1
|
Phan ENH, Mak CH. RNA fold prediction by Monte Carlo in graph space and the statistical mechanics of tertiary interactions. RNA (NEW YORK, N.Y.) 2024; 31:14-31. [PMID: 39442981 DOI: 10.1261/rna.080216.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Using a graph representation of RNA structures, we have studied the ensembles of secondary and tertiary graphs of two sets of RNA with Monte Carlo simulations. The first consisted of 91 target ribozyme and riboswitch sequences of moderate lengths (<150 nt) having a variety of secondary, H-type pseudoknots and kissing loop interactions. The second set consisted of 71 more diverse sequences across many RNA families. Using a simple empirical energy model for tertiary interactions and only sequence information for each target as input, the simulations examined how tertiary interactions impact the statistical mechanics of the fold ensembles. The results show that the graphs proliferate enormously when tertiary interactions are possible, producing an entropic driving force for the ensemble to access folds having tertiary structures even though they are overall energetically unfavorable in the energy model. For each of the targets in the two test sets, we assessed the quality of the model and the simulations by examining how well the simulated structures were able to predict the native fold, and compared the results to fold predictions from ViennaRNA. Our model generated good or excellent predictions in a large majority of the targets. Overall, this method was able to produce predictions of comparable quality to Vienna, but it outperformed Vienna for structures with H-type pseudoknots. The results suggest that while tertiary interactions are predicated on real-space contacts, their impacts on the folded structure of RNA can be captured by graph space information for sequences of moderate lengths, using a simple tertiary energy model for the loops, the base pairs, and base stacks.
Collapse
Affiliation(s)
| | - Chi H Mak
- Departments of Chemistry and Quantitative and Computational Biology, and Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
2
|
Thiel BC, Bussi G, Poblete S, Hofacker IL. Sampling globally and locally correct RNA 3D structures using Ernwin, SPQR and experimental SAXS data. Nucleic Acids Res 2024; 52:e73. [PMID: 39021350 PMCID: PMC11381333 DOI: 10.1093/nar/gkae602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
The determination of the three-dimensional structure of large RNA macromolecules in solution is a challenging task that often requires the use of several experimental and computational techniques. Small-angle X-ray scattering can provide insight into some geometrical properties of the probed molecule, but this data must be properly interpreted in order to generate a three-dimensional model. Here, we propose a multiscale pipeline which introduces SAXS data into modelling the global shape of RNA in solution, which can be hierarchically refined until reaching atomistic precision in explicit solvent. The low-resolution helix model (Ernwin) deals with the exploration of the huge conformational space making use of the SAXS data, while a nucleotide-level model (SPQR) removes clashes and disentangles the proposed structures, leading the structure to an all-atom representation in explicit water. We apply the procedure on four different known pdb structures up to 159 nucleotides with promising results. Additionally, we predict an all-atom structure for the Plasmodium falceparum signal recognition particle ALU RNA based on SAXS data deposited in the SASBDB, which has an alternate conformation and better fit to the SAXS data than the previously published structure based on the same data but other modelling methods.
Collapse
Affiliation(s)
- Bernhard C Thiel
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna 1090, Austria
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, Trieste 34136, Italy
| | - Simón Poblete
- Centro BASAL Ciencia & Vida, Avenida del Valle Norte 725, Santiago 8580702, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna 1090, Austria
- Research group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
3
|
Rocca R, Grillone K, Citriniti EL, Gualtieri G, Artese A, Tagliaferri P, Tassone P, Alcaro S. Targeting non-coding RNAs: Perspectives and challenges of in-silico approaches. Eur J Med Chem 2023; 261:115850. [PMID: 37839343 DOI: 10.1016/j.ejmech.2023.115850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
The growing information currently available on the central role of non-coding RNAs (ncRNAs) including microRNAs (miRNAS) and long non-coding RNAs (lncRNAs) for chronic and degenerative human diseases makes them attractive therapeutic targets. RNAs carry out different functional roles in human biology and are deeply deregulated in several diseases. So far, different attempts to therapeutically target the 3D RNA structures with small molecules have been reported. In this scenario, the development of computational tools suitable for describing RNA structures and their potential interactions with small molecules is gaining more and more interest. Here, we describe the most suitable strategies to study ncRNAs through computational tools. We focus on methods capable of predicting 2D and 3D ncRNA structures. Furthermore, we describe computational tools to identify, design and optimize small molecule ncRNA binders. This review aims to outline the state of the art and perspectives of computational methods for ncRNAs over the past decade.
