1
|
Cascio P. PA28γ, the ring that makes tumors invisible to the immune system? Biochimie 2024; 226:136-147. [PMID: 38631454 DOI: 10.1016/j.biochi.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
PA28γ is a proteasomal interactor whose main and most known function is to stimulate the hydrolytic activity of the 20 S proteasome independently of ubiquitin and ATP. Unlike its two paralogues, PA28α and PA28β, PA28γ is largely present in the nuclear compartment and plays pivotal functions in important pathways such as cellular division, apoptosis, neoplastic transformation, chromatin structure and organization, fertility, lipid metabolism, and DNA repair mechanisms. Although it is known that a substantial fraction of PA28γ is found in the cell in a free form (i.e. not associated with 20 S), almost all of the studies so far have focused on its ability to modulate proteasomal enzymatic activities. In this respect, the ability of PA28γ to strongly stimulate degradation of proteins, especially if intrinsically disordered and therefore devoid of three-dimensional tightly folded structure, appears to be the main molecular mechanism underlying its multiple biological effects. Initial studies, conducted more than 20 years ago, came to the conclusion that among the many biological functions of PA28γ, the immunological ones were rather limited and circumscribed. In this review, we focus on recent evidence showing that PA28γ fulfills significant functions in cell-mediated acquired immunity, with a particular role in attenuating MHC class I antigen presentation, especially in relation to neoplastic transformation and autoimmune diseases.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
2
|
Zou S, Kim B, Tian Y, Liu G, Zhang J, Zerda R, Li Z, Zhang G, Du X, Lin W, Gao X, Huang W, Fu X. Enhanced nuclear translation is associated with proliferation and progression across multiple cancers. MedComm (Beijing) 2023; 4:e248. [PMID: 37063610 PMCID: PMC10104727 DOI: 10.1002/mco2.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Recent technological advances have re-invigorated the interest in nuclear translation (NT), but the underlying mechanisms and functional implications of NT remain unknown. Here we show that NT is enhanced in malignant cancer cells and is associated with rapid cell growth. Nuclear ribopuromycylation analyses in a panel of diverse cell lines revealed that NT is scarce in normal immortalized cells, but is ubiquitous and robust in malignant cancer cells. Moreover, NT occurs in the nucleolus and requires normal nucleolar function. Intriguingly, NT is reduced by cellular stresses and anti-tumor agents and positively correlates with cancer cell proliferation and growth. By using a modified puromycin-associated nascent chain proteomics, we further identified numerous oncoproteins that are preferentially translated in the nucleus, such as transforming growth factor-beta 2 (TGFB2) and nucleophosmin 1 (NMP1). Specific overexpression of TGFB2 and NMP1 messenger RNAs in the nucleus can increase their protein levels and promote tumorigenesis. These findings establish a previously unknown link between NT and malignancy and suggest that cancer cells might have adapted a mechanism of NT to support their need for rapid growth, which highlight the potential of NT in tumorigenesis and might also open up new possibilities for therapeutic targeting of cancer-specific cellular functions.
Collapse
Affiliation(s)
- Sailan Zou
- Division of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Byung‐Wook Kim
- Department of Diabetes Complications and MetabolismArthur Riggs Diabetes and Metabolism Research InstituteIrell & Manella Graduate School of Biological SciencesBeckman Research InstituteCity of Hope National Medical CenterDuarteUSA
| | - Yan Tian
- Division of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Geng Liu
- Division of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Jiawei Zhang
- Department of Diabetes Complications and MetabolismArthur Riggs Diabetes and Metabolism Research InstituteIrell & Manella Graduate School of Biological SciencesBeckman Research InstituteCity of Hope National Medical CenterDuarteUSA
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education)Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Ricardo Zerda
- Electron Microscopy and Atomic Force Microscopy CoreCity of Hope National Medical CenterDuarteUSA
| | - Zhuo Li
- Electron Microscopy and Atomic Force Microscopy CoreCity of Hope National Medical CenterDuarteUSA
| | - Guixiang Zhang
- Division of Gastrointestinal SurgeryDepartment of General Surgery and Gastric Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Xiao Du
- Division of Gastrointestinal SurgeryDepartment of General Surgery and Gastric Cancer CenterWest China HospitalSichuan UniversityChengduChina
- Department of General SurgeryYaan People's HospitalYaanChina
| | - Weiqiang Lin
- Department of NephrologyThe Fourth Affiliated HospitalInternational Institutes of MedicineSchool of MedicineZhejiang UniversityZhejiangChina
| | - Xiang Gao
- Department of Neurosurgery and Institute of NeurosurgeryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Wendong Huang
- Department of Diabetes Complications and MetabolismArthur Riggs Diabetes and Metabolism Research InstituteIrell & Manella Graduate School of Biological SciencesBeckman Research InstituteCity of Hope National Medical CenterDuarteUSA
| | - Xianghui Fu
- Division of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| |
