1
|
Yuan X, Su Y, Johnson B, Kirchner M, Zhang X, Xu S, Jiang S, Wu J, Shi S, Russo JJ, Chen Q, Zhang S. Mass Spectrometry-Based Direct Sequencing of tRNAs De Novo and Quantitative Mapping of Multiple RNA Modifications. J Am Chem Soc 2024; 146:25600-25613. [PMID: 39231532 PMCID: PMC11421004 DOI: 10.1021/jacs.4c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Despite the extensive use of next-generation sequencing (NGS) of RNA, simultaneous direct sequencing and quantitative mapping of multiple RNA nucleotide modifications remains challenging. Mass spectrometry (MS)-based sequencing can directly sequence all RNA modifications without being limited to specific ones, but it requires a perfect MS ladder that few tRNAs can provide. Here, we describe an MS ladder complementation sequencing approach (MLC-Seq) that circumvents the perfect ladder requirement, allowing de novo MS sequencing of full-length heterogeneous cellular tRNAs with multiple nucleotide modifications at single-nucleotide precision. Unlike NGS-based methods, which lose RNA modification information, MLC-Seq preserves RNA sequence diversity and modification information, revealing new detailed stoichiometric tRNA modification profiles and their changes upon treatment with the dealkylating enzyme AlkB. It can also be combined with reference sequences to provide quantitative analysis of diverse tRNAs and modifications in total tRNA samples. MLC-Seq enables systematic, quantitative, and site-specific mapping of RNA modifications, revealing the truly complete informational content of tRNA.
Collapse
Affiliation(s)
- Xiaohong Yuan
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Yue Su
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Benjamin Johnson
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Michele Kirchner
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Xudong Zhang
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Sihang Xu
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Sophia Jiang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Jing Wu
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Shundi Shi
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - James J Russo
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Shenglong Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
2
|
Callaghan KL, Sherrell PC, Ellis AV. The Impact of Activating Agents on Non-Enzymatic Nucleic Acid Extension Reactions. Chembiochem 2024; 25:e202300859. [PMID: 38282207 DOI: 10.1002/cbic.202300859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Non-enzymatic template-directed primer extension is increasingly being studied for the production of RNA and DNA. These reactions benefit from producing RNA or DNA in an aqueous, protecting group free system, without the need for expensive enzymes. However, these primer extension reactions suffer from a lack of fidelity, low reaction rates, low overall yields, and short primer extension lengths. This review outlines a detailed mechanistic pathway for non-enzymatic template-directed primer extension and presents a review of the thermodynamic driving forces involved in entropic templating. Through the lens of entropic templating, the rate and fidelity of a reaction are shown to be intrinsically linked to the reactivity of the activating agent used. Thus, a strategy is discussed for the optimization of non-enzymatic template-directed primer extension, providing a path towards cost-effective in vitro synthesis of RNA and DNA.
Collapse
Affiliation(s)
- Kimberley L Callaghan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
3
|
Mayer D, Lever F, Gühr M. Time-resolved x-ray spectroscopy of nucleobases and their thionated analogs. Photochem Photobiol 2024; 100:275-290. [PMID: 38174615 DOI: 10.1111/php.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The photoinduced relaxation dynamics of nucleobases and their thionated analogs have been investigated extensively over the past decades motivated by their crucial role in organisms and their application in medical and biochemical research and treatment. Most of these studies focused on the spectroscopy of valence electrons and fragmentation. The advent of ultrashort x-ray laser sources such as free-electron lasers, however, opens new opportunities for studying the ultrafast molecular relaxation dynamics utilizing the site- and element-selectivity of x-rays. In this review, we want to summarize ultrafast experiments on thymine and 2-thiouracil performed at free-electron lasers. We performed time-resolved x-ray absorption spectroscopy at the oxygen K-edge after UV excitation of thymine. In addition, we investigated the excited state dynamics of 2-tUra via x-ray photoelectron spectroscopy at sulfur. For these methods, we show a strong sensitivity to the electronic state or charge distribution, respectively. We also performed time-resolved Auger-Meitner spectroscopy, which shows spectral shifts associated with internuclear distances close to the probed site. We discuss the complementary aspects of time-resolved x-ray spectroscopy techniques compared to optical and UV spectroscopy for the investigation of ultrafast relaxation processes.
Collapse
Affiliation(s)
- Dennis Mayer
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Fabiano Lever
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Markus Gühr
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute of Physical Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Lelyveld VS, Fang Z, Szostak JW. Trivalent rare earth metal cofactors confer rapid NP-DNA polymerase activity. Science 2023; 382:423-429. [PMID: 37883544 PMCID: PMC10886449 DOI: 10.1126/science.adh5339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
A DNA polymerase with a single mutation and a divalent calcium cofactor catalyzes the synthesis of unnatural N3'→P5' phosphoramidate (NP) bonds to form NP-DNA. However, this template-directed phosphoryl transfer activity remains orders of magnitude slower than native phosphodiester synthesis. Here, we used time-resolved x-ray crystallography to show that NP-DNA synthesis proceeds with a single detectable calcium ion in the active site. Using insights from isotopic and elemental effects, we propose that one-metal-ion electrophilic substrate activation is inferior to the native two-metal-ion mechanism. We found that this deficiency in divalent activation could be ameliorated by trivalent rare earth and post-transition metal cations, substantially enhancing NP-DNA synthesis. Scandium(III), in particular, confers highly specific NP activity with kinetics enhanced by more than 100-fold over calcium(II), yielding NP-DNA strands up to 100 nucleotides in length.
Collapse
Affiliation(s)
- Victor S Lelyveld
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ziyuan Fang
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jack W Szostak
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Aho A, Österlund T, Rahkila J, Virta PM. DNA‐templated formation and N,O‐transacetalization of N‐methoxyoxazolidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aapo Aho
- University of Turku: Turun Yliopisto Chemistry FINLAND
| | | | - Jani Rahkila
- Åbo Akademi: Abo Akademi Instrument Centre, Faculty of Science and Engineering FINLAND
| | - Pasi Markus Virta
- University of Turku department of chemistry Vatselankatu 2 20014 Turku FINLAND
| |
Collapse
|
6
|
Aggarwal T, Hansen WA, Hong J, Ganguly A, York DM, Khare SD, Izgu EC. Introducing a New Bond-Forming Activity in an Archaeal DNA Polymerase by Structure-Guided Enzyme Redesign. ACS Chem Biol 2022; 17:1924-1936. [PMID: 35776893 DOI: 10.1021/acschembio.2c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA polymerases have evolved to feature a highly conserved activity across the tree of life: formation of, without exception, internucleotidyl O-P linkages. Can this linkage selectivity be overcome by design to produce xenonucleic acids? Here, we report that the structure-guided redesign of an archaeal DNA polymerase, 9°N, exhibits a new activity undetectable in the wild-type enzyme: catalyzing the formation of internucleotidyl N-P linkages using 3'-NH2-ddNTPs. Replacing a metal-binding aspartate in the 9°N active site with asparagine was key to the emergence of this unnatural enzyme activity. MD simulations provided insights into how a single substitution enhances the productive positioning of a 3'-amino nucleophile in the active site. Further remodeling of the protein-nucleic acid interface in the finger subdomain yielded a quadruple-mutant variant (9°N-NRQS) displaying DNA-dependent NP-DNA polymerase activity. In addition, the engineered promiscuity of 9°N-NRQS was leveraged for one-pot synthesis of DNA─NP-DNA copolymers. This work sheds light on the molecular basis of substrate fidelity and latent promiscuity in enzymes.