Collapse
Affiliation(s)
- Roberta Rocca
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Anna Artese
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy.
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
4
|
Amadei F, Reichenbach M, Gallo S, Sigel RKO. The structural features of the ligand-free moaA riboswitch and its ion-dependent folding. J Inorg Biochem 2023; 242:112153. [PMID: 36774787 DOI: 10.1016/j.jinorgbio.2023.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Riboswitches are structural elements of mRNA involved in the regulation of gene expression by responding to specific cellular metabolites. To fulfil their regulatory function, riboswitches prefold into an active state, the so-called binding competent form, that guarantees metabolite binding and allows a consecutive refolding of the RNA. Here, we describe the folding pathway to the binding competent form as well as the ligand free structure of the moaA riboswitch of E. coli. This RNA proposedly responds to the molybdenum cofactor (Moco), a highly oxygen-sensitive metabolite, essential in the carbon and sulfur cycles of eukaryotes. K+- and Mg2+-dependent footprinting assays and spectroscopic investigations show a high degree of structure formation of this RNA already at very low ion-concentrations. Mg2+ facilitates additionally a general compaction of the riboswitch towards its proposed active structure. We show that this fold agrees with the earlier suggested secondary structure which included also a long-range tetraloop/tetraloop-receptor like interaction. Metal ion cleavage assays revealed specific Mg2+-binding pockets within the moaA riboswitch. These Mg2+ binding pockets are good indicators for the potential Moco binding site, since in riboswitches, Mg2+ was shown to be necessary to bind phosphate-carrying metabolites. The importance of the phosphate and of other functional groups of Moco is highlighted by binding assays with tetrahydrobiopterin, the reduced and oxygen-sensitive core moiety of Moco. We demonstrate that the general molecular shape of pterin by its own is insufficient for the recognition by the riboswitch.
Collapse
Affiliation(s)
- Fabio Amadei
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - María Reichenbach
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sofia Gallo
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
5
|
Li J, Chen SJ. RNAJP: enhanced RNA 3D structure predictions with non-canonical interactions and global topology sampling. Nucleic Acids Res 2023; 51:3341-3356. [PMID: 36864729 PMCID: PMC10123122 DOI: 10.1093/nar/gkad122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/14/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
RNA 3D structures are critical for understanding their functions. However, only a limited number of RNA structures have been experimentally solved, so computational prediction methods are highly desirable. Nevertheless, accurate prediction of RNA 3D structures, especially those containing multiway junctions, remains a significant challenge, mainly due to the complicated non-canonical base pairing and stacking interactions in the junction loops and the possible long-range interactions between loop structures. Here we present RNAJP ('RNA Junction Prediction'), a nucleotide- and helix-level coarse-grained model for the prediction of RNA 3D structures, particularly junction structures, from a given 2D structure. Through global sampling of the 3D arrangements of the helices in junctions using molecular dynamics simulations and in explicit consideration of non-canonical base pairing and base stacking interactions as well as long-range loop-loop interactions, the model can provide significantly improved predictions for multibranched junction structures than existing methods. Moreover, integrated with additional restraints from experiments, such as junction topology and long-range interactions, the model may serve as a useful structure generator for various applications.
