1
|
Tavassoli A, McDermott A. Hypoxia-inducing transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. Transcription 2024:1-32. [PMID: 39470609 DOI: 10.1080/21541264.2024.2417475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.
Collapse
Affiliation(s)
- Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| | | |
Collapse
|
2
|
Britton D, Katsara O, Mishkit O, Wang A, Pandya N, Liu C, Mao H, Legocki J, Jia S, Xiao Y, Aristizabal O, Paul D, Deng Y, Schneider R, Wadghiri YZ, Montclare JK. Engineered coiled-coil HIF1α protein domain mimic. Biomater Sci 2024; 12:2951-2959. [PMID: 38656316 PMCID: PMC11191652 DOI: 10.1039/d4bm00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The development of targeted anti-cancer therapeutics offers the potential for increased efficacy of drugs and diagnostics. Utilizing modalities agnostic to tumor type, such as the hypoxic tumor microenvironment (TME), may assist in the development of universal tumor targeting agents. The hypoxia-inducible factor (HIF), in particular HIF1, plays a key role in tumor adaptation to hypoxia, and inhibiting its interaction with p300 has been shown to provide therapeutic potential. Using a multivalent assembled protein (MAP) approach based on the self-assembly of the cartilage oligomeric matrix protein coiled-coil (COMPcc) domain fused to the critical residues of the C-terminal transactivation domain (C-TAD) of the α subunit of HIF1 (HIF1α), we generate HIF1α-MAP (H-MAP). The resulting H-MAP demonstrates picomolar binding affinity to p300, the ability to downregulate hypoxia-inducible genes, and in vivo tumor targeting capability.
Collapse
Affiliation(s)
- Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Olga Katsara
- Department of Microbiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Orin Mishkit
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Andrew Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
- Department of Biomedical Engineering, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
| | - Neelam Pandya
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Chengliang Liu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Heather Mao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Jakub Legocki
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Sihan Jia
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Yingxin Xiao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Orlando Aristizabal
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Deven Paul
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Yan Deng
- Microscopy Laboratory, New York University Langone Health, New York, NY, 10016, USA
| | - Robert Schneider
- Department of Microbiology, New York University School of Medicine, New York, New York, 10016, USA
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, 10016, USA
| | - Youssef Z Wadghiri
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Department of Chemistry, New York University, New York, New York, 10012, USA
- Department of Biomaterials, New York University College of Dentistry, New York, New York, 10010, USA
- Department of Biomedical Engineering, New York University, New York, NY, 11201, USA
| |
Collapse
|
3
|
Zhao X, Liu H, Zhang JC, Cai J. Helical sulfonyl-γ-AApeptides for the inhibition of HIV-1 fusion and HIF-1α signaling. RSC Med Chem 2024; 15:1418-1423. [PMID: 38784464 PMCID: PMC11110726 DOI: 10.1039/d4md00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
Synthetic helical peptidic foldamers show promising applications in chemical biology and biomedical sciences by mimicking protein helical segments. Sulfonyl-γ-AApeptide helices developed by our group exhibit good chemodiversity, predictable folding structures, proteolytic resistance, favorable cell permeability, and enhanced bioavailability. Herein, in this minireview, we highlight two recent examples of homogeneous left-handed sulfonyl-γ-AApeptide helices to modulate protein-protein interactions (PPIs). One is sulfonyl-γ-AApeptides as anti-HIV-1 fusion inhibitors mimicking the helical C-terminal heptad repeat (CHR), which show excellent anti-HIV-1 activities through tight binding with the N-terminal heptad repeat (NHR) and inhibiting the formation of the 6-helical bundle (HB) structure. Another example is helical sulfonyl-γ-AApeptides disrupting hypoxia-inducible factor 1α (HIF-1α) and p300 PPI, thus selectively inhibiting the relevant signaling cascade. We hope these findings could help to elucidate the principles of the structural design of sulfonyl-γ-AApeptides and inspire their future applications in PPI modulations.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Heng Liu
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Justin C Zhang
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| |
Collapse
|
4
|
Pattelli ON, Valdivia EM, Beyersdorf MS, Regan CS, Rivas M, Hebert KA, Merajver SD, Cierpicki T, Mapp AK. A Lipopeptidomimetic of Transcriptional Activation Domains Selectively Disrupts the Coactivator Med25 Protein-Protein Interactions. Angew Chem Int Ed Engl 2024; 63:e202400781. [PMID: 38527936 PMCID: PMC11134611 DOI: 10.1002/anie.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Short amphipathic peptides are capable of binding to transcriptional coactivators, often targeting the same binding surfaces as native transcriptional activation domains. However, they do so with modest affinity and generally poor selectivity, limiting their utility as synthetic modulators. Here we show that incorporation of a medium-chain, branched fatty acid to the N-terminus of one such heptameric lipopeptidomimetic (LPPM-8) increases the affinity for the coactivator Med25 >20-fold (Ki >100 μM to 4 μM), rendering it an effective inhibitor of Med25 protein-protein interactions (PPIs). The lipid structure, the peptide sequence, and the C-terminal functionalization of the lipopeptidomimetic each influence the structural propensity of LPPM-8 and its effectiveness as an inhibitor. LPPM-8 engages Med25 through interaction with the H2 face of its activator interaction domain and in doing so stabilizes full-length protein in the cellular proteome. Further, genes regulated by Med25-activator PPIs are inhibited in a cell model of triple-negative breast cancer. Thus, LPPM-8 is a useful tool for studying Med25 and mediator complex biology and the results indicate that lipopeptidomimetics may be a robust source of inhibitors for activator-coactivator complexes.
Collapse
Affiliation(s)
- Olivia N. Pattelli
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Estefanía Martínez Valdivia
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Matthew S. Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Clint S. Regan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mónica Rivas
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Sofia D. Merajver
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Tomasz Cierpicki
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
5
|
Mi T, Nguyen D, Gao Z, Burgess K. Bioinformatics leading to conveniently accessible, helix enforcing, bicyclic ASX motif mimics (BAMMs). Nat Commun 2024; 15:4217. [PMID: 38760359 PMCID: PMC11101637 DOI: 10.1038/s41467-024-48323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Helix mimicry provides probes to perturb protein-protein interactions (PPIs). Helical conformations can be stabilized by joining side chains of non-terminal residues (stapling) or via capping fragments. Nature exclusively uses capping, but synthetic helical mimics are heavily biased towards stapling. This study comprises: (i) creation of a searchable database of unique helical N-caps (ASX motifs, a protein structural motif with two intramolecular hydrogen-bonds between aspartic acid/asparagine and following residues); (ii) testing trends observed in this database using linear peptides comprising only canonical L-amino acids; and, (iii) novel synthetic N-caps for helical interface mimicry. Here we show many natural ASX motifs comprise hydrophobic triangles, validate their effect in linear peptides, and further develop a biomimetic of them, Bicyclic ASX Motif Mimics (BAMMs). BAMMs are powerful helix inducing motifs. They are synthetically accessible, and potentially useful to a broad section of the community studying disruption of PPIs using secondary structure mimics.