Collapse
Affiliation(s)
- Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - William A Hansen
- Institute for Quantitative Biomedicine, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Jonathan Hong
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Abir Ganguly
- Institute for Quantitative Biomedicine, Rutgers University, New Brunswick, New Jersey 08854, United States.,Laboratory for Biomolecular Simulation Research, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Darrin M York
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States.,Institute for Quantitative Biomedicine, Rutgers University, New Brunswick, New Jersey 08854, United States.,Laboratory for Biomolecular Simulation Research, Rutgers University, New Brunswick, New Jersey 08854, United States.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States.,Institute for Quantitative Biomedicine, Rutgers University, New Brunswick, New Jersey 08854, United States.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States.,Rutgers Center for Lipid Research and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
7
|
Nonenzymatic assembly of active chimeric ribozymes from aminoacylated RNA oligonucleotides. Proc Natl Acad Sci U S A 2022; 119:2116840119. [PMID: 35140183 PMCID: PMC8851484 DOI: 10.1073/pnas.2116840119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
The emergence of a primordial ribosome from the RNA world would have required access to aminoacylated RNA substrates. The spontaneous generation of such substrates without enzymes is inefficient, and it remains unclear how they could be selected for in a prebiotic milieu. In our study, we identify a possible role for aminoacylated RNA in ribozyme assembly, a longstanding problem in the origin-of-life research. We show that aminoacylation of short RNAs greatly accelerates their assembly into functional ribozymes by forming amino acid bridges in the phosphodiester backbone. Our work therefore addresses two key challenges within the origin-of-life field: we demonstrate assembly of functional ribozymes, and we identify a potential evolutionary benefit for RNA aminoacylation that is independent of coded peptide translation. Aminoacylated transfer RNAs, which harbor a covalent linkage between amino acids and RNA, are a universally conserved feature of life. Because they are essential substrates for ribosomal translation, aminoacylated oligonucleotides must have been present in the RNA world prior to the evolution of the ribosome. One possibility we are exploring is that the aminoacyl ester linkage served another function before being recruited for ribosomal protein synthesis. The nonenzymatic assembly of ribozymes from short RNA oligomers under realistic conditions remains a key challenge in demonstrating a plausible pathway from prebiotic chemistry to the RNA world. Here, we show that aminoacylated RNAs can undergo template-directed assembly into chimeric amino acid–RNA polymers that are active ribozymes. We demonstrate that such chimeric polymers can retain the enzymatic function of their all-RNA counterparts by generating chimeric hammerhead, RNA ligase, and aminoacyl transferase ribozymes. Amino acids with diverse side chains form linkages that are well tolerated within the RNA backbone and, in the case of an aminoacyl transferase, even in its catalytic center, potentially bringing novel functionalities to ribozyme catalysis. Our work suggests that aminoacylation chemistry may have played a role in primordial ribozyme assembly. Increasing the efficiency of this process provides an evolutionary rationale for the emergence of sequence and amino acid–specific aminoacyl-RNA synthetase ribozymes, which could then have generated the substrates for ribosomal protein synthesis.
Collapse
|
8
|
Han J, Kervio E, Richert C. High Fidelity Enzyme-Free Primer Extension with an Ethynylpyridone Thymidine Analog. Chemistry 2021; 27:15918-15921. [PMID: 34559417 PMCID: PMC9293356 DOI: 10.1002/chem.202102996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/07/2022]
Abstract
High fidelity base pairing is important for the transmission of genetic information. Weak base pairs can lower fidelity, complicating sequencing, amplification and replication of DNA. Thymidine 5'-monophosphate (TMP) is the most weakly pairing nucleotide among the canonical deoxynucleotides, causing high errors rates in enzyme-free primer extension. Here we report the synthesis of an ethynylpyridone C-nucleoside analog of 3'-amino-2',3'-dideoxythymidine monophosphate and its incorporation in a growing strand by enzyme-free primer extension. The ethynylpyridone C-nucleotide accelerates extension more than five-fold, reduces misincorporation and readily displaces TMP in competition experiments. The results bode well for the use of the C-nucleoside as replacements for thymidine in practical applications.
Collapse
Affiliation(s)
- Jianyang Han
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Eric Kervio
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Clemens Richert
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| |
Collapse
|
9
|
O'Flaherty DK, Zhou L, Szostak JW. Nonenzymatic RNA-templated Synthesis of N3'→P5' Phosphoramidate DNA. Bio Protoc 2020; 10:e3734. [PMID: 33659395 DOI: 10.21769/bioprotoc.3734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/02/2022] Open
Abstract
The RNA world hypothesis describes a scenario where early life forms relied on RNA to govern both inheritance and catalyze useful chemical reactions. Prior to the emergence of enzymes capable of replicating the RNA genome, a nonenzymatic replication process would have been necessary to initiate Darwinian Evolution. However, the one-pot nonenzymatic RNA chemical copying of templates with mixed-sequences is insufficient to generate strand products long enough to encode useful function. The use of alternate (RNA-like) genetic polymers may overcome hurdles associated with RNA copying, and further our understanding of nonenzymatic copying chemistry. This protocol describes the nonenzymatic copying of RNA templates into N3'→P5' phosphoramidate DNA (3'-NP-DNA). We describe, in detail, the synthesis of 3'-amino-2',3'-dideoxyribonucleotide monomers activated with 2-aminoimidazole (3'-NH2-2AIpddN), and their use in template-directed polymerization.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Zhou L, O'Flaherty DK, Szostak JW. Assembly of a Ribozyme Ligase from Short Oligomers by Nonenzymatic Ligation. J Am Chem Soc 2020; 142:15961-15965. [PMID: 32820909 PMCID: PMC9594310 DOI: 10.1021/jacs.0c06722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our current understanding of the chemistry of the primordial genetic material is fragmentary at best. The chemical replication of oligonucleotides long enough to perform catalytic functions is particularly problematic because of the low efficiency of nonenzymatic template copying. Here we show that this problem can be circumvented by assembling a functional ribozyme by the templated ligation of short oligonucleotides. However, this approach creates a new problem because the splint oligonucleotides used to drive ribozyme assembly strongly inhibit the resulting ribozyme. We explored three approaches to the design of splint oligonucleotides that enable efficient ligation but which allow the assembled ribozyme to remain active. DNA splints, splints with G:U wobble pairs, and splints with G to I (Inosine) substitutions all allowed for the efficient assembly of an active ribozyme ligase. Our work demonstrates the possibility of a transition from nonenzymatic ligation to enzymatic ligation and reveals the importance of avoiding ribozyme inhibition by complementary oligonucleotides.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
11
|
Zhou L, O'Flaherty DK, Szostak JW. Template-Directed Copying of RNA by Non-enzymatic Ligation. Angew Chem Int Ed Engl 2020; 59:15682-15687. [PMID: 32558121 PMCID: PMC7496532 DOI: 10.1002/anie.202004934] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Indexed: 12/12/2022]
Abstract
The non-enzymatic replication of the primordial genetic material is thought to have enabled the evolution of early forms of RNA-based life. However, the replication of oligonucleotides long enough to encode catalytic functions is problematic due to the low efficiency of template copying with mononucleotides. We show that template-directed ligation can assemble long RNAs from shorter oligonucleotides, which would be easier to replicate. The rate of ligation can be greatly enhanced by employing a 3'-amino group at the 3'-end of each oligonucleotide, in combination with an N-alkyl imidazole organocatalyst. These modifications enable the copying of RNA templates by the multistep ligation of tetranucleotide building blocks, as well as the assembly of long oligonucleotides using short splint oligonucleotides. We also demonstrate the formation of long oligonucleotides inside model prebiotic vesicles, which suggests a potential route to the assembly of artificial cells capable of evolution.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical InstituteDepartment of Molecular BiologyCenter for Computational and Integrative BiologyMassachusetts General HospitalBostonMA02114 (USA), E