Collapse
Affiliation(s)
- Jun Li
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Bheemireddy S, Sandhya S, Srinivasan N, Sowdhamini R. Computational tools to study RNA-protein complexes. Front Mol Biosci 2022; 9:954926. [PMID: 36275618 PMCID: PMC9585174 DOI: 10.3389/fmolb.2022.954926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
RNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein–RNA interactions are still poorly derstood in contrast to protein–protein and protein–DNA interactions. This knowledge gap can be attributed to the limited availability of protein-RNA structures along with the experimental difficulties in studying these complexes. Recent progress in computational resources has expanded the number of tools available for studying protein-RNA interactions at various molecular levels. These include tools for predicting interacting residues from primary sequences, modelling of protein-RNA complexes, predicting hotspots in these complexes and insights into derstanding in the dynamics of their interactions. Each of these tools has its strengths and limitations, which makes it significant to select an optimal approach for the question of interest. Here we present a mini review of computational tools to study different aspects of protein-RNA interactions, with focus on overall application, development of the field and the future perspectives.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sankaran Sandhya
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| | | | - Ramanathan Sowdhamini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| |
Collapse
|
7
|
RNA-As-Graphs Motif Atlas—Dual Graph Library of RNA Modules and Viral Frameshifting-Element Applications. Int J Mol Sci 2022; 23:ijms23169249. [PMID: 36012512 PMCID: PMC9408923 DOI: 10.3390/ijms23169249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022] Open
Abstract
RNA motif classification is important for understanding structure/function connections and building phylogenetic relationships. Using our coarse-grained RNA-As-Graphs (RAG) representations, we identify recurrent dual graph motifs in experimentally solved RNA structures based on an improved search algorithm that finds and ranks independent RNA substructures. Our expanded list of 183 existing dual graph motifs reveals five common motifs found in transfer RNA, riboswitch, and ribosomal 5S RNA components. Moreover, we identify three motifs for available viral frameshifting RNA elements, suggesting a correlation between viral structural complexity and frameshifting efficiency. We further partition the RNA substructures into 1844 distinct submotifs, with pseudoknots and junctions retained intact. Common modules are internal loops and three-way junctions, and three submotifs are associated with riboswitches that bind nucleotides, ions, and signaling molecules. Together, our library of existing RNA motifs and submotifs adds to the growing universe of RNA modules, and provides a resource of structures and substructures for novel RNA design.
Collapse
|
8
|
rsRNASP: A residue-separation-based statistical potential for RNA 3D structure evaluation. Biophys J 2022; 121:142-156. [PMID: 34798137 PMCID: PMC8758408 DOI: 10.1016/j.bpj.2021.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Knowledge-based statistical potentials have been shown to be rather effective in protein 3-dimensional (3D) structure evaluation and prediction. Recently, several statistical potentials have been developed for RNA 3D structure evaluation, while their performances are either still at a low level for the test datasets from structure prediction models or dependent on the "black-box" process through neural networks. In this work, we have developed an all-atom distance-dependent statistical potential based on residue separation for RNA 3D structure evaluation, namely rsRNASP, which is composed of short- and long-ranged potentials distinguished by residue separation. The extensive examinations against available RNA test datasets show that rsRNASP has apparently higher performance than the existing statistical potentials for the realistic test datasets with large RNAs from structure prediction models, including the newly released RNA-Puzzles dataset, and is comparable to the existing top statistical potentials for the test datasets with small RNAs or near-native decoys. In addition, rsRNASP is superior to RNA3DCNN, a recently developed scoring function through 3D convolutional neural networks. rsRNASP and the relevant databases are available to the public.
Collapse
|
9
|
Predicting RNA Scaffolds with a Hybrid Method of Vfold3D and VfoldLA. Methods Mol Biol 2021. [PMID: 34086269 DOI: 10.1007/978-1-0716-1499-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The ever-increasing discoveries of noncoding RNA functions draw a strong demand for RNA structure determination from the sequence. In recently years, computational studies for RNA structures, at both the two-dimensional and the three-dimensional levels, led to several highly promising new developments. In this chapter, we describe a hybrid method, which combines the motif template-based Vfold3D model and the loop template-based VfoldLA model, to predict RNA 3D structures. The main emphasis is placed on the definition of motifs and loops, the treatment of no-template motifs, and the 3D structure assembly from templates of motifs and loops. For illustration, we use the ZIKV xrRNA1 as an example to show the template-based prediction of RNA 3D structures from the 2D structure. The web server for the hybrid model is freely accessible at http://rna.physics.missouri.edu/vfold3D2 .
