explicitly manifests with motoneurons in the Drosophila embryo and larva, where dendritic arbors are exclusively postsynaptic and are used as homeostatic devices, compensating for changes in synaptic input through adapting their growth and connectivity. We recently identified reactive oxygen species (ROS) as novel plasticity signals instrumental in this form of dendritic adjustment. ROS correlate with levels of neuronal activity and negatively regulate dendritic arbor size. Here, we investigated NADPH oxidases as potential sources of such activity-regulated ROS and implicate Dual Oxidase (but not Nox), which generates hydrogen peroxide extracellularly. We further show that the aquaporins Bib and Drip, but not Prip, are required for activity-regulated ROS-mediated adjustments of dendritic arbor size in motoneurons. These results suggest a model whereby neuronal activity leads to activation of the NADPH oxidase Dual Oxidase, which generates hydrogen peroxide at the extracellular face; aquaporins might then act as conduits that are necessary for these extracellular ROS to be channeled back into the cell where they negatively regulate dendritic arbor size.
Collapse
Affiliation(s)
- Serene Dhawan
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Neural Circuits and Evolution Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Philip Myers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David M. D. Bailey
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Aaron D. Ostrovsky
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jan Felix Evers
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Bicker G, Stern M. Structural and Functional Plasticity in the Regenerating Olfactory System of the Migratory Locust. Front Physiol 2020; 11:608661. [PMID: 33424632 PMCID: PMC7793960 DOI: 10.3389/fphys.2020.608661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Regeneration after injury is accompanied by transient and lasting changes in the neuroarchitecture of the nervous system and, thus, a form of structural plasticity. In this review, we introduce the olfactory pathway of a particular insect as a convenient model to visualize neural regeneration at an anatomical level and study functional recovery at an electrophysiological level. The olfactory pathway of the locust (Locusta migratoria) is characterized by a multiglomerular innervation of the antennal lobe by olfactory receptor neurons. These olfactory afferents were axotomized by crushing the base of the antenna. The resulting degeneration and regeneration in the antennal lobe could be quantified by size measurements, dye labeling, and immunofluorescence staining of cell surface proteins implicated in axonal guidance during development. Within 3 days post lesion, the antennal lobe volume was reduced by 30% and from then onward regained size back to normal by 2 weeks post injury. The majority of regenerating olfactory receptor axons reinnervated the glomeruli of the antennal lobe. A few regenerating axons project erroneously into the mushroom body on a pathway that is normally chosen by second-order projection neurons. Based on intracellular responses of antennal lobe output neurons to odor stimulation, regenerated fibers establish functional synapses again. Following complete absence after nerve crush, responses to odor stimuli return to control level within 10–14 days. On average, regeneration of afferents, and re-established synaptic connections appear faster in younger fifth instar nymphs than in adults. The initial degeneration of olfactory receptor axons has a trans-synaptic effect on a second order brain center, leading to a transient size reduction of the mushroom body calyx. Odor-evoked oscillating field potentials, absent after nerve crush, were restored in the calyx, indicative of regenerative processes in the network architecture. We conclude that axonal regeneration in the locust olfactory system appears to be possible, precise, and fast, opening an avenue for future mechanistic studies. As a perspective of biomedical importance, the current evidence for nitric oxide/cGMP signaling as positive regulator of axon regeneration in connectives of the ventral nerve cord is considered in light of particular regeneration studies in vertebrate central nervous systems.