| | - Derek K. O'Flaherty
- Howard Hughes Medical InstituteDepartment of Molecular BiologyCenter for Computational and Integrative BiologyMassachusetts General HospitalBostonMA02114 (USA), E
- Present address: Alnylam PharmaceuticalsCambridgeMA02142USA
| | - Jack W. Szostak
- Howard Hughes Medical InstituteDepartment of Molecular BiologyCenter for Computational and Integrative BiologyMassachusetts General HospitalBostonMA02114 (USA), E
| |
Collapse
|
12
|
Zhou L, O'Flaherty DK, Szostak JW. Template‐Directed Copying of RNA by Non‐enzymatic Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute Department of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 (USA), E
| | - Derek K. O'Flaherty
- Howard Hughes Medical Institute Department of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 (USA), E
- Present address: Alnylam Pharmaceuticals Cambridge MA 02142 USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute Department of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 (USA), E
| |
Collapse
|
13
|
Nie P, Bai Y, Mei H. Synthetic Life with Alternative Nucleic Acids as Genetic Materials. Molecules 2020; 25:E3483. [PMID: 32751873 PMCID: PMC7435384 DOI: 10.3390/molecules25153483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
DNA, the fundamental genetic polymer of all living organisms on Earth, can be chemically modified to embrace novel functions that do not exist in nature. The key chemical and structural parameters for genetic information storage, heredity, and evolution have been elucidated, and many xenobiotic nucleic acids (XNAs) with non-canonical structures are developed as alternative genetic materials in vitro. However, it is still particularly challenging to replace DNAs with XNAs in living cells. This review outlines some recent studies in which the storage and propagation of genetic information are achieved in vivo by expanding genetic systems with XNAs.
Collapse
Affiliation(s)
| | | | - Hui Mei
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.N.); (Y.B.)
| |
Collapse
|
14
|
Zhang N, Shi S, Wang X, Ni W, Yuan X, Duan J, Jia TZ, Yoo B, Ziegler A, Russo JJ, Li W, Zhang S. Direct Sequencing of tRNA by 2D-HELS-AA MS Seq Reveals Its Different Isoforms and Dynamic Base Modifications. ACS Chem Biol 2020; 15:1464-1472. [PMID: 32364699 DOI: 10.1021/acschembio.0c00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Post-transcriptional modifications are intrinsic to RNA structure and function. However, methods to sequence RNA typically require a cDNA intermediate and are either not able to sequence these modifications or are tailored to sequence one specific nucleotide modification only. Interestingly, some of these modifications occur with <100% frequency at their particular sites, and site-specific quantification of their stoichiometries is another challenge. Here, we report a direct method for sequencing tRNAPhe without cDNA by integrating a two-dimensional hydrophobic RNA end-labeling strategy with an anchor-based algorithm in mass spectrometry-based sequencing (2D-HELS-AA MS Seq). The entire tRNAPhe was sequenced and the identity, location, and stoichiometry of all eleven different RNA modifications was determined, five of which were not 100% modified, including a 2'-O-methylated G (Gm) in the wobble anticodon position as well as an N2, N2-dimethylguanosine (m22G), a 7-methylguanosine (m7G), a 1-methyladenosine (m1A), and a wybutosine (Y), suggesting numerous post-transcriptional regulations in tRNA. Two truncated isoforms at the 3'-CCA tail of the tRNAPhe (75 nt with a 3'-CC tail (80% abundance) and 74 nt with a 3'-C tail (3% abundance)) were identified in addition to the full-length 3'-CCA-tailed tRNAPhe (76 nt, 17% abundance). We discovered a new isoform with A-G transitions/editing at the 44 and 45 positions in the tRNAPhe variable loop, and discuss possible mechanisms related to the emergence and functions of the isoforms with these base transitions or editing. Our method revealed new isoforms, base modifications, and RNA editing as well as their stoichiometries in the tRNA that cannot be determined by current cDNA-based methods, opening new opportunities in the field of epitranscriptomics.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Shundi Shi
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xuanting Wang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenhao Ni
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Xiaohong Yuan
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Jiachen Duan
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Barney Yoo
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Ashley Ziegler
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - James J. Russo
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenjia Li
- Department of Computer Science, New York Institute of Technology, New York, New York 10023, United States
| | - Shenglong Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| |
Collapse
|
15
|
Zhang N, Shi S, Jia TZ, Ziegler A, Yoo B, Yuan X, Li W, Zhang S. A general LC-MS-based RNA sequencing method for direct analysis of multiple-base modifications in RNA mixtures. Nucleic Acids Res 2020; 47:e125. [PMID: 31504795 PMCID: PMC6847078 DOI: 10.1093/nar/gkz731] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
A complete understanding of the structural and functional potential of RNA requires understanding of chemical modifications and non-canonical bases; this in turn requires advances in current sequencing methods to be able to sequence not only canonical ribonucleotides, but at the same time directly sequence these non-standard moieties. Here, we present the first direct and modification type-independent RNA sequencing method via introduction of a 2-dimensional hydrophobic end-labeling strategy into traditional mass spectrometry-based sequencing (2D HELS MS Seq) to allow de novo sequencing of RNA mixtures and enhance sample usage efficiency. Our method can directly read out the complete sequence, while identifying, locating, and quantifying base modifications accurately in both single and mixed RNA samples containing multiple different modifications at single-base resolution. Our method can also quantify stoichiometry/percentage of modified RNA versus its canonical counterpart RNA, simulating a real biological sample where modifications exist but may not be 100% at a particular site in the RNA. This method is a critical step towards fully sequencing real complex cellular RNA samples of any type and containing any modification type and can also be used in the quality control of modified therapeutic RNAs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA.,Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Shundi Shi
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Ashley Ziegler
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA
| | - Barney Yoo
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Xiaohong Yuan
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA
| | - Wenjia Li
- Department of Computer Science, New York Institute of Technology, New York, NY 10023, USA
| | - Shenglong Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA
| |
Collapse
|
16
|
Molecular shape as a key source of prebiotic information. J Theor Biol 2020; 499:110316. [PMID: 32387366 DOI: 10.1016/j.jtbi.2020.110316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 01/27/2023]
Abstract
One of the most striking features of a living system is the self-sustaining functional inner organization, which is only possible when a source of internal references is available from which the system is able to self-organize components and processes. Internal references are intrinsically related to biological information, which is typically understood as genetic information. However, the organization in living systems supports a diversity of intricate processes that enable life to endure, adapt and reproduce because of this organization. In a biological context, information refers to a complex relationship between internal architecture and system functionality. Nongenetic processes, such as conformational recognition, are not considered biological information, although they exert important control over cell processes. In this contribution, we discuss the informational nature in the recognition of molecular shape in living systems. Thus, we highlight supramolecular matching as having a theoretical key role in the origin of life. Based on recent data, we demonstrate that the transfer of molecular conformation is a very likely dynamic of prebiotic information, which is closely related to the origin of biological homochirality and biogenic systems. In light of the current hypothesis, we also revisit the central dogma of molecular biology to assess the consistency of the proposal presented here. We conclude that both spatial (molecular shape) and sequential (genetic) information must be represented in this biological paradigm.