Collapse
Affiliation(s)
- Tianxiong Mi
- Department of Chemistry, Texas A & M University, College Station, TX, 77842, USA
| | - Duyen Nguyen
- Department of Chemistry, Texas A & M University, College Station, TX, 77842, USA
| | - Zhe Gao
- Department of Chemistry, Texas A & M University, College Station, TX, 77842, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, College Station, TX, 77842, USA.
| |
Collapse
|
6
|
Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. RSC Med Chem 2023; 14:2496-2508. [PMID: 38107173 PMCID: PMC10718590 DOI: 10.1039/d3md00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023] Open
Abstract
Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, β-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Junlong Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Lingyan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
7
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Jiang W, Abdulkadir S, Zhao X, Sang P, Tomatsidou A, Zhang X, Chen Y, Calcul L, Sun X, Cheng F, Hu Y, Cai J. Inhibition of Hypoxia-Inducible Transcription Factor (HIF-1α) Signaling with Sulfonyl-γ-AApeptide Helices. J Am Chem Soc 2023; 145:20009-20020. [PMID: 37665648 PMCID: PMC10637359 DOI: 10.1021/jacs.3c06694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The development of inhibitors that selectively block protein-protein interactions (PPIs) is crucial for chemical biology, medicinal chemistry, and biomedical sciences. Herein, we reported the design, synthesis, and investigation of sulfonyl-γ-AApeptide as an alternative strategy of canonical peptide-based inhibitors to disrupt hypoxia-inducible factor 1α (HIF-1α) and p300 PPI by mimicking the helical domain of HIF-1α involved in the binding to p300. The designed molecules recognized the p300 protein with high affinity and potently inhibited the hypoxia-inducible signaling pathway. Gene expression profiling supported the idea that the lead molecules selectively inhibited hypoxia-inducible genes involved in the signaling cascade. Our studies also demonstrated that both helical faces consisting of either chiral side chains or achiral sulfonyl side chains of sulfonyl-γ-AApeptides could be adopted for mimicry of the α-helix engaging in PPIs. Furthermore, these sulfonyl-γ-AApeptides were cell-permeable and exhibited favorable stability and pharmacokinetic profiles. Our results could inspire the design of helical sulfonyl-γ-AApeptides as a general strategy to mimic the protein helical domain and modulate many other PPIs.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sami Abdulkadir
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Xue Zhao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Anastasia Tomatsidou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida 33612, United States
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| |
Collapse
|
9
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
10
|
Pattelli ON, Valdivia EM, Beyersdorf MS, Regan CS, Rivas M, Merajver SD, Cierpicki T, Mapp AK. A lipopeptidomimetic of transcriptional activation domains selectively disrupts Med25 PPIs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534168. [PMID: 36993479 PMCID: PMC10055422 DOI: 10.1101/2023.03.24.534168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Short amphipathic peptides are capable of binding to transcriptional coactivators, often targeting the same binding surfaces as native transcriptional activation domains. However, they do so with modest affinity and generally poor selectivity, limiting their utility as synthetic modulators. Here we show that incorporation of a medium-chain, branched fatty acid to the N-terminus of one such heptameric lipopeptidomimetic (34913-8) increases the affinity for the coactivator Med25 >10-fold ( Ki >>100 μM to 10 μM). Importantly, the selectivity of 34913-8 for Med25 compared to other coactivators is excellent. 34913-8 engages Med25 through interaction with the H2 face of its Ac tivator I nteraction D omain and in doing so stabilizes full-length protein in the cellular proteome. Further, genes regulated by Med25-activator PPIs are inhibited in a cell model of triple-negative breast cancer. Thus, 34913-8 is a useful tool for studying Med25 and the Mediator complex biology and the results indicate that lipopeptidomimetics may be a robust source of inhibitors for activator-coactivator complexes.
Collapse
|
11
|
Nath AK, Roy M, Dey C, Dey A, Dey SG. Spin state dependent peroxidase activity of heme bound amyloid β peptides relevant to Alzheimer's disease. Chem Sci 2022; 13:14305-14319. [PMID: 36545147 PMCID: PMC9749105 DOI: 10.1039/d2sc05008k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The colocalization of heme rich deposits in the senile plaque of Aβ in the cerebral cortex of the Alzheimer's disease (AD) brain along with altered heme homeostasis and heme deficiency symptoms in AD patients has invoked the association of heme in AD pathology. Heme bound Aβ complexes, depending on the concentration of the complex or peptide to heme ratio, exhibit an equilibrium between a high-spin mono-His bound peroxidase-type active site and a low-spin bis-His bound cytochrome b type active site. The high-spin heme-Aβ complex shows higher peroxidase activity than free heme, where compound I is the reactive oxidant. It is also capable of oxidizing neurotransmitters like serotonin in the presence of peroxide, owing to the formation of compound I. The low-spin bis-His heme-Aβ complex on the other hand shows enhanced peroxidase activity relative to high-spin heme-Aβ. It reacts with H2O2 to produce two stable intermediates, compound 0 and compound I, which are characterized by absorption, EPR and resonance Raman spectroscopy. The stability of compound I of low-spin heme-Aβ is accountable for its enhanced peroxidase activity and oxidation of the neurotransmitter serotonin. The effect of the second sphere Tyr10 residue of Aβ on the formation and stability of the intermediates of low-spin heme-Aβ has also been investigated. The higher stability of compound I for low-spin heme-Aβ is likely due to H-bonding interactions involving Tyr10 in the distal pocket.
Collapse
Affiliation(s)
- Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
12
|
Merritt HI, Sawyer N, Watkins AM, Arora PS. Anchor Residues Govern Binding and Folding of an Intrinsically Disordered Domain. ACS Chem Biol 2022; 17:2723-2727. [PMID: 36153968 PMCID: PMC9773862 DOI: 10.1021/acschembio.2c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Minimal protein mimics have yielded novel classes of protein-protein interaction inhibitors; however, this success has not been extended to targeting intrinsically disordered proteins, which represent a significant proportion of important therapeutic targets. We sought to determine the requirements for binding an intrinsically disordered region (IDR) by its native binding partner as a prelude to developing minimal protein mimics that regulate IDR interactions. Our analysis reinforces the hypothesis that IDRs reside on a fulcrum between unfolded and folded states and that a handful of key binding residues on partner protein surfaces dictate their folding. Our studies also suggest that minimal mimics of protein surfaces may not offer specific ligands for IDRs and that it would be more judicious to target the globular protein partners of IDRs.