Collapse
|
10
|
Li J, Chen SJ. RNA 3D Structure Prediction Using Coarse-Grained Models. Front Mol Biosci 2021; 8:720937. [PMID: 34277713 PMCID: PMC8283274 DOI: 10.3389/fmolb.2021.720937] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The three-dimensional (3D) structures of Ribonucleic acid (RNA) molecules are essential to understanding their various and important biological functions. However, experimental determination of the atomic structures is laborious and technically difficult. The large gap between the number of sequences and the experimentally determined structures enables the thriving development of computational approaches to modeling RNAs. However, computational methods based on all-atom simulations are intractable for large RNA systems, which demand long time simulations. Facing such a challenge, many coarse-grained (CG) models have been developed. Here, we provide a review of CG models for modeling RNA 3D structures, compare the performance of the different models, and offer insights into potential future developments.
Collapse
Affiliation(s)
| | - Shi-Jie Chen
- Departments of Physics and Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Mak CH, Phan ENH. Diagrammatic approaches to RNA structures with trinucleotide repeats. Biophys J 2021; 120:2343-2354. [PMID: 33887227 PMCID: PMC8390803 DOI: 10.1016/j.bpj.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022] Open
Abstract
Trinucleotide repeat expansion disorders are associated with the overexpansion of (CNG) repeats on the genome. Messenger RNA transcripts of sequences with greater than 60–100 (CNG) tandem units have been implicated in trinucleotide repeat expansion disorder pathogenesis. In this work, we develop a diagrammatic theory to study the structural diversity of these (CNG)n RNA sequences. Representing structural elements on the chain’s conformation by a set of graphs and employing elementary diagrammatic methods, we have formulated a renormalization procedure to re-sum these graphs and arrive at a closed-form expression for the ensemble partition function. With a simple approximation for the renormalization and applied to extended (CNG)n sequences, this theory can comprehensively capture an infinite set of conformations with any number and any combination of duplexes, hairpins, multiway junctions, and quadruplexes. To quantify the diversity of different (CNG)n ensembles, the analytical equations derived from the diagrammatic theory were solved numerically to derive equilibrium estimates for the secondary structural contents of the chains. The results suggest that the structural ensembles of (CNG)n repeat sequence with n ∼60 are surprisingly diverse, and the distribution is sensitive to the ability of the N nucleotide to make noncanonical pairs and whether the (CNG)n sequence can sustain stable quadruplexes. The results show how perturbations in the form of biases on the stabilities of the various structural motifs, duplexes, junctions, helices, and quadruplexes could affect the secondary structures of the chains and how these structures may switch when they are perturbed.
Collapse
Affiliation(s)
- Chi H Mak
- Department of Chemistry, Center of Applied Mathematical Sciences and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California.
| | - Ethan N H Phan
- Department of Chemistry, University of Southern California, Los Angeles, California
| |
Collapse
|
12
|
Feng C, Tan YL, Cheng YX, Shi YZ, Tan ZJ. Salt-Dependent RNA Pseudoknot Stability: Effect of Spatial Confinement. Front Mol Biosci 2021; 8:666369. [PMID: 33928126 PMCID: PMC8078894 DOI: 10.3389/fmolb.2021.666369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Macromolecules, such as RNAs, reside in crowded cell environments, which could strongly affect the folded structures and stability of RNAs. The emergence of RNA-driven phase separation in biology further stresses the potential functional roles of molecular crowding. In this work, we employed the coarse-grained model that was previously developed by us to predict 3D structures and stability of the mouse mammary tumor virus (MMTV) pseudoknot under different spatial confinements over a wide range of salt concentrations. The results show that spatial confinements can not only enhance the compactness and stability of MMTV pseudoknot structures but also weaken the dependence of the RNA structure compactness and stability on salt concentration. Based on our microscopic analyses, we found that the effect of spatial confinement on the salt-dependent RNA pseudoknot stability mainly comes through the spatial suppression of extended conformations, which are prevalent in the partially/fully unfolded states, especially at low ion concentrations. Furthermore, our comprehensive analyses revealed that the thermally unfolding pathway of the pseudoknot can be significantly modulated by spatial confinements, since the intermediate states with more extended conformations would loss favor when spatial confinements are introduced.