Collapse
|
17
|
Abstract
Life on Earth depends on polymerases. These enzymes copy genetic information to produce the DNA and RNA strands at the core of the central dogma. Polymerases act by forming phosphodiester linkages to produce polynucleotide strands. While synthetic chemistry can generate a broad range of alternative genetic materials with unnatural linkages, polymerases have so far been limited to forming O-P bonds. Here, we show that, in fact, unnatural N-P bonds can also be formed by a modified DNA polymerase. This template-directed activity generates complementary strands linked by phosphoramidate (NP) esters, an alternative backbone linkage only known to exist in the laboratory. The emergence of NP-DNA polymerase activity implies the biochemical plausibility of alternative central dogmas for cellular life. All known polymerases copy genetic material by catalyzing phosphodiester bond formation. This highly conserved activity proceeds by a common mechanism, such that incorporated nucleoside analogs terminate chain elongation if the resulting primer strand lacks a terminal hydroxyl group. Even conservatively substituted 3′-amino nucleotides generally act as chain terminators, and no enzymatic pathway for their polymerization has yet been found. Although 3′-amino nucleotides can be chemically coupled to yield stable oligonucleotides containing N3′→P5′ phosphoramidate (NP) bonds, no such internucleotide linkages are known to occur in nature. Here, we report that 3′-amino terminated primers are, in fact, slowly extended by the DNA polymerase from B. stearothermophilus in a template-directed manner. When its cofactor is Ca2+ rather than Mg2+, the reaction is fivefold faster, permitting multiple turnover NP bond formation to yield NP-DNA strands from the corresponding 3′-amino-2′,3′-dideoxynucleoside 5′-triphosphates. A single active site mutation further enhances the rate of NP-DNA synthesis by an additional 21-fold. We show that DNA-dependent NP-DNA polymerase activity depends on conserved active site residues and propose a likely mechanism for this activity based on a series of crystal structures of bound complexes. Our results significantly broaden the catalytic scope of polymerase activity and suggest the feasibility of a genetic transition between native nucleic acids and NP-DNA.
Collapse
|
18
|
Lelyveld VS, O'Flaherty DK, Zhou L, Izgu EC, Szostak JW. DNA polymerase activity on synthetic N3'→P5' phosphoramidate DNA templates. Nucleic Acids Res 2019; 47:8941-8949. [PMID: 31428779 PMCID: PMC6755091 DOI: 10.1093/nar/gkz707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
Genetic polymers that could plausibly govern life in the universe might inhabit a broad swath of chemical space. A subset of these genetic systems can exchange information with RNA and DNA and could therefore form the basis for model protocells in the laboratory. N3'→P5' phosphoramidate (NP) DNA is defined by a conservative linkage substitution and has shown promise as a protocellular genetic material, but much remains unknown about its functionality and fidelity due to limited enzymatic tools. Conveniently, we find widespread NP-DNA-dependent DNA polymerase activity among reverse transcriptases, an observation consistent with structural studies of the RNA-like conformation of NP-DNA duplexes. Here, we analyze the consequences of this unnatural template linkage on the kinetics and fidelity of DNA polymerization activity catalyzed by wild-type and variant reverse transcriptases. Template-associated deficits in kinetics and fidelity suggest that even highly conservative template modifications give rise to error-prone DNA polymerase activity. Enzymatic copying of NP-DNA sequences is nevertheless an important step toward the future study and engineering of this synthetic genetic polymer.
Collapse
Affiliation(s)
- Victor S Lelyveld
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Enver Cagri Izgu
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
19
|
Zhou L, Kim SC, Ho KH, O'Flaherty DK, Giurgiu C, Wright TH, Szostak JW. Non-enzymatic primer extension with strand displacement. eLife 2019; 8:e51888. [PMID: 31702557 PMCID: PMC6872209 DOI: 10.7554/elife.51888] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Non-enzymatic RNA self-replication is integral to the emergence of the 'RNA World'. Despite considerable progress in non-enzymatic template copying, demonstrating a full replication cycle remains challenging due to the difficulty of separating the strands of the product duplex. Here, we report a prebiotically plausible approach to strand displacement synthesis in which short 'invader' oligonucleotides unwind an RNA duplex through a toehold/branch migration mechanism, allowing non-enzymatic primer extension on a template that was previously occupied by its complementary strand. Kinetic studies of single-step reactions suggest that following invader binding, branch migration results in a 2:3 partition of the template between open and closed states. Finally, we demonstrate continued primer extension with strand displacement by employing activated 3'-aminonucleotides, a more reactive proxy for ribonucleotides. Our study suggests that complete cycles of non-enzymatic replication of the primordial genetic material may have been facilitated by short RNA oligonucleotides.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Center for Computational and IntegrativeBiologyMassachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Seohyun Chris Kim
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Center for Computational and IntegrativeBiologyMassachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Katherine H Ho
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Derek K O'Flaherty
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Center for Computational and IntegrativeBiologyMassachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Constantin Giurgiu
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Tom H Wright
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Center for Computational and IntegrativeBiologyMassachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Jack W Szostak
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Center for Computational and IntegrativeBiologyMassachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
20
|
Zhang W, Pal A, Ricardo A, Szostak JW. Template-Directed Nonenzymatic Primer Extension Using 2-Methylimidazole-Activated Morpholino Derivatives of Guanosine and Cytidine. J Am Chem Soc 2019; 141:12159-12166. [PMID: 31298852 PMCID: PMC7547883 DOI: 10.1021/jacs.9b06453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efforts to develop self-replicating nucleic acids have led to insights into the origin of life and have also suggested potential pathways to the design of artificial life forms based on non-natural nucleic acids. The template-directed nonenzymatic polymerization of activated ribonucleotide monomers is generally slow because of the relatively weak nucleophilicity of the primer 3'-hydroxyl. To circumvent this problem, several nucleic acids based on amino-sugar nucleotides have been studied, and as expected, the more-nucleophilic amine generally results in faster primer extension. Extending this logic, we have chosen to study morpholino nucleic acid (MoNA), because the secondary amine of the morpholino-nucleotides is expected to be highly nucleophilic. We describe the synthesis of 2-methylimidazole-activated MoNA monomers from their corresponding ribonucleoside 5'-monophosphates and the synthesis of an RNA primer with a terminal MoNA nucleotide. We show that the activated G and C MoNA monomers enable rapid and efficient extension of the morpholino-terminated primer on homopolymeric and mixed-sequenced RNA templates. Our results show that MoNA is a non-natural informational polymer that is worthy of further study as a candidate self-replicating material.