Collapse
Affiliation(s)
- Haley I Merritt
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas Sawyer
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Andrew M Watkins
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
13
|
Gupta S, Azadvari N, Hosseinzadeh P. Design of Protein Segments and Peptides for Binding to Protein Targets. BIODESIGN RESEARCH 2022; 2022:9783197. [PMID: 37850124 PMCID: PMC10521657 DOI: 10.34133/2022/9783197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 10/19/2023] Open
Abstract
Recent years have witnessed a rise in methods for accurate prediction of structure and design of novel functional proteins. Design of functional protein fragments and peptides occupy a small, albeit unique, space within the general field of protein design. While the smaller size of these peptides allows for more exhaustive computational methods, flexibility in their structure and sparsity of data compared to proteins, as well as presence of noncanonical building blocks, add additional challenges to their design. This review summarizes the current advances in the design of protein fragments and peptides for binding to targets and discusses the challenges in the field, with an eye toward future directions.
Collapse
Affiliation(s)
- Suchetana Gupta
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Noora Azadvari
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Parisa Hosseinzadeh
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
14
|
Modell AE, Marrone F, Panigrahi NR, Zhang Y, Arora PS. Peptide Tethering: Pocket-Directed Fragment Screening for Peptidomimetic Inhibitor Discovery. J Am Chem Soc 2022; 144:1198-1204. [PMID: 35029987 PMCID: PMC8959088 DOI: 10.1021/jacs.1c09666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Constrained peptides have proven to be a rich source of ligands for protein surfaces, but are often limited in their binding potency. Deployment of nonnatural side chains that access unoccupied crevices on the receptor surface offers a potential avenue to enhance binding affinity. We recently described a computational approach to create topographic maps of protein surfaces to guide the design of nonnatural side chains [J. Am. Chem. Soc. 2017, 139, 15560]. The computational method, AlphaSpace, was used to predict peptide ligands for the KIX domain of the p300/CBP coactivator. KIX has been the subject of numerous ligand discovery strategies, but potent inhibitors of its interaction with transcription factors remain difficult to access. Although the computational approach provided a significant enhancement in the binding affinity of the peptide, fine-tuning of nonnatural side chains required an experimental screening method. Here we implement a peptide-tethering strategy to screen fragments as nonnatural side chains on conformationally defined peptides. The combined computational-experimental approach offers a general framework for optimizing peptidomimetics as inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Ashley E Modell
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Frank Marrone
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Nihar R Panigrahi
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
15
|
Hóbor F, Hegedüs Z, Ibarra AA, Petrovicz VL, Bartlett GJ, Sessions RB, Wilson AJ, Edwards TA. Understanding p300-transcription factor interactions using sequence variation and hybridization. RSC Chem Biol 2022; 3:592-603. [PMID: 35656479 PMCID: PMC9092470 DOI: 10.1039/d2cb00026a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
The hypoxic response is central to cell function and plays a significant role in the growth and survival of solid tumours. HIF-1 regulates the hypoxic response by activating over 100...
Collapse
Affiliation(s)
- Fruzsina Hóbor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Amaurys Avila Ibarra
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Vencel L Petrovicz
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Gail J Bartlett
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
16
|
Qin X, Chen H, Tu L, Ma Y, Liu N, Zhang H, Li D, Riedl B, Bierer D, Yin F, Li Z. Potent Inhibition of HIF1α and p300 Interaction by a Constrained Peptide Derived from CITED2. J Med Chem 2021; 64:13693-13703. [PMID: 34472840 DOI: 10.1021/acs.jmedchem.1c01043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disrupting the interaction between HIF1α and p300 is a promising strategy to modulate the hypoxia response of tumor cells. Herein, we designed a constrained peptide inhibitor derived from the CITED2/p300 complex to disturb the HIF1α/p300 interaction. Through truncation/mutation screening and a terminal aspartic acid-stabilized strategy, a constrained peptide was constructed with outstanding biochemical/biophysical properties, especially in binding affinity, cell penetration, and serum stability. To date, our study was the first one to showcase that stabilized peptides derived from CITED2 using helix-stabilizing methods acted as a promising candidate for modulating hypoxia-inducible signaling.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Na Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Haowei Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Shenzhen Graduate School of Tsinghua University, Shenzhen 518055, China
| | - Di Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bernd Riedl
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
17
|
Brand M, Clayton J, Moroglu M, Schiedel M, Picaud S, Bluck JP, Skwarska A, Bolland H, Chan AKN, Laurin CMC, Scorah AR, See L, Rooney TPC, Andrews KH, Fedorov O, Perell G, Kalra P, Vinh KB, Cortopassi WA, Heitel P, Christensen KE, Cooper RI, Paton RS, Pomerantz WCK, Biggin PC, Hammond EM, Filippakopoulos P, Conway SJ. Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain. J Med Chem 2021; 64:10102-10123. [PMID: 34255515 PMCID: PMC8311651 DOI: 10.1021/acs.jmedchem.1c00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
CREBBP (CBP/KAT3A)
and its paralogue EP300 (KAT3B) are lysine acetyltransferases
(KATs) that are essential for human development. They each comprise
10 domains through which they interact with >400 proteins, making
them important transcriptional co-activators and key nodes in the
human protein–protein interactome. The bromodomains of CREBBP
and EP300 enable the binding of acetylated lysine residues from histones
and a number of other important proteins, including p53, p73, E2F,
and GATA1. Here, we report a work to develop a high-affinity, small-molecule
ligand for the CREBBP and EP300 bromodomains [(−)-OXFBD05]
that shows >100-fold selectivity over a representative member of
the
BET bromodomains, BRD4(1). Cellular studies using this ligand demonstrate
that the inhibition of the CREBBP/EP300 bromodomain in HCT116 colon
cancer cells results in lowered levels of c-Myc and a reduction in
H3K18 and H3K27 acetylation. In hypoxia (<0.1% O2),
the inhibition of the CREBBP/EP300 bromodomain results in the enhanced
stabilization of HIF-1α.
Collapse
Affiliation(s)
- Michael Brand
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - James Clayton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Matthias Schiedel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Joseph P Bluck
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Anna Skwarska
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Hannah Bolland
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Anthony K N Chan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Corentine M C Laurin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Amy R Scorah
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Larissa See
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Timothy P C Rooney
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Katrina H Andrews
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Gabriella Perell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kayla B Vinh
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Wilian A Cortopassi
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Pascal Heitel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Richard I Cooper
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Robert S Paton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department of Chemistry, Colorado State University, 1301 Center Ave, Ft. Collins, Colorado 80523-1872, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Panagis Filippakopoulos
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
18
|
Jedhe GS, Arora PS. Hydrogen bond surrogate helices as minimal mimics of protein α-helices. Methods Enzymol 2021; 656:1-25. [PMID: 34325784 DOI: 10.1016/bs.mie.2021.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Examination of complexes of proteins with biomolecular ligands reveals that proteins tend to interact with partners via folded sub-domains, in which the backbone possesses secondary structure. α-Helices comprising the largest class of protein secondary structures, play fundamental roles in a multitude of highly specific protein-protein and protein-nucleic acid interactions. We have demonstrated a unique strategy for stabilization of the α-helical conformation that involves replacement of one of the main chain i and i+4 hydrogen bonds in the target α-helix with a covalent bond. We termed this synthetic strategy a hydrogen bond surrogate (HBS) approach. Two salient features of this approach are: (1) the internal placement of the crosslink allows development of helices such that none of the solvent-exposed surfaces are blocked by the constraining element, i.e., all side chains of the constrained helices remain available for molecular recognition. (2) This approach can be deployed to constrain very short peptides (<10 amino acid residues) into highly stable α-helices. This chapter presents the biophysical basis for the development of the hydrogen bond surrogate approach, as well as methods for the synthesis and conformational analysis of the artificial helices.