Collapse
Affiliation(s)
- Chenjie Feng
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Yu-Xuan Cheng
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Zhi-Jie Tan
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Schlick T, Zhu Q, Jain S, Yan S. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element. Biophys J 2020; 120:1040-1053. [PMID: 33096082 PMCID: PMC7575535 DOI: 10.1016/j.bpj.2020.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
With the rapid rate of COVID-19 infections and deaths, treatments and cures besides hand washing, social distancing, masks, isolation, and quarantines are urgently needed. The treatments and vaccines rely on the basic biophysics of the complex viral apparatus. Although proteins are serving as main drug and vaccine targets, therapeutic approaches targeting the 30,000 nucleotide RNA viral genome form important complementary approaches. Indeed, the high conservation of the viral genome, its close evolutionary relationship to other viruses, and the rise of gene editing and RNA-based vaccines all argue for a focus on the RNA agent itself. One of the key steps in the viral replication cycle inside host cells is the ribosomal frameshifting required for translation of overlapping open reading frames. The RNA frameshifting element (FSE), one of three highly conserved regions of coronaviruses, is believed to include a pseudoknot considered essential for this ribosomal switching. In this work, we apply our graph-theory-based framework for representing RNA secondary structures, "RAG (or RNA-As-Graphs)," to alter key structural features of the FSE of the SARS-CoV-2 virus. Specifically, using RAG machinery of genetic algorithms for inverse folding adapted for RNA structures with pseudoknots, we computationally predict minimal mutations that destroy a structurally important stem and/or the pseudoknot of the FSE, potentially dismantling the virus against translation of the polyproteins. Our microsecond molecular dynamics simulations of mutant structures indicate relatively stable secondary structures. These findings not only advance our computational design of RNAs containing pseudoknots, they pinpoint key residues of the SARS-CoV-2 virus as targets for antiviral drugs and gene editing approaches.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, P. R. China.
| | - Qiyao Zhu
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York
| | - Swati Jain
- Department of Chemistry, New York University, New York, New York
| | - Shuting Yan
- Department of Chemistry, New York University, New York, New York
| |
Collapse
|
14
|
Xu X, Chen SJ. Topological constraints of RNA pseudoknotted and loop-kissing motifs: applications to three-dimensional structure prediction. Nucleic Acids Res 2020; 48:6503-6512. [PMID: 32491164 PMCID: PMC7337929 DOI: 10.1093/nar/gkaa463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/19/2020] [Indexed: 01/23/2023] Open
Abstract
An RNA global fold can be described at the level of helix orientations and relatively flexible loop conformations that connect the helices. The linkage between the helices plays an essential role in determining the structural topology, which restricts RNA local and global folds, especially for RNA tertiary structures involving cross-linked base pairs. We quantitatively analyze the topological constraints on RNA 3D conformational space, in particular, on the distribution of helix orientations, for pseudoknots and loop-loop kissing structures. The result shows that a viable conformational space is predominantly determined by the motif type, helix size, and loop size, indicating a strong topological coupling between helices and loops in RNA tertiary motifs. Moreover, the analysis indicates that (cross-linked) tertiary contacts can cause much stronger topological constraints on RNA global fold than non-cross-linked base pairs. Furthermore, based on the topological constraints encoded in the 2D structure and the 3D templates, we develop a 3D structure prediction approach. This approach can be further combined with structure probing methods to expand the capability of computational prediction for large RNA folds.
Collapse
Affiliation(s)
- Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
15
|
Schlick T, Zhu Q, Jain S, Yan S. Structure-Altering Mutations of the SARS-CoV-2 Frame Shifting RNA Element. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.28.271965. [PMID: 32869017 PMCID: PMC7457599 DOI: 10.1101/2020.08.28.271965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With the rapid rate of Covid-19 infections and deaths, treatments and cures besides hand washing, social distancing, masks, isolation, and quarantines are urgently needed. The treatments and vaccines rely on the basic biophysics of the complex viral apparatus. While proteins are serving as main drug and vaccine targets, therapeutic approaches targeting the 30,000 nucleotide RNA viral genome form important complementary approaches. Indeed, the high conservation of the viral genome, its close evolutionary relationship to other viruses, and the rise of gene editing and RNA-based vaccines all argue for a focus on the RNA agent itself. One of the key steps in the viral replication cycle inside host cells is the ribosomal frameshifting required for translation of overlapping open reading frames. The frameshifting element (FSE), one of three highly conserved regions of coronaviruses, includes an RNA pseudoknot considered essential for this ribosomal switching. In this work, we apply our graph-theory-based framework for representing RNA secondary structures, "RAG" (RNA-As Graphs), to alter key structural features of the FSE of the SARS-CoV-2 virus. Specifically, using RAG machinery of genetic algorithms for inverse folding adapted for RNA structures with pseudoknots, we computationally predict minimal mutations that destroy a structurally-important stem and/or the pseudoknot of the FSE, potentially dismantling the virus against translation of the polyproteins. Additionally, our microsecond molecular dynamics simulations of mutant structures indicate relatively stable secondary structures. These findings not only advance our computational design of RNAs containing pseudoknots; they pinpoint to key residues of the SARS-CoV-2 virus as targets for anti-viral drugs and gene editing approaches.