Collapse
Affiliation(s)
- Weicheng Zhang
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States
| | - Ayan Pal
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States
| | - Alonso Ricardo
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States
| |
Collapse
|
21
|
O'Flaherty DK, Zhou L, Szostak JW. Nonenzymatic Template-Directed Synthesis of Mixed-Sequence 3'-NP-DNA up to 25 Nucleotides Long Inside Model Protocells. J Am Chem Soc 2019; 141:10481-10488. [PMID: 31180644 PMCID: PMC7547854 DOI: 10.1021/jacs.9b04858] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Efficiently copying mixed-sequence oligonucleotide templates nonenzymatically is a long-standing problem both with respect to the origin of life, and with regard to bottom up efforts to synthesize artificial living systems. Here we report an efficient and sequence-general nonenzymatic process in which RNA templates direct the synthesis of a complementary strand composed of N3'→P5' phosphoramidate DNA (3'-NP-DNA) using 3'-amino-2',3'-dideoxyribonucleotides activated with 2-aminoimidazole. Using only the four canonical nucleobases (A, G, C, and T) of modern DNA, we demonstrate the chemical copying of a variety of mixed-sequence RNA templates, both in solution and within model protocells, into complementary 3'-NP-DNA strands. Templates up to 25 nucleotides long were chemically transcribed with an average stepwise yield of 96-97%. The nonenzymatic template-directed generation of primer extension products long enough to encode active ribozymes and/or aptamers inside model protocells suggests possible routes to the synthesis of evolving cellular systems.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States.,Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
22
|
Núñez-Villanueva D, Ciaccia M, Iadevaia G, Sanna E, Hunter CA. Sequence information transfer using covalent template-directed synthesis. Chem Sci 2019; 10:5258-5266. [PMID: 31191881 PMCID: PMC6540929 DOI: 10.1039/c9sc01460h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
Kinetically inert ester bonds were used to attach monomers to a template, dictating the sequence of the polymer product.
Template-directed synthesis is the biological method for the assembly of oligomers of defined sequence, providing the molecular basis for replication and the process of evolution. To apply analogous processes to synthetic oligomeric molecules, methods are required for the transfer of sequence information from a template to a daughter strand. We show that covalent template-directed synthesis is a promising approach for the molecular replication of sequence information in synthetic oligomers. Two monomer building blocks were synthesized: a phenol monomer and a benzoic acid monomer, each bearing an alkyne and an azide for oligomerization via copper catalyzed azide alkyne cycloaddition (CuAAC) reactions. Stepwise synthesis was used to prepare oligomers, where information was encoded as the sequence of phenol (P) and benzoic acid (A) units. Ester base-pairing was used to attach monomers to a mixed sequence template, and CuAAC was used to zip up the backbone. Hydrolysis of the ester base-pairs gave back the starting template and the sequence complementary copy. When the AAP trimer was used as the template, the complementary sequence PPA was obtained as the major product, with a small amount of scrambling resulting in PAP as a side-product. This covalent base-pairing strategy represents a general approach that can be implemented in different formats for the replication of sequence information in synthetic oligomers.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Maria Ciaccia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Elena Sanna
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
23
|
Arangundy-Franklin S, Taylor AI, Porebski BT, Genna V, Peak-Chew S, Vaisman A, Woodgate R, Orozco M, Holliger P. A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nat Chem 2019; 11:533-542. [PMID: 31011171 DOI: 10.1038/s41557-019-0255-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
Abstract
The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules.
Collapse
Affiliation(s)
| | - Alexander I Taylor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Benjamin T Porebski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vito Genna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Roger Woodgate
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
24
|
How Prebiotic Chemistry and Early Life Chose Phosphate. Life (Basel) 2019; 9:life9010026. [PMID: 30832398 PMCID: PMC6462974 DOI: 10.3390/life9010026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
The very specific thermodynamic instability and kinetic stability of phosphate esters and anhydrides impart them invaluable properties in living organisms in which highly efficient enzyme catalysts compensate for their low intrinsic reactivity. Considering their role in protein biosynthesis, these properties raise a paradox about early stages: How could these species be selected in the absence of enzymes? This review is aimed at demonstrating that considering mixed anhydrides or other species more reactive than esters and anhydrides can help in solving the paradox. The consequences of this approach for chemical evolution and early stages of life are analysed.
Collapse
|
25
|
Núñez-Villanueva D, Ciaccia M, Hunter CA. Cap control: cyclic versus linear oligomerisation in covalent template-directed synthesis. RSC Adv 2019; 9:29566-29569. [PMID: 35531529 PMCID: PMC9071899 DOI: 10.1039/c9ra07233k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Covalent template-directed synthesis was used to oligomerise monomer building blocks in a controlled manner to give exclusively the linear trimer. Competing reaction pathways were blocked by addition of a large excess of a monomeric capping agent. At a concentration of 1 mM, the cap selectively prevented further reaction of the product chain ends to give polymeric and macrocyclic products, but did not interfere with the templating process. The right concentration of capping agent is required to control the product distribution in covalent template-directed synthesis of linear oligomers using CuAAC.![]()
Collapse
Affiliation(s)
| | - Maria Ciaccia
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | | |
Collapse
|
26
|
Mai S, Mohamadzade A, Marquetand P, González L, Ullrich S. Simulated and Experimental Time-Resolved Photoelectron Spectra of the Intersystem Crossing Dynamics in 2-Thiouracil. Molecules 2018; 23:E2836. [PMID: 30388739 PMCID: PMC6278540 DOI: 10.3390/molecules23112836] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
We report time-dependent photoelectron spectra recorded with a single-photon ionization setup and extensive simulations of the same spectra for the excited-state dynamics of 2-thiouracil (2TU) in the gas phase. We find that single-photon ionization produces very similar results as two-photon ionization, showing that the probe process does not have a strong influence on the measured dynamics. The good agreement between the single-photon ionization experiments and the simulations shows that the norms of Dyson orbitals allow for qualitatively describing the ionization probabilities of 2TU. This reasonable performance of Dyson norms is attributed to the particular electronic structure of 2TU, where all important neutral and ionic states involve similar orbital transitions and thus the shape of the Dyson orbitals do not strongly depend on the initial neutral and final ionic state. We argue that similar situations should also occur in other biologically relevant thio-nucleobases, and that the time-resolved photoelectron spectra of these bases could therefore be adequately modeled with the techniques employed here.