Collapse
Affiliation(s)
- Ganesh S Jedhe
- Department of Chemistry, New York University, New York, NY, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY, United States.
| |
Collapse
|
19
|
Abstract
Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras-Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix-loop-helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with up-regulated macropinocytosis, including those that feature oncogenic Ras mutations.
Collapse
|
20
|
Abstract
Renal cell carcinoma (RCC) is increasing in incidence and one third of newly diagnosed cases already are metastatic. The metastatic spread of solid tumors renders RCC incurable by surgical resection and consequently more difficult to treat. New molecular-targeted therapies have played a pivotal role in RCC treatment. Unfortunately, tumors frequently develop resistance to these targeted therapies by activating bypass pathways in which alternative signaling or biochemical pathways are activated in response to targeted inhibition of a signaling pathway, allowing cancer cells to continue to survive. Although the advent of immunotherapy with checkpoint inhibitors has led to significant changes in the treatment landscape for advanced RCC, many issues remain to be resolved. For these reasons, there is an urgent need to develop novel therapies and new treatment paradigms for patients with RCC. Much research has been performed thus far in identifying novel targets and treatment strategies in RCC and many of these currently are under investigation and/or in clinical trials. In this article, we discuss therapeutic options in the management of RCC with a focus on the new therapeutic approaches currently investigated in research and for use in the clinic. We divide these potential novel therapies into five groups: nonbiologics, small-molecule drugs, biologics, immunomodulatory therapies, and peptide drugs. We also present some therapeutics and treatment paradigms.
Collapse
Affiliation(s)
- David C Yang
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA
| | - Ching-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA.
| |
Collapse
|
21
|
Mylonis I, Chachami G, Simos G. Specific Inhibition of HIF Activity: Can Peptides Lead the Way? Cancers (Basel) 2021; 13:cancers13030410. [PMID: 33499237 PMCID: PMC7865418 DOI: 10.3390/cancers13030410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Cancer cells in solid tumors often experience lack of oxygen (hypoxia), which they overcome with the help of hypoxia inducible transcription factors (HIFs). When HIFs are activated, they stimulate the expression of many genes and cause the production of proteins that help cancer cells grow and migrate even in the presence of very little oxygen. Many experiments have shown that agents that block the activity of HIFs (HIF inhibitors) can prevent growth of cancer cells under hypoxia and, subsequently, hinder formation of malignant tumors or metastases. Most small chemical HIF inhibitors lack the selectivity required for development of safe anticancer drugs. On the other hand, peptides derived from HIFs themselves can be very selective HIF inhibitors by disrupting specific associations of HIFs with cellular components that are essential for HIF activation. This review discusses the nature of available peptide HIF inhibitors and their prospects as effective pharmaceuticals against cancer. Abstract Reduced oxygen availability (hypoxia) is a characteristic of many disorders including cancer. Central components of the systemic and cellular response to hypoxia are the Hypoxia Inducible Factors (HIFs), a small family of heterodimeric transcription factors that directly or indirectly regulate the expression of hundreds of genes, the products of which mediate adaptive changes in processes that include metabolism, erythropoiesis, and angiogenesis. The overexpression of HIFs has been linked to the pathogenesis and progression of cancer. Moreover, evidence from cellular and animal models have convincingly shown that targeting HIFs represents a valid approach to treat hypoxia-related disorders. However, targeting transcription factors with small molecules is a very demanding task and development of HIF inhibitors with specificity and therapeutic potential has largely remained an unattainable challenge. Another promising approach to inhibit HIFs is to use peptides modelled after HIF subunit domains known to be involved in protein–protein interactions that are critical for HIF function. Introduction of these peptides into cells can inhibit, through competition, the activity of endogenous HIFs in a sequence and, therefore also isoform, specific manner. This review summarizes the involvement of HIFs in cancer and the approaches for targeting them, with a special focus on the development of peptide HIF inhibitors and their prospects as highly-specific pharmacological agents.
Collapse
Affiliation(s)
- Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Correspondence: (I.M.); (G.S.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence: (I.M.); (G.S.)
| |
Collapse
|
22
|
Lindsey‐Crosthwait A, Rodriguez‐Lema D, Walko M, Pask CM, Wilson AJ. Structural optimization of reversible dibromomaleimide peptide stapling. Pept Sci (Hoboken) 2021; 113:e24157. [PMID: 34938942 PMCID: PMC8650577 DOI: 10.1002/pep2.24157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/05/2023]
Abstract
Methods to constrain peptides in a bioactive α-helical conformation for inhibition of protein-protein interactions represent an ongoing area of investigation in chemical biology. Recently, the first example of a reversible "stapling" methodology was described which exploits native cysteine or homocysteine residues spaced at the i and i + 4 positions in a peptide sequence together with the thiol selective reactivity of dibromomaleimides (a previous study). This manuscript reports on the optimization of the maleimide based constraint, focusing on the kinetics of macrocyclization and the extent to which helicity is promoted with different thiol containing amino acids. The study identified an optimal stapling combination of X 1 = L-Cys and X 5 = L-hCys in the context of the model peptide Ac-X1AAAX5-NH2, which should prove useful in implementing the dibromomaleimide stapling strategy in peptidomimetic ligand discovery programmes.