Collapse
Affiliation(s)
- Gerd Bicker
- Division of Cell Biology, Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Stern
- Division of Cell Biology, Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
6
|
Tenedini FM, Sáez González M, Hu C, Pedersen LH, Petruzzi MM, Spitzweck B, Wang D, Richter M, Petersen M, Szpotowicz E, Schweizer M, Sigrist SJ, Calderon de Anda F, Soba P. Maintenance of cell type-specific connectivity and circuit function requires Tao kinase. Nat Commun 2019; 10:3506. [PMID: 31383864 PMCID: PMC6683158 DOI: 10.1038/s41467-019-11408-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/13/2019] [Indexed: 01/05/2023] Open
Abstract
Sensory circuits are typically established during early development, yet how circuit specificity and function are maintained during organismal growth has not been elucidated. To gain insight we quantitatively investigated synaptic growth and connectivity in the Drosophila nociceptive network during larval development. We show that connectivity between primary nociceptors and their downstream neurons scales with animal size. We further identified the conserved Ste20-like kinase Tao as a negative regulator of synaptic growth required for maintenance of circuit specificity and connectivity. Loss of Tao kinase resulted in exuberant postsynaptic specializations and aberrant connectivity during larval growth. Using functional imaging and behavioral analysis we show that loss of Tao-induced ectopic synapses with inappropriate partner neurons are functional and alter behavioral responses in a connection-specific manner. Our data show that fine-tuning of synaptic growth by Tao kinase is required for maintaining specificity and behavioral output of the neuronal network during animal growth.
Collapse
Affiliation(s)
- Federico Marcello Tenedini
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Maria Sáez González
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Chun Hu
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Lisa Hedegaard Pedersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Mabel Matamala Petruzzi
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Bettina Spitzweck
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Denan Wang
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melanie Richter
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Meike Petersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Emanuela Szpotowicz
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Michaela Schweizer
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Stephan J Sigrist
- Institute of Biology, Free University Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Froylan Calderon de Anda
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Peter Soba
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
7
|
Yoong LF, Pai YJ, Moore AW. Stages and transitions in dendrite arbor differentiation. Neurosci Res 2019; 138:70-78. [DOI: 10.1016/j.neures.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022]
|
8
|
Oswald MC, Brooks PS, Zwart MF, Mukherjee A, West RJ, Giachello CN, Morarach K, Baines RA, Sweeney ST, Landgraf M. Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila. eLife 2018; 7:39393. [PMID: 30540251 PMCID: PMC6307858 DOI: 10.7554/elife.39393] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson’s disease-linked protein DJ-1β as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.
Collapse
Affiliation(s)
- Matthew Cw Oswald
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Paul S Brooks
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Amrita Mukherjee
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ryan Jh West
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Department of Biology, University of York, York, United Kingdom
| | - Carlo Ng Giachello
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Khomgrit Morarach
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Richard A Baines
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sean T Sweeney
- Department of Biology, University of York, York, United Kingdom
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Oswald MCW, Garnham N, Sweeney ST, Landgraf M. Regulation of neuronal development and function by ROS. FEBS Lett 2018; 592:679-691. [PMID: 29323696 PMCID: PMC5888200 DOI: 10.1002/1873-3468.12972] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) have long been studied as destructive agents in the context of nervous system ageing, disease and degeneration. Their roles as signalling molecules under normal physiological conditions is less well understood. Recent studies have provided ample evidence of ROS-regulating neuronal development and function, from the establishment of neuronal polarity to growth cone pathfinding; from the regulation of connectivity and synaptic transmission to the tuning of neuronal networks. Appreciation of the varied processes that are subject to regulation by ROS might help us understand how changes in ROS metabolism and buffering could progressively impact on neuronal networks with age and disease.
Collapse
Affiliation(s)
| | - Nathan Garnham
- Department of BiologyUniversity of YorkHeslington YorkUK
| | | | | |
Collapse
|
10
|
Gerhard S, Andrade I, Fetter RD, Cardona A, Schneider-Mizell CM. Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics. eLife 2017; 6:e29089. [PMID: 29058674 PMCID: PMC5662290 DOI: 10.7554/elife.29089] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/22/2017] [Indexed: 11/14/2022] Open
Abstract
During postembryonic development, the nervous system must adapt to a growing body. How changes in neuronal structure and connectivity contribute to the maintenance of appropriate circuit function remains unclear. Previously , we measured the cellular neuroanatomy underlying synaptic connectivity in Drosophila (Schneider-Mizell et al., 2016). Here, we examined how neuronal morphology and connectivity change between first instar and third instar larval stages using serial section electron microscopy. We reconstructed nociceptive circuits in a larva of each stage and found consistent topographically arranged connectivity between identified neurons. Five-fold increases in each size, number of terminal dendritic branches, and total number of synaptic inputs were accompanied by cell type-specific connectivity changes that preserved the fraction of total synaptic input associated with each pre-synaptic partner. We propose that precise patterns of structural growth act to conserve the computational function of a circuit, for example determining the location of a dangerous stimulus.