Collapse
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Abed Mohamadzade
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA.
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Susanne Ullrich
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
27
|
Janicki MJ, Szabla R, Šponer J, Góra RW. Solvation effects alter the photochemistry of 2-thiocytosine. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Affiliation(s)
- Elena Hänle
- Institut für Organische Chemie; Universität Stuttgart; 70569 Stuttgart Germany
| | - Clemens Richert
- Institut für Organische Chemie; Universität Stuttgart; 70569 Stuttgart Germany
| |
Collapse
|
29
|
Hänle E, Richert C. Enzyme-Free Replication with Two or Four Bases. Angew Chem Int Ed Engl 2018; 57:8911-8915. [PMID: 29779237 DOI: 10.1002/anie.201803074] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/27/2018] [Indexed: 11/10/2022]
Abstract
All known forms of life encode their genetic information in a sequence of bases of a genetic polymer and produce copies through replication. How this process started before polymerase enzymes had evolved is unclear. Enzyme-free copying of short stretches of DNA or RNA has been demonstrated using activated nucleotides, but not replication. We have developed a method for enzyme-free replication. It involves extension with reversible termination, enzyme-free ligation, and strand capture. We monitored nucleotide incorporation for a full helical turn of DNA, during both a first and a second round of copying, by using mass spectrometry. With all four bases (A/C/G/T), an "error catastrophe" occurred, with the correct sequence being "overwhelmed" by incorrect ones. When only C and G were used, approximately half of the daughter strands had the mass of the correct sequence after 20 copying steps. We conclude that enzyme-free replication is more likely to be successful with just the two strongly pairing bases than with all four bases of the genetic alphabet.
Collapse
Affiliation(s)
- Elena Hänle
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
30
|
Abstract
![]()
The
potential of N(Me)-alkoxyamine glycosylation
as a DNA-templated ligation has been studied. On a hairpin stem-template
model, a notable rate enhancement and an increased equilibrium yield
are observed compared to the corresponding reaction without a DNA
catalyst. The N-glycosidic connection is dynamic
at pH 5, whereas it becomes irreversible at pH 7. The N(Me)-alkoxyamine glycosylation may hence be an attractive pH controlled
reaction for the assembly of DNA-based dynamic products.
Collapse
Affiliation(s)
- Tommi Österlund
- Department of Chemistry , University of Turku , 20014 Turku , Finland
| | - Heidi Korhonen
- Department of Chemistry , University of Turku , 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , 20014 Turku , Finland
| |
Collapse
|
31
|
Yu H, Sanchez-Rodriguez JA, Pollum M, Crespo-Hernández CE, Mai S, Marquetand P, González L, Ullrich S. Internal conversion and intersystem crossing pathways in UV excited, isolated uracils and their implications in prebiotic chemistry. Phys Chem Chem Phys 2018; 18:20168-76. [PMID: 27189184 DOI: 10.1039/c6cp01790h] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The photodynamic properties of molecules determine their ability to survive in harsh radiation environments. As such, the photostability of heterocyclic aromatic compounds to electromagnetic radiation is expected to have been one of the selection pressures influencing the prebiotic chemistry on early Earth. In the present study, the gas-phase photodynamics of uracil, 5-methyluracil (thymine) and 2-thiouracil-three heterocyclic compounds thought to be present during this era-are assessed in the context of their recently proposed intersystem crossing pathways that compete with internal conversion to the ground state. Specifically, time-resolved photoelectron spectroscopy measurements evidence femtosecond to picosecond timescales for relaxation of the singlet (1)ππ* and (1)nπ* states as well as for intersystem crossing to the triplet manifold. Trapping in the excited triplet state and intersystem crossing back to the ground state are investigated as potential factors contributing to the susceptibility of these molecules to ultraviolet photodamage.
Collapse
Affiliation(s)
- Hui Yu
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA.
| | | | - Marvin Pollum
- Department of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carlos E Crespo-Hernández
- Department of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Susanne Ullrich
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
32
|
Szostak JW. The Origin of Life on Earth and the Design of Alternative Life Forms. MOLECULAR FRONTIERS JOURNAL 2017. [DOI: 10.1142/s2529732517400132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand the origin of life on Earth, and to evaluate the potential for life on exoplanets, we must understand the pathways that lead from chemistry to biology. Recent experiments suggest that a chemically rich environment that provides the building blocks of membranes, nucleic acids and peptides, along with sources of chemical energy, could result in the emergence of replicating, evolving cells. The broad scope of synthetic chemistry suggests that it may be possible to design and construct artificial life forms based upon a very different biochemistry than that of existing biology.
Collapse
|
33
|
Photorelaxation and Photorepair Processes in Nucleic and Amino Acid Derivatives. Molecules 2017; 22:molecules22122203. [PMID: 29231852 PMCID: PMC6149726 DOI: 10.3390/molecules22122203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/17/2022] Open
Abstract
Understanding the fundamental interaction between electromagnetic radiation and matter is essential for a large number of phenomena, with significance to civilization.[...].
Collapse
|
34
|
Beierle JM, Ura Y, Ghadiri MR, Leman LJ. Templated Self-Assembly of Dynamic Peptide Nucleic Acids. Biochemistry 2017; 57:160-172. [PMID: 28832127 DOI: 10.1021/acs.biochem.7b00656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Template-directed macromolecule synthesis is a hallmark of living systems. Inspired by this natural process, several fundamentally novel mechanisms for template-directed assembly of nucleic acid analogues have been developed. Although these approaches have broad significance, including potential applications in biotechnology and implications for the origins of life, there are unresolved challenges in how to characterize in detail the complex assembly equilibria associated with dynamic templated reactions. Here we describe mechanistic studies of template-directed dynamic assembly for thioester peptide nucleic acid (tPNA), an informational polymer that responds to selection pressures under enzyme-free conditions. To overcome some of the inherent challenges of mechanistic studies of dynamic oligomers, we designed, synthesized, and implemented tPNA-DNA conjugates. The DNA primer region affords a high level of control over the location and register of the tPNA backbone in relation to the template strand. We characterized the degree and kinetics of dynamic nucleobase mismatch correction at defined backbone positions. Furthermore, we report the fidelity of dynamic assembly in tPNA as a function of position along the peptide backbone. Finally, we present theoretical studies that explore the level of fidelity that can be expected for an oligomer having a given hybridization affinity in dynamic templated reactions and provide guidance for the future development of sequence self-editing polymers and materials. As our results demonstrate, the use of molecular conjugates of constitutionally static and dynamic polymers establishes a new methodology for expediting the characterization of the complex chemical equilibria that underlie the assembly of dynamic informational polymers.