Collapse
Affiliation(s)
- Ayanna Lindsey‐Crosthwait
- School of Chemistry, University of LeedsLeedsUK
- Astbury Centre for Structural Molecular Biology, University of LeedsLeedsUK
| | - Diana Rodriguez‐Lema
- School of Chemistry, University of LeedsLeedsUK
- Astbury Centre for Structural Molecular Biology, University of LeedsLeedsUK
| | - Martin Walko
- School of Chemistry, University of LeedsLeedsUK
- Astbury Centre for Structural Molecular Biology, University of LeedsLeedsUK
| | | | - Andrew J. Wilson
- School of Chemistry, University of LeedsLeedsUK
- Astbury Centre for Structural Molecular Biology, University of LeedsLeedsUK
| |
Collapse
|
23
|
Shimizu T, Takahashi N, Huber VJ, Asawa Y, Ueda H, Yoshimori A, Muramatsu Y, Seimiya H, Kouji H, Nakamura H, Oguri H. Design and synthesis of 14 and 15-membered macrocyclic scaffolds exhibiting inhibitory activities of hypoxia-inducible factor 1α. Bioorg Med Chem 2020; 30:115949. [PMID: 33360196 DOI: 10.1016/j.bmc.2020.115949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Inspired by the privileged molecular skeletons of 14- and 15-membered antibiotics, we adopted a relatively unexplored synthetic approach that exploits alkaloidal macrocyclic scaffolds to generate modulators of protein-protein interactions (PPIs). As mimetics of hot-spot residues in the α-helices responsible for the transcriptional regulation, three hydrophobic sidechains were displayed on each of the four distinct macrocyclic scaffolds generating diversity of their spatial arrangements. Modular assembly of the building blocks followed by ring-closing olefin metathesis reaction and subsequent hydrogenation allowed concise and divergent synthesis of scaffolds 1-4. The 14-membered alkaloidal macrocycles 2-4 demonstrated similar inhibition of hypoxia-inducible factor (HIF)-1α transcriptional activities (IC50 between 8.7 and 10 µM), and 4 demonstrated the most potent inhibition of cell proliferation in vitro (IC50 = 12 µM against HTC116 colon cancer cell line). A docking model suggested that 4 could mimic the LLxxL motif in HIF-1α, in which the three sidechains are capable of matching the spatial arrangements of the protein hot-spot residues. Unlike most of the stapled peptides, the 14-membered alkaloidal scaffold has a similar size to the α-helix backbone and does not require additional atoms to induce α-helix mimetic structure. These experimental results underscore the potential of alkaloidal macrocyclic scaffolds featuring flexibly customizable skeletal, stereochemical, substitutional, and conformational properties for the development of non-peptidyl PPI modulators targeting α-helix-forming consensus sequences responsible for the transcriptional regulation.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Norihito Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Vincent J Huber
- Oita University Institute of Advanced Medicine, Inc., 17-20 Higashi kasuga-machi, Oita-shi, Oita 870-0037, Japan
| | - Yasunobu Asawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Muramatsu
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroyuki Kouji
- Oita University Institute of Advanced Medicine, Inc., 17-20 Higashi kasuga-machi, Oita-shi, Oita 870-0037, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Oguri
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
24
|
Yoo DY, Barros SA, Brown GC, Rabot C, Bar-Sagi D, Arora PS. Macropinocytosis as a Key Determinant of Peptidomimetic Uptake in Cancer Cells. J Am Chem Soc 2020; 142:14461-14471. [PMID: 32786217 DOI: 10.1021/jacs.0c02109] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptides and peptidomimetics represent the middle space between small molecules and large proteins-they retain the relatively small size and synthetic accessibility of small molecules while providing high binding specificity for biomolecular partners typically observed with proteins. During the course of our efforts to target intracellular protein-protein interactions in cancer, we observed that the cellular uptake of peptides is critically determined by the cell line-specifically, we noted that peptides show better uptake in cancer cells with enhanced macropinocytic indices. Here, we describe the results of our analysis of cellular penetration by different classes of conformationally stabilized peptides. We tested the uptake of linear peptides, peptide macrocycles, stabilized helices, β-hairpin peptides, and cross-linked helix dimers in 11 different cell lines. Efficient uptake of these conformationally defined constructs directly correlated with the macropinocytic activity of each cell line: high uptake of compounds was observed in cells with mutations in certain signaling pathways. Significantly, the study shows that constrained peptides follow the same uptake mechanism as proteins in macropinocytic cells, but unlike proteins, peptide mimics can be readily designed to resist denaturation and proteolytic degradation. Our findings expand the current understanding of cellular uptake in cancer cells by designed peptidomimetics and suggest that cancer cells with certain mutations are suitable mediums for the study of biological pathways with peptide leads.
Collapse
Affiliation(s)
- Daniel Y Yoo
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Stephanie A Barros
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Gordon C Brown
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Christian Rabot
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
25
|
Hetherington K, Hegedus Z, Edwards TA, Sessions RB, Nelson A, Wilson AJ. Stapled Peptides as HIF-1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry 2020; 26:7638-7646. [PMID: 32307728 PMCID: PMC7318359 DOI: 10.1002/chem.202000417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPIs) control virtually all cellular processes and have thus emerged as potential targets for development of molecular therapeutics. Peptide-based inhibitors of PPIs are attractive given that they offer recognition potency and selectivity features that are ideal for function, yet, they do not predominantly populate the bioactive conformation, frequently suffer from poor cellular uptake and are easily degraded, for example, by proteases. The constraint of peptides in a bioactive conformation has emerged as a promising strategy to mitigate against these liabilities. In this work, using peptides derived from hypoxia-inducible factor 1 (HIF-1α) together with dibromomaleimide stapling, we identify constrained peptide inhibitors of the HIF-1α/p300 interaction that are more potent than their unconstrained sequences. Contrary to expectation, the increased potency does not correlate with an increased population of an α-helical conformation in the unbound state as demonstrated by experimental circular dichroism analysis. Rather, the ability of the peptide to adopt a bioactive α-helical conformation in the p300 bound state is better supported in the constrained variant as demonstrated by molecular dynamics simulations and circular dichroism difference spectra.
Collapse
Affiliation(s)
- Kristina Hetherington
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Zsofia Hegedus
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Richard B. Sessions
- School of BiochemistryUniversity of BristolMedical Sciences Building, University WalkBristolBS8 1TDUK
- BrisSynBioUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| | - Adam Nelson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
26
|
Merritt HI, Sawyer N, Arora PS. Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function. Pept Sci (Hoboken) 2020; 112:e24145. [PMID: 33575525 PMCID: PMC7875438 DOI: 10.1002/pep2.24145] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Protein secondary and tertiary structure mimics have served as model systems to probe biophysical parameters that guide protein folding and as attractive reagents to modulate protein interactions. Here we review contemporary methods to reproduce loop, helix, sheet and coiled-coil conformations in short peptides.