Collapse
Affiliation(s)
- Stephan Gerhard
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Ingrid Andrade
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Richard D Fetter
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Albert Cardona
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
11
|
Luo J, Liu Y, Nässel DR. Transcriptional Reorganization of Drosophila Motor Neurons and Their Muscular Junctions toward a Neuroendocrine Phenotype by the bHLH Protein Dimmed. Front Mol Neurosci 2017; 10:260. [PMID: 28855860 PMCID: PMC5557793 DOI: 10.3389/fnmol.2017.00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023] Open
Abstract
Neuroendocrine cells store and secrete bulk amounts of neuropeptides, and display morphological and molecular characteristics distinct from neurons signaling with classical neurotransmitters. In Drosophila the transcription factor Dimmed (Dimm), is a prime organizer of neuroendocrine capacity in a majority of the peptidergic neurons. These neurons display large cell bodies and extensive axon terminations that commonly do not form regular synapses. We ask which molecular compartments of a neuron are affected by Dimm to generate these morphological features. Thus, we ectopically expressed Dimm in glutamatergic, Dimm-negative, motor neurons and analyzed their characteristics in the central nervous system and the neuromuscular junction. Ectopic Dimm results in motor neurons with enlarged cell bodies, diminished dendrites, larger axon terminations and boutons, as well as reduced expression of synaptic proteins both pre and post-synaptically. Furthermore, the neurons display diminished vesicular glutamate transporter, and signaling components known to sustain interactions between the developing axon termination and muscle, such as wingless and frizzled are down regulated. Ectopic co-expression of Dimm and the insulin receptor augments most of the above effects on the motor neurons. In summary, ectopic Dimm expression alters the glutamatergic motor neuron phenotype toward a neuroendocrine one, both pre- and post-synaptically. Thus, Dimm is a key organizer of both secretory capacity and morphological features characteristic of neuroendocrine cells, and this transcription factor affects also post-synaptic proteins.
Collapse
Affiliation(s)
- Jiangnan Luo
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Yiting Liu
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
12
|
Regeneration of synapses in the olfactory pathway of locusts after antennal deafferentation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:867-877. [PMID: 28685185 DOI: 10.1007/s00359-017-1199-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022]
Abstract
The olfactory pathway of the locust is capable of fast and precise regeneration on an anatomical level. Following deafferentation of the antenna either of young adult locusts, or of fifth instar nymphs, severed olfactory receptor neurons (ORNs) reinnervate the antennal lobe (AL) and arborize in AL microglomeruli. In the present study we tested whether these regenerated fibers establish functional synapses again. Intracellular recordings from AL projection neurons revealed that the first few odor stimulus evoked postsynaptic responses from regenerated ORNs from day 4-7 post crush on. On average, synaptic connections of regenerated afferents appeared faster in younger locusts operated as fifth instar nymphs than in adults. The proportions of response categories (excitatory vs. inhibitory) changed during regeneration, but were back to normal within 21 days. Odor-evoked oscillating extracellular local field potentials (LFP) were recorded in the mushroom body. These responses, absent after antennal nerve crush, reappeared, in a few animals as soon as 4 days post crush. Odor-induced oscillation patterns were restored within 7 days post crush. Both intra- and extracellular recordings indicate the capability of the locust olfactory system to re-establish synaptic contacts in the antennal lobe after antennal nerve lesion.