Collapse
Affiliation(s)
- John M Beierle
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yasuyuki Ura
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - M Reza Ghadiri
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke J Leman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
35
|
Arslancan S, Martínez-Fernández L, Corral I. Photophysics and Photochemistry of Canonical Nucleobases’ Thioanalogs: From Quantum Mechanical Studies to Time Resolved Experiments. Molecules 2017. [PMCID: PMC6152766 DOI: 10.3390/molecules22060998] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interest in understanding the photophysics and photochemistry of thiated nucleobases has been awakened because of their possible involvement in primordial RNA or their potential use as photosensitizers in medicinal chemistry. The interpretation of the photodynamics of these systems, conditioned by their intricate potential energy surfaces, requires the powerful interplay between experimental measurements and state of the art molecular simulations. In this review, we provide an overview on the photophysics of natural nucleobases’ thioanalogs, which covers the last 30 years and both experimental and computational contributions. For all the canonical nucleobase’s thioanalogs, we have compiled the main steady state absorption and emission features and their interpretation in terms of theoretical calculations. Then, we revise the main topographical features, including stationary points and interstate crossings, of their potential energy surfaces based on quantum mechanical calculations and we conclude, by combining the outcome of different spectroscopic techniques and molecular dynamics simulations, with the mechanism by which these nucleobase analogs populate their triplet excited states, which are at the origin of their photosensitizing properties.
Collapse
Affiliation(s)
- Serra Arslancan
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid 28049, Spain;
| | - Lara Martínez-Fernández
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, Napoli I-80134, Italy
- Correspondence: (L.M.-F.); (I.C.); Tel.: +34-91-497-8471 (I.C.)
| | - Inés Corral
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid 28049, Spain;
- Institute for Advanced Research in Chemical Sciences (IADCHEM), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Correspondence: (L.M.-F.); (I.C.); Tel.: +34-91-497-8471 (I.C.)
| |
Collapse
|
36
|
Mai S, Pollum M, Martínez-Fernández L, Dunn N, Marquetand P, Corral I, Crespo-Hernández CE, González L. The origin of efficient triplet state population in sulfur-substituted nucleobases. Nat Commun 2016; 7:13077. [PMID: 27703148 PMCID: PMC5059480 DOI: 10.1038/ncomms13077] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022] Open
Abstract
Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero.
Collapse
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Marvin Pollum
- Center for Chemical Dynamics and Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | - Nicholas Dunn
- Center for Chemical Dynamics and Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Inés Corral
- Universidad Autónoma de Madrid, Departamento de Química, Cantoblanco, Madrid 28049, Spain
| | - Carlos E. Crespo-Hernández
- Center for Chemical Dynamics and Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
37
|
Izgu EC, Oh SS, Szostak JW. Synthesis of activated 3'-amino-3'-deoxy-2-thio-thymidine, a superior substrate for the nonenzymatic copying of nucleic acid templates. Chem Commun (Camb) 2016; 52:3684-6. [PMID: 26857159 DOI: 10.1039/c5cc10317g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a scalable synthesis of 3'-amino-3'-deoxy-2-thio-thymidine-5'-phosphoro-2-methylimidazolide, an activated monomer that can copy adenosine residues in nucleic acid templates rapidly without a polymerase. The sulfur atom substitution enhances the rate of template copying by 5-fold compared with the 3'-amino-3'-deoxy-T monomer, while the 3'-amino monomers exhibit a 2- to 30-fold enhancement compared with their ribonucleotide counterparts.
Collapse
Affiliation(s)
- Enver Cagri Izgu
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA. and Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Seung Soo Oh
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA. and Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA. and Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA and Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, USA
| |
Collapse
|
38
|
Abstract
Understanding how life arose is a fundamental problem of biology. Much progress has been made by adopting a synthetic and mechanistic perspective on originating life. We present a current view of the biochemistry of the origin of life, focusing on issues surrounding the emergence of an RNA World in which RNA dominated informational and functional roles. There is cause for optimism on this difficult problem: the prebiotic chemical inventory may not have been as nightmarishly complex as previously thought; the catalytic repertoire of ribozymes continues to expand, approaching the goal of self-replicating RNA; encapsulation in protocells provides evolutionary and biophysical advantages. Nevertheless, major issues remain unsolved, such as the origin of a genetic code. Attention to this field is particularly timely given the accelerating discovery and characterization of exoplanets.
Collapse
|
39
|
Mai S, Marquetand P, González L. Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture. J Phys Chem Lett 2016; 7:1978-83. [PMID: 27167106 PMCID: PMC4893732 DOI: 10.1021/acs.jpclett.6b00616] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The deactivation mechanism after ultraviolet irradiation of 2-thiouracil has been investigated using nonadiabatic dynamics simulations at the MS-CASPT2 level of theory. It is found that after excitation the S2 quickly relaxes to S1, and from there intersystem crossing takes place to both T2 and T1 with a time constant of 400 fs and a triplet yield above 80%, in very good agreement with recent femtosecond experiments in solution. Both indirect S1 → T2 → T1 and direct S1 → T1 pathways contribute to intersystem crossing, with the former being predominant. The results contribute to the understanding of how some noncanonical nucleobases respond to harmful ultraviolet light, which could be relevant for prospective photochemotherapeutic applications.
Collapse
|
40
|
Camden AJ, Walsh SM, Suk SH, Silverman SK. DNA Oligonucleotide 3'-Phosphorylation by a DNA Enzyme. Biochemistry 2016; 55:2671-6. [PMID: 27063020 DOI: 10.1021/acs.biochem.6b00151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T4 polynucleotide kinase is widely used for 5'-phosphorylation of DNA and RNA oligonucleotide termini, but no natural protein enzyme is capable of 3'-phosphorylation. Here, we report the in vitro selection of deoxyribozymes (DNA enzymes) capable of DNA oligonucleotide 3'-phosphorylation, using a 5'-triphosphorylated RNA transcript (pppRNA) as the phosphoryl donor. The basis of selection was the capture, during each selection round, of the 3'-phosphorylated DNA substrate terminus by 2-methylimidazole activation of the 3'-phosphate (forming 3'-MeImp) and subsequent splint ligation with a 5'-amino DNA oligonucleotide. Competing and precedented DNA-catalyzed reactions were DNA phosphodiester hydrolysis or deglycosylation, each also leading to a 3'-phosphate but at a different nucleotide position within the DNA substrate. One oligonucleotide 3'-kinase deoxyribozyme, obtained from an N40 random pool and named 3'Kin1, can 3'-phosphorylate nearly any DNA oligonucleotide substrate for which the 3'-terminus has the sequence motif 5'-NKR-3', where N denotes any oligonucleotide sequence, K = T or G, and R = A or G. These results establish the viabilty of in vitro selection for identifying DNA enzymes that 3'-phosphorylate DNA oligonucleotides.