Collapse
Affiliation(s)
| | | | - Paramjit S. Arora
- Department of Chemistry New York University, New York, New York 10003, United States
| |
Collapse
|
27
|
Wang Z, Ji H. Targeting the Side-Chain Convergence of Hydrophobic α-Helical Hot Spots To Design Small-Molecule Mimetics: Key Binding Features for i, i + 3, and i + 7. J Med Chem 2019; 62:9906-9917. [PMID: 31593458 DOI: 10.1021/acs.jmedchem.9b01324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformational convergence of hydrophobic α-helical hot spots was revealed by analyzing α-helix-mediated protein-protein interaction (PPI) complex structures. The pharmacophore models were derived for hydrophobic α-helical hot spots at positions i, i + 3, and i + 7. These provide the foundation for designing generalizable scaffolds that can directly mimic the binding mode of the side chains of α-helical hot spots, offering a new class of small-molecule α-helix mimetics. For the first time, the protocol was developed to identify the PPI targets that have similar binding pockets, allowing evaluation of inhibitor selectivities between α-helix-mediated PPIs. The mimicry efficiency of the previously designed scaffold 1 was disclosed. The close positioning of this small molecule to the additional α-helical hot spots suggests that the decoration of this series of generalizable scaffolds can conveniently reach the binding pockets of additional α-helical hot spots to produce potent small-molecule inhibitors for α-helix-mediated PPIs.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department , H. Lee Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive , Tampa , Florida 33612-9497 , United States.,Departments of Chemistry and Oncologic Sciences , University of South Florida , Tampa , Florida 33620-9497 , United States
| | - Haitao Ji
- Drug Discovery Department , H. Lee Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive , Tampa , Florida 33612-9497 , United States.,Departments of Chemistry and Oncologic Sciences , University of South Florida , Tampa , Florida 33620-9497 , United States
| |
Collapse
|
28
|
Peptidomimetics: A Synthetic Tool for Inhibiting Protein–Protein Interactions in Cancer. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09831-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Berlow RB, Martinez-Yamout MA, Dyson HJ, Wright PE. Role of Backbone Dynamics in Modulating the Interactions of Disordered Ligands with the TAZ1 Domain of the CREB-Binding Protein. Biochemistry 2019; 58:1354-1362. [PMID: 30775911 DOI: 10.1021/acs.biochem.8b01290] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The intrinsically disordered transactivation domains of HIF-1α and CITED2 compete for binding of the TAZ1 domain of the CREB-binding protein by a unidirectional allosteric mechanism involving direct competition for shared binding sites, ternary complex formation, and TAZ1 conformational changes. To gain insight into the mechanism by which CITED2 displaces HIF-1α from TAZ1, we used nuclear magnetic resonance spin relaxation methods to obtain an atomic-level description of the picosecond to nanosecond backbone dynamics that contribute to TAZ1 binding and competition. We show that HIF-1α and CITED2 adopt different dynamics in their complexes with TAZ1, with flexibility observed for HIF-1α in regions that would maintain accessibility for CITED2 to bind to TAZ1 and facilitate subsequent HIF-1α dissociation. In contrast, critical regions of CITED2 adopt a rigid structure in its complex with TAZ1, minimizing the ability of HIF-1α to compete for binding. We also find that TAZ1, previously thought to be a rigid scaffold for binding of disordered protein ligands, displays altered backbone dynamics in its various bound states. TAZ1 is more rigid in its CITED2-bound state than in its free state or in complex with HIF-1α, with increased rigidity observed not only in the CITED2 binding site but also in regions of TAZ1 that undergo conformational changes between the HIF-1α- and CITED2-bound structures. Taken together, these data suggest that backbone dynamics in TAZ1, as well as in the HIF-1α and CITED2 ligands, play a role in modulating the occupancy of TAZ1 and highlight the importance of characterizing both binding partners in molecular interactions.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
30
|
Li J, Xi W, Li X, Sun H, Li Y. Advances in inhibition of protein-protein interactions targeting hypoxia-inducible factor-1 for cancer therapy. Bioorg Med Chem 2019; 27:1145-1158. [PMID: 30819620 DOI: 10.1016/j.bmc.2019.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
Hypoxia is a common characteristic of many types of solid tumors and is associated with tumor propagation, malignant progression, and resistance to anti-cancer therapy. HIF-1 pathway is one of the survival pathways activated in tumor in response to hypoxia. In hypoxic condition, hypoxia-inducible factor-1α (HIF-1α) is stabilized and translocated into nucleus where it forms heterodimer with HIF-1β and regulates the expression of a plethora of genes involved in different processes, such as cell proliferation, differentiation, apoptosis, vascularization/angiogenesis, tumor invasion and metastasis. Recruitment of co-activator p300 or CBP to HIF-1α is critical to the transactivation activity of HIF-1 dimer, therefore, small molecules which can block the dimerization of HIF-1α and HIF-1β or inhibit the interaction between HIF-1α and p300 can function as inhibitors of HIF-1 and have the potential to be developed as novel therapies for the treatment of human cancers. In this review, recent progress of small molecular inhibitors of protein-protein interactions targeting HIF-1 is summarized, the mechanism of functions of these compounds and their potential usage as anti-cancer agents have also been discussed.
Collapse
Affiliation(s)
- Jia Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wanlin Xi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaofang Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Li Z, You Q, Zhang X. Small-Molecule Modulators of the Hypoxia-Inducible Factor Pathway: Development and Therapeutic Applications. J Med Chem 2019; 62:5725-5749. [DOI: 10.1021/acs.jmedchem.8b01596] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
32
|
|
33
|
Abstract
Peptide secondary and tertiary structure motifs frequently serve as inspiration for the development of protein-protein interaction (PPI) inhibitors. While a wide variety of strategies have been used to stabilize or imitate α-helices, similar strategies for β-sheet stabilization are more limited. Synthetic scaffolds that stabilize reverse turns and cross-strand interactions have provided important insights into β-sheet stability and folding. However, these templates occupy regions of the β-sheet that might impact the β-sheet's ability to bind at a PPI interface. Here, we present the hydrogen bond surrogate (HBS) approach for stabilization of β-hairpin peptides. The HBS linkage replaces a cross-strand hydrogen bond with a covalent linkage, conferring significant conformational and proteolytic resistance. Importantly, this approach introduces the stabilizing linkage in the buried β-sheet interior, retains all side chains for further functionalization, and allows efficient solid-phase macrocyclization. We anticipate that HBS stabilization of PPI β-sheets will enhance the development of β-sheet PPI inhibitors and expand the repertoire of druggable PPIs.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
34
|
Breen ME, Mapp AK. Modulating the masters: chemical tools to dissect CBP and p300 function. Curr Opin Chem Biol 2018; 45:195-203. [PMID: 30025258 DOI: 10.1016/j.cbpa.2018.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 01/07/2023]
Abstract
Dysregulation of transcription is found in nearly every human disease, and as a result there has been intense interest in developing new therapeutics that target regulators of transcription. CREB binding protein (CBP) and its paralogue p300 are attractive targets due to their function as `master coactivators'. Although inhibitors of several CBP/p300 domains have been identified, the selectivity of many of these compounds has remained underexplored. Here, we review recent successes in the development of chemical tools targeting several CBP/p300 domains with selectivity acceptable for use as chemical probes. Additionally, we highlight recent studies which have used these probes to expand our understanding of interdomain interactions and differential coactivator usage.
Collapse
Affiliation(s)
- Meghan E Breen
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
35
|
Discovery of bicyclo[3,3,1]non-2-ene as a novel skeleton for HIF-1 inhibitors. Bioorg Med Chem 2018; 26:3345-3351. [DOI: 10.1016/j.bmc.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
|
36
|
Wu C, Hoang HN, Liu L, Fairlie DP. Glucuronic acid as a helix-inducing linker in short peptides. Chem Commun (Camb) 2018; 54:2162-2165. [PMID: 29431766 DOI: 10.1039/c7cc09785a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new strategy is demonstrated for making peptides helical, using a carbohydrate to bridge between sidechains at each end of a pentapeptide. CD and NMR spectra establish that both an α-helix and a 310-helix structure can form depending upon the bridge.