Collapse
|
13
|
Regeneration of axotomized olfactory neurons in young and adult locusts quantified by fasciclin I immunofluorescence. Cell Tissue Res 2017; 368:1-12. [PMID: 28150067 DOI: 10.1007/s00441-016-2560-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/05/2016] [Indexed: 01/22/2023]
Abstract
The olfactory pathway of the locust Locusta migratoria is characterized by a multiglomerular innervation of the antennal lobe (AL) by olfactory receptor neurons (ORNs). After crushing the antenna and thereby severing ORN axons, changes in the AL were monitored. First, volume changes were measured at different times post-crush with scanning laser optical tomography in 5th instar nymphs. AL volume decreased significantly to a minimum volume at 4 days post-crush, followed by an increase. Second, anterograde labeling was used to visualize details in the AL and antennal nerve (AN) during de- and regeneration. Within 24 h post-crush (hpc) the ORN fragments distal to the lesion degenerated. After 48 hpc, regenerating fibers grew through the crush site. In the AL, labeled ORN projections disappeared completely and reappeared after a few days. A weak topographic match between ORN origin on the antenna and the position of innervated glomeruli that was present in untreated controls did not reappear after regeneration. Third, the cell surface marker fasciclin I that is expressed in ORNs was used for quantifying purposes. Immunofluorescence was measured in the AL during de- and regeneration in adults and 5th instar nymphs: after a rapid but transient, decrease, it reappeared. Both processes happen faster in 5th instar nymphs than in adults.
Collapse
|
14
|
Kohsaka H, Guertin PA, Nose A. Neural Circuits Underlying Fly Larval Locomotion. Curr Pharm Des 2017; 23:1722-1733. [PMID: 27928962 PMCID: PMC5470056 DOI: 10.2174/1381612822666161208120835] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022]
Abstract
Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Pierre A. Guertin
- Department of Psychiatry & Neurosciences, Laval University, Québec City, QC, Canada
| | - Akinao Nose
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Zwart MF, Pulver SR, Truman JW, Fushiki A, Fetter RD, Cardona A, Landgraf M. Selective Inhibition Mediates the Sequential Recruitment of Motor Pools. Neuron 2016; 91:615-28. [PMID: 27427461 PMCID: PMC4980426 DOI: 10.1016/j.neuron.2016.06.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/22/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
Locomotor systems generate diverse motor patterns to produce the movements underlying behavior, requiring that motor neurons be recruited at various phases of the locomotor cycle. Reciprocal inhibition produces alternating motor patterns; however, the mechanisms that generate other phasic relationships between intrasegmental motor pools are unknown. Here, we investigate one such motor pattern in the Drosophila larva, using a multidisciplinary approach including electrophysiology and ssTEM-based circuit reconstruction. We find that two motor pools that are sequentially recruited during locomotion have identical excitable properties. In contrast, they receive input from divergent premotor circuits. We find that this motor pattern is not orchestrated by differential excitatory input but by a GABAergic interneuron acting as a delay line to the later-recruited motor pool. Our findings show how a motor pattern is generated as a function of the modular organization of locomotor networks through segregation of inhibition, a potentially general mechanism for sequential motor patterns.
Collapse
Affiliation(s)
- Maarten F Zwart
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | | | | - Akira Fushiki
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | | | | | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
16
|
McParland AL, Follansbee TL, Vesenka GD, Panaitiu AE, Ganter GK. Steroid Receptor Isoform Expression in Drosophila Nociceptor Neurons Is Required for Normal Dendritic Arbor and Sensitivity. PLoS One 2015; 10:e0140785. [PMID: 26495837 PMCID: PMC4619865 DOI: 10.1371/journal.pone.0140785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/30/2015] [Indexed: 11/24/2022] Open
Abstract
Steroid hormones organize many aspects of development, including that of the nervous system. Steroids also play neuromodulatory and other activational roles, including regulation of sensitivity to painful stimuli in mammals. In Drosophila, ecdysteroids are the only steroid hormones, and therefore the fly represents a simplified model system in which to explore mechanisms of steroid neuromodulation of nociception. In this report, we present evidence that ecdysteroids, acting through two isoforms of their nuclear ecdysone receptor (EcR), modulate sensitivity to noxious thermal and mechanical stimuli in the fly larva. We show that EcRA and EcRB1 are expressed by third instar larvae in the primary nociceptor neurons, known as the class IV multidendritic neurons. Suppression of EcRA by RNA interference in these cells leads to hyposensitivity to noxious stimulation. Suppression of EcRB1 leads to reduction of dendritic branching and length of nociceptor neurons. We show that specific isoforms of the ecdysone receptor play critical cell autonomous roles in modulating the sensitivity of nociceptor neurons and may indicate human orthologs that represent targets for novel analgesic drugs.