Collapse
Affiliation(s)
- Alison J Camden
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Shannon M Walsh
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sarah H Suk
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Pal A, Das RS, Zhang W, Lang M, McLaughlin LW, Szostak JW. Effect of terminal 3′-hydroxymethyl modification of an RNA primer on nonenzymatic primer extension. Chem Commun (Camb) 2016; 52:11905-11907. [DOI: 10.1039/c6cc06925h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Displacing the hydroxyl nucleophile at the 3′-end of a primer by a single methylene group drastically decreases the rate of primer extension, illustrating the importance of the precise position of the hydroxyl nucleophile.
Collapse
Affiliation(s)
- Ayan Pal
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- Boston
- USA
| | - Rajat S. Das
- Boston College
- Department of Chemistry
- Merkert Chemistry Center
- Chestnut Hill
- USA
| | - Weicheng Zhang
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- Boston
- USA
| | - Megan Lang
- Boston College
- Department of Chemistry
- Merkert Chemistry Center
- Chestnut Hill
- USA
| | - Larry W. McLaughlin
- Boston College
- Department of Chemistry
- Merkert Chemistry Center
- Chestnut Hill
- USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- Boston
- USA
| |
Collapse
|
42
|
Cafferty BJ, Hud NV. Was a Pyrimidine-Pyrimidine Base Pair the Ancestor of Watson-Crick Base Pairs? Insights from a Systematic Approach to the Origin of RNA. Isr J Chem 2015. [DOI: 10.1002/ijch.201400206] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Affiliation(s)
- Irene A Chen
- Department of Chemistry &Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| |
Collapse
|
44
|
|
45
|
Heuberger BD, Pal A, Del Frate F, Topkar VV, Szostak JW. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension. J Am Chem Soc 2015; 137:2769-75. [PMID: 25654265 PMCID: PMC4985000 DOI: 10.1021/jacs.5b00445] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
nonenzymatic replication of RNA oligonucleotides is thought
to have played a key role in the origin of life prior to the evolution
of ribozyme-catalyzed RNA replication. Although the copying of oligo-C
templates by 2-methylimidazole-activated G monomers can be quite efficient,
the copying of mixed sequence templates, especially those containing
A and U, is particularly slow and error-prone. The greater thermodynamic
stability of the 2-thio-U(s2U):A base pair, relative to
the canonical U:A base pair, suggests that replacing U with s2U might enhance the rate and fidelity of the nonenzymatic
copying of RNA templates. Here we report that this single atom substitution
in the activated monomer improves both the kinetics and the fidelity
of nonenzymatic primer extension on mixed-sequence RNA templates.
In addition, the mean lengths of primer extension products obtained
with s2U is greater than those obtained with U, augmenting
the potential for nonenzymatic replication of heritable function-rich
sequences. We suggest that noncanonical nucleotides such as s2U may have played a role during the infancy of the RNA world
by facilitating the nonenzymatic replication of genomic RNA oligonucleotides.
Collapse
Affiliation(s)
- Benjamin D Heuberger
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, and Department of Molecular Biology, Simches Research Center, Massachusetts General Hospital , Boston, Massachusetts 02114, United States
| | | | | | | | | |
Collapse
|
46
|
Barbeyron R, Martin AR, Jean-Jacques Vasseur JJV, Michael Smietana MS. DNA-templated borononucleic acid self assembly: a study of minimal complexity. RSC Adv 2015. [DOI: 10.1039/c5ra20767c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The minimal degree of sequence complexity needed for DNA-templated self-assembly of bifunctional oligonucleotides able to form internucleosidic boronate linkages has been studied.
Collapse
Affiliation(s)
- Renaud Barbeyron
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS
- Université de Montpellier
- 34095 Montpellier
- France
| | - Anthony R. Martin
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS
- Université de Montpellier
- 34095 Montpellier
- France
| | | | | |
Collapse
|
47
|
Abstract
This review discusses the template-directed preparation of sequence-defined polymers.
Collapse
|
48
|
Barbeyron R, Vasseur JJ, Smietana M. pH-controlled DNA- and RNA-templated assembly of short oligomers. Chem Sci 2015; 6:542-547. [PMID: 28936308 PMCID: PMC5588539 DOI: 10.1039/c4sc03028a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/24/2014] [Indexed: 01/04/2023] Open
Abstract
In the area of artificial genetics the development of non-enzymatic self-organization of synthetic building blocks is critical for both providing biopolymers with extended functions and understanding prebiotic processes. While reversibility is believed to have played a major role in early functional genetic materials, we previously reported an efficient DNA-templated ligation of suitably designed 5'-end boronic acid and 3'-end ribonucleosidic half-sequences. Here, we report the enzyme-free and activation-free DNA- and RNA-templated assembly of bifunctional hexamers. The reversible assembly was found to be regio- and sequence specific and the stabilities of the resulting duplexes were compared to their nicked counterparts. To go further with our understanding of this unprecedented process we also examined an auto-templated duplex self-assembly representing a key step toward the evolution of sequence-defined synthetic polymers.
Collapse
Affiliation(s)
- Renaud Barbeyron
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et Université Montpellier 2 , Place Bataillon , 34095 Montpellier , France . ;
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et Université Montpellier 2 , Place Bataillon , 34095 Montpellier , France . ;
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et Université Montpellier 2 , Place Bataillon , 34095 Montpellier , France . ;
| |
Collapse
|
49
|
Reconciling ligase ribozyme activity with Fatty Acid vesicle stability. Life (Basel) 2014; 4:929-43. [PMID: 25513761 PMCID: PMC4284475 DOI: 10.3390/life4040929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/21/2014] [Accepted: 12/03/2014] [Indexed: 11/30/2022] Open
Abstract
The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment.
Collapse
|
50
|
Wills PR. Spontaneous mutual ordering of nucleic acids and proteins. ORIGINS LIFE EVOL B 2014; 44:293-8. [PMID: 25585807 DOI: 10.1007/s11084-014-9396-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/04/2014] [Indexed: 11/29/2022]
Abstract
It is proposed that the prebiotic ordering of nucleic acid and peptide sequences was a cooperative process in which nearly random populations of both kinds of polymers went through a codependent series of self-organisation events that simultaneously refined not only the accuracy of genetic replication and coding but also the functional specificity of protein catalysts, especially nascent aminoacyl-tRNA synthetase "urzymes".
Collapse
Affiliation(s)
- Peter R Wills
- Department of Physics, University of Auckland, PB 92019, Auckland, 1142, New Zealand,
| |
Collapse
|