Collapse
Affiliation(s)
- Chongyang Wu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
37
|
Inamoto I, Shin JA. Peptide therapeutics that directly target transcription factors. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ichiro Inamoto
- Department of Chemistry; University of Toronto, 3359 Mississauga Road; Mississauga Ontario L5L 1C6 Canada
| | - Jumi A. Shin
- Department of Chemistry; University of Toronto, 3359 Mississauga Road; Mississauga Ontario L5L 1C6 Canada
| |
Collapse
|
38
|
Nogami K, Tokumaru H, Isokawa G, Oyoshi T, Fujimoto K, Inouye M. Bcl-X L-binding helical peptides possessing d-Ala residues at their C-termini with the advantage of long-lasting intracellular stabilities. Chem Commun (Camb) 2017; 53:12104-12107. [PMID: 29072724 DOI: 10.1039/c7cc06904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We attached d-Ala residues to cross-linked helical peptides based on the pro-apoptotic protein Bad at their C-termini. The d-Ala attachment had little influence on the secondary structures and binding abilities against Bcl-XL. The d-Ala attached helical peptides were much more stable in cells than original ones and efficiently induced apoptosis of the cells.
Collapse
Affiliation(s)
- Kagayaki Nogami
- Graduate School of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Cheloha RW, Chen B, Kumar NN, Watanabe T, Thorne RG, Li L, Gardella TJ, Gellman SH. Development of Potent, Protease-Resistant Agonists of the Parathyroid Hormone Receptor with Broad β Residue Distribution. J Med Chem 2017; 60:8816-8833. [PMID: 29064243 DOI: 10.1021/acs.jmedchem.7b00876] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The parathyroid hormone receptor 1 (PTHR1) is a member of the B-family of GPCRs; these receptors are activated by long polypeptide hormones and constitute targets of drug development efforts. Parathyroid hormone (PTH, 84 residues) and PTH-related protein (PTHrP, 141 residues) are natural agonists of PTHR1, and an N-terminal fragment of PTH, PTH(1-34), is used clinically to treat osteoporosis. Conventional peptides in the 20-40-mer length range are rapidly degraded by proteases, which may limit their biomedical utility. We have used the PTHR1-ligand system to explore the impact of broadly distributed replacement of α-amino acid residues with β-amino acid residues on susceptibility to proteolysis and agonist activity. This effort led us to identify new PTHR1 agonists that contain α → β replacements throughout their sequences, manifest potent agonist activity in cellular assays, and display remarkable resistance to proteolysis, in cases remaining active after extended exposure to simulated gastric fluid. The strategy we have employed suggests a path toward identifying protease-resistant agonists of other B-family GPCRs.
Collapse
Affiliation(s)
- Ross W Cheloha
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Niyanta N Kumar
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Tomoyuki Watanabe
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Robert G Thorne
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States.,Clinical Neuroengineering Training Program, University of Wisconsin-Madison Biomedical Engineering , Engineering Centers Building, Room 2120, 1550 Engineering Drive, Madison Wisconsin 53706, United States.,Neuroscience Training Program & Center for Neuroscience, Wisconsin Institutes for Medical Research II , Rooms 9531 and 9533, 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Cellular and Molecular Pathology Graduate Training Program, UW Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison , 1685 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Sawyer N, Watkins AM, Arora PS. Protein Domain Mimics as Modulators of Protein-Protein Interactions. Acc Chem Res 2017; 50:1313-1322. [PMID: 28561588 DOI: 10.1021/acs.accounts.7b00130] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biological systems and often misregulated in disease. As such, specific PPI modulators are desirable to unravel complex PPI pathways and expand the number of druggable targets available for therapeutic intervention. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets. This Account describes our systematic approach using secondary and tertiary protein domain mimics (PDMs) to specifically modulate PPIs. Our strategy focuses on mimicry of regular secondary and tertiary structure elements from one of the PPI partners to inspire rational PDM design. We have compiled three databases (HIPPDB, SIPPDB, and DIPPDB) of secondary and tertiary structures at PPI interfaces to guide our designs and better understand the energetics of PPI secondary and tertiary structures. Our efforts have focused on three of the most common secondary and tertiary structures: α-helices, β-strands, and helix dimers (e.g., coiled coils). To mimic α-helices, we designed the hydrogen bond surrogate (HBS) as an isosteric PDM and the oligooxopiperazine helix mimetic (OHM) as a topographical PDM. The nucleus of the HBS approach is a peptide macrocycle in which the N-terminal i, i + 4 main-chain hydrogen bond is replaced with a covalent carbon-carbon bond. In mimicking a main-chain hydrogen bond, the HBS approach stabilizes the α-helical conformation while leaving all helical faces available for functionalization to tune binding affinity and specificity. The OHM approach, in contrast, envisions a tetrapeptide to mimic one face of a two-turn helix. We anticipated that placement of ethylene bridges between adjacent amides constrains the tetrapeptide backbone to mimic the i, i + 4, and i + 7 side chains on one face of an α-helix. For β-strands, we developed triazolamers, a topographical PDM where the peptide bonds are replaced by triazoles. The triazoles simultaneously stabilize the extended, zigzag conformation of β-strands and transform an otherwise ideal protease substrate into a stable molecule by replacement of the peptide bonds. We turned to a salt bridge surrogate (SBS) approach as a means for stabilizing very short helix dimers. As with the HBS approach, the SBS strategy replaces a noncovalent interaction with a covalent bond. Specifically, we used a bis-triazole linkage that mimics a salt bridge interaction to drive helix association and folding. Using this approach, we were able to stabilize helix dimers that are less than half of the length required to form a coiled coil from two independent strands. In addition to demonstrating the stabilization of desired structures, we have also shown that our designed PDMs specifically modulate target PPIs in vitro and in vivo. Examples of PPIs successfully targeted include HIF1α/p300, p53/MDM2, Bcl-xL/Bak, Ras/Sos, and HIV gp41. The PPI databases and designed PDMs created in these studies will aid development of a versatile set of molecules to probe complex PPI functions and, potentially, PPI-based therapeutics.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Andrew M. Watkins
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
41
|
Burslem GM, Kyle HF, Nelson A, Edwards TA, Wilson AJ. Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions. Chem Sci 2017; 8:4188-4202. [PMID: 28878873 PMCID: PMC5576430 DOI: 10.1039/c7sc00388a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
The state of the art in identifying protein–protein interaction inhibitors of hypoxia inducible factor – a promising target for anticancer drug design – is described.
The modulation of protein–protein interactions (PPIs) represents a major challenge in modern chemical biology. Current approaches (e.g. high-throughput screening, computer aided ligand design) are recognised as having limitations in terms of identification of hit matter. Considerable success has been achieved in terms of developing new approaches to PPI modulator discovery using the p53/hDM2 and Bcl-2 family of PPIs. However these important targets in oncology might be considered as “low-hanging-fruit”. Hypoxia inducible factor (HIF) is an emerging, but not yet fully validated target for cancer chemotherapy. Its role is to regulate the hypoxic response and it does so through a plethora of protein–protein interactions of varying topology, topography and complexity: its modulation represents an attractive approach to prevent development of new vasculature by hypoxic tumours.