Collapse
Affiliation(s)
- Aidan L. McParland
- Department of Biology, College of Arts and Sciences, University of New England, Biddeford, Maine, United States of America
| | - Taylor L. Follansbee
- Department of Biology, College of Arts and Sciences, University of New England, Biddeford, Maine, United States of America
| | - Gwendolyn D. Vesenka
- Department of Biology, College of Arts and Sciences, University of New England, Biddeford, Maine, United States of America
| | - Alexandra E. Panaitiu
- Department of Biology, College of Arts and Sciences, University of New England, Biddeford, Maine, United States of America
| | - Geoffrey K. Ganter
- Department of Biology, College of Arts and Sciences, University of New England, Biddeford, Maine, United States of America
- * E-mail:
| |
Collapse
|
17
|
Günay C, Sieling FH, Dharmar L, Lin WH, Wolfram V, Marley R, Baines RA, Prinz AA. Distal spike initiation zone location estimation by morphological simulation of ionic current filtering demonstrated in a novel model of an identified Drosophila motoneuron. PLoS Comput Biol 2015; 11:e1004189. [PMID: 25978332 PMCID: PMC4433181 DOI: 10.1371/journal.pcbi.1004189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/10/2015] [Indexed: 11/18/2022] Open
Abstract
Studying ion channel currents generated distally from the recording site is difficult because of artifacts caused by poor space clamp and membrane filtering. A computational model can quantify artifact parameters for correction by simulating the currents only if their exact anatomical location is known. We propose that the same artifacts that confound current recordings can help pinpoint the source of those currents by providing a signature of the neuron’s morphology. This method can improve the recording quality of currents initiated at the spike initiation zone (SIZ) that are often distal to the soma in invertebrate neurons. Drosophila being a valuable tool for characterizing ion currents, we estimated the SIZ location and quantified artifacts in an identified motoneuron, aCC/MN1-Ib, by constructing a novel multicompartmental model. Initial simulation of the measured biophysical channel properties in an isopotential Hodgkin-Huxley type neuron model partially replicated firing characteristics. Adding a second distal compartment, which contained spike-generating Na+ and K+ currents, was sufficient to simulate aCC’s in vivo activity signature. Matching this signature using a reconstructed morphology predicted that the SIZ is on aCC’s primary axon, 70 μm after the most distal dendritic branching point. From SIZ to soma, we observed and quantified selective morphological filtering of fast activating currents. Non-inactivating K+ currents are filtered ∼3 times less and despite their large magnitude at the soma they could be as distal as Na+ currents. The peak of transient component (NaT) of the voltage-activated Na+ current is also filtered more than the magnitude of slower persistent component (NaP), which can contribute to seizures. The corrected NaP/NaT ratio explains the previously observed discrepancy when the same channel is expressed in different cells. In summary, we used an in vivo signature to estimate ion channel location and recording artifacts, which can be applied to other neurons. The study of ion channels is essential both for understanding normal brain function and for finding drug targets to treat neurological disease. Traditional experimental techniques remain challenging for recording ion channel currents accurately because of their locations in the neuron. Computer modeling of the three dimensional structure of neurons can provide a correction estimate for the measurement error introduced by neuronal membranes. To achieve this, we developed a modeling approach to localize, and correct for, distant ion channels. We demonstrated this approach by constructing novel computer models of an identified insect motor neuron, which provides a powerful model for studying the central nervous system. Through the study of electrical activity and genetic manipulations, it has been found that the persistent sodium current contributes to seizure. By modeling three dimensional structure, we were able to predict the location of these currents in the neuron, which were more distal than expected. Localizing sodium channels allowed us to predict their properties at origin, which favorably matched isolated recordings of these channels in more compact cells. This result is important in validating the use of heterologous compact cells to study insect sodium channels, and also demonstrates the usefulness of the presented modeling approach for studying channel physiology more generally.