Collapse
|
3
|
Abstract
Biomolecular condensates concentrate molecules to facilitate basic biochemical processes, including transcription and DNA replication. While liquid-like condensates have been ascribed various functions, solid-like condensates are generally thought of as amorphous sites of protein storage. Here, we show that solid-like amyloid bodies coordinate local nuclear protein synthesis (LNPS) during stress. On stimulus, translationally active ribosomes accumulate along fiber-like assemblies that characterize amyloid bodies. Mass spectrometry analysis identified regulatory ribosomal proteins and translation factors that relocalize from the cytoplasm to amyloid bodies to sustain LNPS. These amyloidogenic compartments are enriched in newly transcribed messenger RNA by Heat Shock Factor 1 (HSF1). Depletion of stress-induced ribosomal intergenic spacer noncoding RNA (rIGSRNA) that constructs amyloid bodies prevents recruitment of the nuclear protein synthesis machinery, abolishes LNPS, and impairs the nuclear HSF1 response. We propose that amyloid bodies support local nuclear translation during stress and that solid-like condensates can facilitate complex biochemical reactions as their liquid counterparts can.
Collapse
|
4
|
Lashkevich KA, Dmitriev SE. mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts. Mol Biol 2021; 55:507-537. [PMID: 34092811 PMCID: PMC8164833 DOI: 10.1134/s0026893321030080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Spatial organization of protein biosynthesis in the eukaryotic cell has been studied for more than fifty years, thus many facts have already been included in textbooks. According to the classical view, mRNA transcripts encoding secreted and transmembrane proteins are translated by ribosomes associated with endoplasmic reticulum membranes, while soluble cytoplasmic proteins are synthesized on free polysomes. However, in the last few years, new data has emerged, revealing selective translation of mRNA on mitochondria and plastids, in proximity to peroxisomes and endosomes, in various granules and at the cytoskeleton (actin network, vimentin intermediate filaments, microtubules and centrosomes). There are also long-standing debates about the possibility of protein synthesis in the nucleus. Localized translation can be determined by targeting signals in the synthesized protein, nucleotide sequences in the mRNA itself, or both. With RNA-binding proteins, many transcripts can be assembled into specific RNA condensates and form RNP particles, which may be transported by molecular motors to the sites of active translation, form granules and provoke liquid-liquid phase separation in the cytoplasm, both under normal conditions and during cell stress. The translation of some mRNAs occurs in specialized "translation factories," assemblysomes, transperons and other structures necessary for the correct folding of proteins, interaction with functional partners and formation of oligomeric complexes. Intracellular localization of mRNA has a significant impact on the efficiency of its translation and presumably determines its response to cellular stress. Compartmentalization of mRNAs and the translation machinery also plays an important role in viral infections. Many viruses provoke the formation of specific intracellular structures, virus factories, for the production of their proteins. Here we review the current concepts of the molecular mechanisms of transport, selective localization and local translation of cellular and viral mRNAs, their effects on protein targeting and topogenesis, and on the regulation of protein biosynthesis in different compartments of the eukaryotic cell. Special attention is paid to new systems biology approaches, providing new cues to the study of localized translation.
Collapse
Affiliation(s)
- Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Gaete-Argel A, Velásquez F, Márquez CL, Rojas-Araya B, Bueno-Nieto C, Marín-Rojas J, Cuevas-Zúñiga M, Soto-Rifo R, Valiente-Echeverría F. Tellurite Promotes Stress Granules and Nuclear SG-Like Assembly in Response to Oxidative Stress and DNA Damage. Front Cell Dev Biol 2021; 9:622057. [PMID: 33681200 PMCID: PMC7928414 DOI: 10.3389/fcell.2021.622057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Tellurium oxyanion, tellurite (TeO3–2), is a highly toxic compound for many organisms. Its presence in the environment has increased over the past years due to industrial manufacturing processes and has been associated with adverse effects on human health. Although tellurite induces the phosphorylation of eIF2α, DNA damage and oxidative stress, the molecular mechanisms related to the cellular responses to tellurite-induced stress are poorly understood. In this work, we evaluated the ability of tellurite to induce phosphorylation of eIF2α, stress granules (SGs) assembly and their relationship with DNA damage in U2OS cells. We demonstrate that tellurite promotes the assembly of bona fide cytoplasmic SGs. Unexpectedly, tellurite also induces the assembly of nuclear SGs. Interestingly, we observed that the presence of tellurite-induced nuclear SGs correlates with γH2AX foci. However, although H2O2 also induce DNA damage, no nuclear SGs were observed. Our data show that tellurite promotes the assembly of cytoplasmic and nuclear SGs in response to oxidative stress and DNA damage, revealing a new aspect of cellular stress response mediated by the assembly of nuclear stress granules.