Collapse
Affiliation(s)
- George M Burslem
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Hannah F Kyle
- Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Adam Nelson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| |
Collapse
|
42
|
Abstract
Bio-inspired synthetic backbones leading to foldamers can provide effective biopolymer mimics with new and improved properties in a physiological environment, and in turn could serve as useful tools to study biology and lead to practical applications in the areas of diagnostics or therapeutics. Remarkable progress has been accomplished over the past 20 years with the discovery of many potent bioactive foldamers originating from diverse backbones and targeting a whole spectrum of bio(macro)molecules such as membranes, protein surfaces, and nucleic acids. These current achievements, future opportunities, and key challenges that remain are discussed in this article.
Collapse
|
43
|
Watkins AM, Bonneau R, Arora PS. Modeling and Design of Peptidomimetics to Modulate Protein-Protein Interactions. Methods Mol Biol 2017; 1561:291-307. [PMID: 28236245 DOI: 10.1007/978-1-4939-6798-8_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe a modular approach to identify and inhibit protein-protein interactions (PPIs) that are mediated by protein secondary and tertiary structures with rationally designed peptidomimetics. Our analysis begins with entries of high-resolution complexes in the Protein Data Bank and utilizes conformational sampling, scoring, and design capabilities of advanced biomolecular modeling software to develop peptidomimetics.
Collapse
Affiliation(s)
| | - Richard Bonneau
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, 29 Washington Place, Brown Bldg., Room 360, New York, NY, USA.
| |
Collapse
|
44
|
Abstract
Substitution of a main chain i → i + 4 hydrogen bond with a covalent bond can nucleate and stabilize the α-helical conformation in peptides. Herein we describe the potential of different alkene isosteres to mimic intramolecular hydrogen bonds and stabilize α-helices in diverse peptide sequences.
Collapse
Affiliation(s)
- Stephen T Joy
- Department of Chemistry, New York University, New York, NY 10003, USA.
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
45
|
Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH, Xie MS, Niu XG, Jiang F, Zhang YO, Lao YZ, Wu YD, Xu NH, Li ZG. Crosslinked Aspartic Acids as Helix-Nucleating Templates. Angew Chem Int Ed Engl 2016; 55:12088-93. [DOI: 10.1002/anie.201606833] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Hui Zhao
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Qi-Song Liu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
- Shenzhen Key Lab of Tissue Engineering; The Second People's Hospital of Shenzhen; Shenzhen 518035 China
| | - Hao Geng
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Min Cheng
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yan-Hong Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ming-Sheng Xie
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Xiao-Gang Niu
- College of Chemistry and Molecular Engineering; Beijing Nuclear Magnetic Resonance Center; Peking University; Beijing 100871 China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ya-Ou Zhang
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yuan-Zhi Lao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Nai-Han Xu
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| |
Collapse
|
46
|
Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH, Xie MS, Niu XG, Jiang F, Zhang YO, Lao YZ, Wu YD, Xu NH, Li ZG. Crosslinked Aspartic Acids as Helix-Nucleating Templates. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Zhao
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Qi-Song Liu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
- Shenzhen Key Lab of Tissue Engineering; The Second People's Hospital of Shenzhen; Shenzhen 518035 China
| | - Hao Geng
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Min Cheng
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yan-Hong Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ming-Sheng Xie
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Xiao-Gang Niu
- College of Chemistry and Molecular Engineering; Beijing Nuclear Magnetic Resonance Center; Peking University; Beijing 100871 China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ya-Ou Zhang
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yuan-Zhi Lao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Nai-Han Xu
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| |
Collapse
|
47
|
Checco JW, Gellman SH. Targeting recognition surfaces on natural proteins with peptidic foldamers. Curr Opin Struct Biol 2016; 39:96-105. [PMID: 27390896 DOI: 10.1016/j.sbi.2016.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/22/2016] [Accepted: 06/15/2016] [Indexed: 11/30/2022]
Abstract
Molecules intended to antagonize protein-protein interactions or augment polypeptide-based signaling must bind tightly to large and specific surfaces on target proteins. Some types of unnatural oligomers with discrete folding propensities ('foldamers') have recently been shown to display this capability. This review covers important recent advances among several classes of foldamers, including α-peptides with secondary structures stabilized by covalent bonds, d-α-peptides, α/β-peptides and oligo-oxopiperazines. Recent advances in this area have involved enhancing membrane permeability to provide access to intracellular protein targets, improving pharmacokinetics and duration of action in vivo, and developing strategies appropriate for targeting large and irregularly-shaped protein surfaces.
Collapse
Affiliation(s)
- James W Checco
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
48
|
Kyle HF, Wickson KF, Stott J, Burslem GM, Breeze AL, Tiede C, Tomlinson DC, Warriner SL, Nelson A, Wilson AJ, Edwards TA. Exploration of the HIF-1α/p300 interface using peptide and Adhiron phage display technologies. MOLECULAR BIOSYSTEMS 2016; 11:2738-49. [PMID: 26135796 DOI: 10.1039/c5mb00284b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The HIF-1α/p300 protein-protein interaction plays a key role in tumor metabolism and thus represents a high value target for anticancer drug-development. Although several studies have identified inhibitor candidates using rationale design, more detailed understanding of the interaction and binding interface is necessary to inform development of superior inhibitors. In this work, we report a detailed biophysical analysis of the native interaction with both peptide and Adhiron phage display experiments to identify novel binding motifs and binding regions of the surface of p300 to inform future inhibitor design.
Collapse
Affiliation(s)
- Hannah F Kyle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Modell AE, Blosser SL, Arora PS. Systematic Targeting of Protein-Protein Interactions. Trends Pharmacol Sci 2016; 37:702-713. [PMID: 27267699 DOI: 10.1016/j.tips.2016.05.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
Over the past decade, protein-protein interactions (PPIs) have gone from being neglected as 'undruggable' to being considered attractive targets for the development of therapeutics. Recent advances in computational analysis, fragment-based screening, and molecular design have revealed promising strategies to address the basic molecular recognition challenge: how to target large protein surfaces with specificity. Several systematic and complementary workflows have been developed to yield successful inhibitors of PPIs. Here we review the major contemporary approaches utilized for the discovery of inhibitors and focus on a structure-based workflow, from the selection of a biological target to design.
Collapse
Affiliation(s)
- Ashley E Modell
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Sarah L Blosser
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
50
|
Hoang HN, Driver RW, Beyer RL, Hill TA, D. de Araujo A, Plisson F, Harrison RS, Goedecke L, Shepherd NE, Fairlie DP. Helix Nucleation by the Smallest Known α‐Helix in Water. Angew Chem Int Ed Engl 2016; 55:8275-9. [DOI: 10.1002/anie.201602079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Huy N. Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Russell W. Driver
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Renée L. Beyer
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Aline D. de Araujo
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Fabien Plisson
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Rosemary S. Harrison
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Lena Goedecke
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Nicholas E. Shepherd
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|