Collapse
|
16
|
|
17
|
Jain S, Zhu Q, Paz ASP, Schlick T. Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library. Biochim Biophys Acta Gen Subj 2020; 1864:129534. [PMID: 31954797 DOI: 10.1016/j.bbagen.2020.129534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications. METHODS Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into 'existing' or hypothetical, and the latter into, 'RNA-like' or 'non RNA-like' topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups. RESULTS The unsupervised PAM and K-means clustering approaches correctly classify 72-77% of all existing graph topologies and 75-82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%. CONCLUSIONS Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach. GENERAL SIGNIFICANCE Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Qiyao Zhu
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Amiel S P Paz
- NYU Shanghai, 1555 Century Avenue, Shanghai 200135, China; NYU-ECNU Center for Computational Chemistry, NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China
| | - Tamar Schlick
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; NYU-ECNU Center for Computational Chemistry, NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China.
| |
Collapse
|
18
|
Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies. J Struct Biol 2019; 209:107438. [PMID: 31874236 DOI: 10.1016/j.jsb.2019.107438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
We present an RNA-As-Graphs (RAG) based inverse folding algorithm, RAG-IF, to design novel RNA sequences that fold onto target tree graph topologies. The algorithm can be used to enhance our recently reported computational design pipeline (Jain et al., NAR 2018). The RAG approach represents RNA secondary structures as tree and dual graphs, where RNA loops and helices are coarse-grained as vertices and edges, opening the usage of graph theory methods to study, predict, and design RNA structures. Our recently developed computational pipeline for design utilizes graph partitioning (RAG-3D) and atomic fragment assembly (F-RAG) to design sequences to fold onto RNA-like tree graph topologies; the atomic fragments are taken from existing RNA structures that correspond to tree subgraphs. Because F-RAG may not produce the target folds for all designs, automated mutations by RAG-IF algorithm enhance the candidate pool markedly. The crucial residues for mutation are identified by differences between the predicted and the target topology. A genetic algorithm then mutates the selected residues, and the successful sequences are optimized to retain only the minimal or essential mutations. Here we evaluate RAG-IF for 6 RNA-like topologies and generate a large pool of successful candidate sequences with a variety of minimal mutations. We find that RAG-IF adds robustness and efficiency to our RNA design pipeline, making inverse folding motivated by graph topology rather than secondary structure more productive.