Collapse
Affiliation(s)
- Aracelly Gaete-Argel
- Molecular and Cellular Virology Laboratory, Faculty of Medicine, Virology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Felipe Velásquez
- Molecular and Cellular Virology Laboratory, Faculty of Medicine, Virology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Chantal L Márquez
- Molecular and Cellular Virology Laboratory, Faculty of Medicine, Virology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Barbara Rojas-Araya
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Constanza Bueno-Nieto
- Molecular and Cellular Virology Laboratory, Faculty of Medicine, Virology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Josefina Marín-Rojas
- Molecular and Cellular Virology Laboratory, Faculty of Medicine, Virology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Miguel Cuevas-Zúñiga
- Molecular and Cellular Virology Laboratory, Faculty of Medicine, Virology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Faculty of Medicine, Virology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Faculty of Medicine, Virology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Pont MJ, Oostvogels R, van Bergen CA, van der Meijden ED, Honders MW, Bliss S, Jongsma ML, Lokhorst HM, Falkenburg JF, Mutis T, Griffioen M, Spaapen RM. T Cells Specific for an Unconventional Natural Antigen Fail to Recognize Leukemic Cells. Cancer Immunol Res 2019; 7:797-804. [DOI: 10.1158/2326-6066.cir-18-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
|
7
|
Spinnenhirn V, Bitzer A, Aichem A, Groettrup M. Newly translated proteins are substrates for ubiquitin, ISG15, and FAT10. FEBS Lett 2016; 591:186-195. [PMID: 27926780 DOI: 10.1002/1873-3468.12512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
Abstract
The ubiquitin-like modifier, FAT10, is involved in proteasomal degradation and antigen processing. As ubiquitin and the ubiquitin-like modifier, ISG15, cotranslationally modify proteins, we investigated whether FAT10 could also be conjugated to newly synthesized proteins. Indeed, we found that nascent proteins are modified with FAT10, but not with the same preference for newly synthesized proteins as observed for ISG15. Our data show that puromycin-labeled polypeptides are strongly modified by ISG15 and less intensely by ubiquitin and FAT10. Nevertheless, conjugates of all three modifiers copurify with ribosomes. Taken together, we show that unlike ISG15, ubiquitin and FAT10 are conjugated to a similar degree to newly translated and pre-existing proteins.
Collapse
Affiliation(s)
| | - Annegret Bitzer
- Division of Immunology, Department of Biology, University of Konstanz, Germany
| | - Annette Aichem
- Biotechnology Institute Thurgau at the, University of Konstanz, Kreuzlingen, Switzerland
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Germany.,Biotechnology Institute Thurgau at the, University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
8
|
Apcher S, Daskalogianni C, Fåhraeus R. Pioneer translation products as an alternative source for MHC-I antigenic peptides. Mol Immunol 2015; 68:68-71. [PMID: 25979818 DOI: 10.1016/j.molimm.2015.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
The notion that alternative peptide substrates can be processed and presented to the MHC class I pathway has opened for new aspects on how the immune system detects infected or damaged cells. Recent works show that antigenic peptides are derived from intron sequences in pre-mRNAs target for the nonsense-mediated degradation pathway. Introns are spliced out co-transcriptionally suggesting that such pioneer translation products (PTPs) are synthesized on the nascent RNAs in the nuclear compartment to ensure that the first peptides to emerge from an mRNA are destined for the class I pathway. This illustrates an independent translation event during mRNA maturation that give rise to specific peptide products with a specific function in the immune system. The characterization of the translation apparatus responsible for PTP synthesis will pave the way for understanding how PTP production is regulated in different tissues under different conditions and will help designing new vaccine strategies.