Collapse
Affiliation(s)
- Cengiz Günay
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Fred H Sieling
- Department of Biology, Emory University, Atlanta, Georgia, United States of America; Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Logesh Dharmar
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Wei-Hsiang Lin
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Verena Wolfram
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Richard Marley
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Richard A Baines
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Astrid A Prinz
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Couton L, Mauss AS, Yunusov T, Diegelmann S, Evers JF, Landgraf M. Development of connectivity in a motoneuronal network in Drosophila larvae. Curr Biol 2015; 25:568-76. [PMID: 25702582 PMCID: PMC4353686 DOI: 10.1016/j.cub.2014.12.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
Background Much of our understanding of how neural networks develop is based on studies of sensory systems, revealing often highly stereotyped patterns of connections, particularly as these diverge from the presynaptic terminals of sensory neurons. We know considerably less about the wiring strategies of motor networks, where connections converge onto the dendrites of motoneurons. Here, we investigated patterns of synaptic connections between identified motoneurons with sensory neurons and interneurons in the motor network of the Drosophila larva and how these change as it develops. Results We find that as animals grow, motoneurons increase the number of synapses with existing presynaptic partners. Different motoneurons form characteristic cell-type-specific patterns of connections. At the same time, there is considerable variability in the number of synapses formed on motoneuron dendrites, which contrasts with the stereotypy reported for presynaptic terminals of sensory neurons. Where two motoneurons of the same cell type contact a common interneuron partner, each postsynaptic cell can arrive at a different connectivity outcome. Experimentally changing the positioning of motoneuron dendrites shows that the geography of dendritic arbors in relation to presynaptic partner terminals is an important determinant in shaping patterns of connectivity. Conclusions In the Drosophila larval motor network, the sets of connections that form between identified neurons manifest an unexpected level of variability. Synapse number and the likelihood of forming connections appear to be regulated on a cell-by-cell basis, determined primarily by the postsynaptic dendrites of motoneuron terminals. Growing motoneurons consolidate synapses with existing presynaptic partners Motoneuron dendritic arbors are active parties in setting connectivity patterns Cell-type-specific features coexist with variations at the individual cell level Motoneuron wiring strategies may contrast with those of sensory neurons
Collapse
Affiliation(s)
- Louise Couton
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Alex S Mauss
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Temur Yunusov
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Soeren Diegelmann
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Jan Felix Evers
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Centre for Organismal Studies, Ruprecht-Karls-Universität, 69120 Heidelberg, Germany.
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
19
|
Ryglewski S, Kadas D, Hutchinson K, Schuetzler N, Vonhoff F, Duch C. Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior. Proc Natl Acad Sci U S A 2014; 111:18049-54. [PMID: 25453076 PMCID: PMC4273390 DOI: 10.1073/pnas.1416247111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Dimitrios Kadas
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Katie Hutchinson
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Natalie Schuetzler
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Fernando Vonhoff
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Carsten Duch
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| |
Collapse
|
20
|
Li HH, Kroll JR, Lennox SM, Ogundeyi O, Jeter J, Depasquale G, Truman JW. A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep 2014; 8:897-908. [PMID: 25088417 DOI: 10.1016/j.celrep.2014.06.065] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/13/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022] Open
Abstract
We report the larval CNS expression patterns for 6,650 GAL4 lines based on cis-regulatory regions (CRMs) from the Drosophila genome. Adult CNS expression patterns were previously reported for this collection, thereby providing a unique resource for determining the origins of adult cells. An illustrative example reveals the origin of the astrocyte-like glia of the ventral CNS. Besides larval neurons and glia, the larval CNS contains scattered lineages of immature, adult-specific neurons. Comparison of lineage expression within this large collection of CRMs provides insight into the codes used for designating neuronal types. The CRMs encode both dense and sparse patterns of lineage expression. There is little correlation between brain and thoracic lineages in patterns of sparse expression, but expression in the two regions is highly correlated in the dense mode. The optic lobes, by comparison, appear to use a different set of genetic instructions in their development.
Collapse
Affiliation(s)
- Hsing-Hsi Li
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Jason R Kroll
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Sara M Lennox
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Omotara Ogundeyi
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Jennifer Jeter
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gina Depasquale
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - James W Truman
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
21
|
Doll CA, Broadie K. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front Cell Neurosci 2014; 8:30. [PMID: 24570656 PMCID: PMC3916725 DOI: 10.3389/fncel.2014.00030] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA ; Kennedy Center for Research on Human Development, Vanderbilt University Nashville, TN, USA
| |
Collapse
|