Collapse
|
19
|
Jin L, Tan YL, Wu Y, Wang X, Shi YZ, Tan ZJ. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability, and folding pathway. RNA (NEW YORK, N.Y.) 2019; 25:1532-1548. [PMID: 31391217 PMCID: PMC6795135 DOI: 10.1261/rna.071662.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/02/2019] [Indexed: 05/08/2023]
Abstract
RNA kissing complexes are essential for genomic RNA dimerization and regulation of gene expression, and their structures and stability are critical to their biological functions. In this work, we used our previously developed coarse-grained model with an implicit structure-based electrostatic potential to predict three-dimensional (3D) structures and stability of RNA kissing complexes in salt solutions. For extensive RNA kissing complexes, our model shows great reliability in predicting 3D structures from their sequences, and our additional predictions indicate that the model can capture the dependence of 3D structures of RNA kissing complexes on monovalent/divalent ion concentrations. Moreover, the comparisons with extensive experimental data show that the model can make reliable predictions on the stability for various RNA kissing complexes over wide ranges of monovalent/divalent ion concentrations. Notably, for RNA kissing complexes, our further analyses show the important contribution of coaxial stacking to the 3D structures and stronger stability than the corresponding kissing-interface duplexes at high salts. Furthermore, our comprehensive analyses for RNA kissing complexes reveal that the thermally folding pathway for a complex sequence is mainly determined by the relative stability of two possible folded states of kissing complex and extended duplex, which can be significantly modulated by its sequence.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yao Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xunxun Wang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
Xu X, Zhao C, Chen SJ. VfoldLA: A web server for loop assembly-based prediction of putative 3D RNA structures. J Struct Biol 2019; 207:235-240. [PMID: 31173857 PMCID: PMC6711797 DOI: 10.1016/j.jsb.2019.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/19/2022]
Abstract
RNA three-dimensional (3D) structures are critical for RNA cellular functions. However, structure prediction for large and complex RNAs remains a challenge, which hampers our understanding of RNA structure-function relationship. We here report a new web server, the VfoldLA server (http://rna.physics.missouri.edu/vfoldLA), for the prediction of RNA 3D structures from nucleotide sequences and base-pair information (2D structure). This server is based on the recently developed VfoldLA, a model that classifies the single-stranded loops (junctions) into four different types and according to the loop-helix connections, assembles RNA 3D structures from the loop/junction templates. The VfoldLA web server provides a user-friendly online interface for a fully automated prediction of putative 3D RNA structures using VfoldLA. With a single-RNA or RNA-RNA complex sequence and 2D structure as input, the server generates structure(s) with the JSmol visualization along with a downloadable PDB file. The output result may serve as useful scaffolds for future structure refinement studies.
Collapse
Affiliation(s)
- Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Chenhan Zhao
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
21
|
Meng G, Tariq M, Jain S, Elmetwaly S, Schlick T. RAG-Web: RNA structure prediction/design using RNA-As-Graphs. Bioinformatics 2019; 36:647-648. [PMID: 31373604 PMCID: PMC7999136 DOI: 10.1093/bioinformatics/btz611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023] Open
Abstract
SUMMARY We launch a webserver for RNA structure prediction and design corresponding to tools developed using our RNA-As-Graphs (RAG) approach. RAG uses coarse-grained tree graphs to represent RNA secondary structure, allowing the application of graph theory to analyze and advance RNA structure discovery. Our webserver consists of three modules: (a) RAG Sampler: samples tree graph topologies from an RNA secondary structure to predict corresponding tertiary topologies, (b) RAG Builder: builds three-dimensional atomic models from candidate graphs generated by RAG Sampler, and (c) RAG Designer: designs sequences that fold onto novel RNA motifs (described by tree graph topologies). Results analyses are performed for further assessment/selection. The Results page provides links to download results and indicates possible errors encountered. RAG-Web offers a user-friendly interface to utilize our RAG software suite to predict and design RNA structures and sequences. AVAILABILITY AND IMPLEMENTATION The webserver is freely available online at: http://www.biomath.nyu.edu/ragtop/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Grace Meng
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Marva Tariq
- Department of Chemistry, Smith College, Northampton, MA 01063, USA
| | - Swati Jain
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Shereef Elmetwaly
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | |
Collapse
|
22
|
Tan YL, Feng CJ, Jin L, Shi YZ, Zhang W, Tan ZJ. What is the best reference state for building statistical potentials in RNA 3D structure evaluation? RNA (NEW YORK, N.Y.) 2019; 25:793-812. [PMID: 30996105 PMCID: PMC6573789 DOI: 10.1261/rna.069872.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/06/2019] [Indexed: 05/14/2023]
Abstract
Knowledge-based statistical potentials have been shown to be efficient in protein structure evaluation/prediction, and the core difference between various statistical potentials is attributed to the choice of reference states. However, for RNA 3D structure evaluation, a comprehensive examination on reference states is still lacking. In this work, we built six statistical potentials based on six reference states widely used in protein structure evaluation, including averaging, quasi-chemical approximation, atom-shuffled, finite-ideal-gas, spherical-noninteracting, and random-walk-chain reference states, and we examined the six reference states against three RNA test sets including six subsets. Our extensive examinations show that, overall, for identifying native structures and ranking decoy structures, the finite-ideal-gas and random-walk-chain reference states are slightly superior to others, while for identifying near-native structures, there is only a slight difference between these reference states. Our further analyses show that the performance of a statistical potential is apparently dependent on the quality of the training set. Furthermore, we found that the performance of a statistical potential is closely related to the origin of test sets, and for the three realistic test subsets, the six statistical potentials have overall unsatisfactory performance. This work presents a comprehensive examination on the existing reference states and statistical potentials for RNA 3D structure evaluation.