Collapse
Affiliation(s)
- Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Unité 1015 département d'immunologie, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| | - Chrysoula Daskalogianni
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire, 27 rue Juliette Dodu, 75010 Paris, France
| | - Robin Fåhraeus
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire, 27 rue Juliette Dodu, 75010 Paris, France; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| |
Collapse
|
9
|
The nature of self for T cells-a systems-level perspective. Curr Opin Immunol 2014; 34:1-8. [PMID: 25466393 DOI: 10.1016/j.coi.2014.10.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/16/2014] [Accepted: 10/28/2014] [Indexed: 11/24/2022]
Abstract
T-cell development and function are regulated by MHC-associated self peptides, collectively referred to as the immunopeptidome. Large-scale mass spectrometry studies have highlighted three key features of the immunopeptidome. First, it is not a mirror of the proteome or the transcriptome, and its content cannot be predicted with currently available bioinformatic tools. Second, the immunopeptidome is more plastic than previously anticipated, and is molded by several cell-intrinsic and cell-extrinsic factors. Finally, the complexity of the immunopeptidome goes beyond the 20-amino acids alphabet encoded in the germline, and is not restricted to canonical reading frames. The large amounts of 'dark matter' in the immunopeptidome, such as polymorphic, cryptic and mutant peptides, can now be explored using novel proteogenomic approaches that combine mass spectrometry and next-generation sequencing.
Collapse
|
10
|
Baboo S, Cook PR. "Dark matter" worlds of unstable RNA and protein. Nucleus 2014; 5:281-6. [PMID: 25482115 PMCID: PMC4152340 DOI: 10.4161/nucl.29577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022] Open
Abstract
Astrophysicists use the term "dark matter" to describe the majority of the matter and/or energy in the universe that is hidden from view, and biologists now apply it to the new families of RNA they are uncovering. We review evidence for an analogous hidden world containing peptides. The critical experiments involved pulse-labeling human cells with tagged amino acids for periods as short as five seconds. Results are extraordinary in two respects: both nucleus and cytoplasm become labeled, and most signals disappear with a half-life of less than one minute. Just as the synthesis of each mature mRNA is regulated by the abortive production of hundreds of shorter transcripts that are quickly degraded, it seems that the synthesis of each full-length protein in the stable proteome is regulated by an apparently wasteful production and degradation of shorter peptides. Some of the nuclear synthesis is probably a byproduct of nuclear ribosomes proofreading newly-made RNA for inappropriately-placed termination codons (a process that triggers "nonsense-mediated decay"). We speculate that some "dark-matter" peptides will play other important roles in the cell.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Peter R Cook
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|
11
|
Baboo S, Bhushan B, Jiang H, Grovenor CRM, Pierre P, Davis BG, Cook PR. Most human proteins made in both nucleus and cytoplasm turn over within minutes. PLoS One 2014; 9:e99346. [PMID: 24911415 PMCID: PMC4050049 DOI: 10.1371/journal.pone.0099346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/13/2014] [Indexed: 12/25/2022] Open
Abstract
In bacteria, protein synthesis can be coupled to transcription, but in eukaryotes it is believed to occur solely in the cytoplasm. Using pulses as short as 5 s, we find that three analogues – L-azidohomoalanine, puromycin (detected after attaching fluors using ‘click’ chemistry or immuno-labeling), and amino acids tagged with ‘heavy’ 15N and 13C (detected using secondary ion mass spectrometry) – are incorporated into the nucleus and cytoplasm in a process sensitive to translational inhibitors. The nuclear incorporation represents a significant fraction of the total, and labels in both compartments have half-lives of less than a minute; results are consistent with most newly-made peptides being destroyed soon after they are made. As nascent RNA bearing a premature termination codon (detected by fluorescence in situ hybridization) is also eliminated by a mechanism sensitive to a translational inhibitor, the nuclear turnover of peptides is probably a by-product of proof-reading the RNA for stop codons (a process known as nonsense-mediated decay). We speculate that the apparently-wasteful turnover of this previously-hidden (‘dark-matter’) world of peptide is involved in regulating protein production.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Bhaskar Bhushan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Haibo Jiang
- Department of Materials, University of Oxford, Oxford, United Kingdom
| | | | - Philippe Pierre
- Centre d′Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
- Institut National de la Santé et de la Recherche Médicale, U1104, Marseille, France
- Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 7280, Marseille, France
| | - Benjamin G. Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|