Collapse
Affiliation(s)
- Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chen-Jie Feng
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China
| | - Wenbing Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Mak CH, Phan ENH. Topological Constraints and Their Conformational Entropic Penalties on RNA Folds. Biophys J 2019; 114:2059-2071. [PMID: 29742400 PMCID: PMC5961522 DOI: 10.1016/j.bpj.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 02/01/2023] Open
Abstract
Functional RNAs can fold into intricate structures using a number of different secondary and tertiary structural motifs. Many factors contribute to the overall free energy of the target fold. This study aims at quantifying the entropic costs coming from the loss of conformational freedom when the sugar-phosphate backbone is subjected to constraints imposed by secondary and tertiary contacts. Motivated by insights from topology theory, we design a diagrammatic scheme to represent different types of RNA structures so that constraints associated with a folded structure may be segregated into mutually independent subsets, enabling the total conformational entropy loss to be easily calculated as a sum of independent terms. We used high-throughput Monte Carlo simulations to simulate large ensembles of single-stranded RNA sequences in solution to validate the assumptions behind our diagrammatic scheme, examining the entropic costs for hairpin initiation and formation of many multiway junctions. Our diagrammatic scheme aids in the factorization of secondary/tertiary constraints into distinct topological classes and facilitates the discovery of interrelationships among multiple constraints on RNA folds. This perspective, which to our knowledge is novel, leads to useful insights into the inner workings of some functional RNA sequences, demonstrating how they might operate by transforming their structures among different topological classes.
Collapse
Affiliation(s)
- Chi H Mak
- Department of Chemistry, University of Southern California, Los Angeles, California; Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California; Department of Biological Sciences, University of Southern California, Los Angeles, California.
| | - Ethan N H Phan
- Department of Chemistry, University of Southern California, Los Angeles, California
| |
Collapse
|
24
|
Jain S, Saju S, Petingi L, Schlick T. An extended dual graph library and partitioning algorithm applicable to pseudoknotted RNA structures. Methods 2019; 162-163:74-84. [PMID: 30928508 DOI: 10.1016/j.ymeth.2019.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Exploring novel RNA topologies is imperative for understanding RNA structure and pursuing its design. Our RNA-As-Graphs (RAG) approach exploits graph theory tools and uses coarse-grained tree and dual graphs to represent RNA helices and loops by vertices and edges. Only dual graphs represent pseudoknotted RNAs fully. Here we develop a dual graph enumeration algorithm to generate an expanded library of dual graph topologies for 2-9 vertices, and extend our dual graph partitioning algorithm to identify all possible RNA subgraphs. Our enumeration algorithm connects smaller-vertex graphs, using all possible edge combinations, to build larger-vertex graphs and retain all non-isomorphic graph topologies, thereby more than doubling the size of our prior library to a total of 110,667 dual graph topologies. We apply our dual graph partitioning algorithm, which keeps pseudoknots and junctions intact, to all existing RNA structures to identify all possible substructures up to 9 vertices. In addition, our expanded dual graph library assigns graph topologies to all RNA graphs and subgraphs, rectifying prior inconsistencies. We update our RAG-3Dual database of RNA atomic fragments with all newly identified substructures and their graph IDs, increasing its size by more than 50 times. The enlarged dual graph library and RAG-3Dual database provide a comprehensive repertoire of graph topologies and atomic fragments to study yet undiscovered RNA molecules and design RNA sequences with novel topologies, including a variety of pseudoknotted RNAs.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Sera Saju
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Louis Petingi
- Computer Science Department, College of Staten Island, City University of New York, Staten Island, New York, NY 10314, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; NYU-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, North Zhongshan Road, 3663 Shanghai, China.
| |
Collapse
|
25
|
Jin L, Shi YZ, Feng CJ, Tan YL, Tan ZJ. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions. Biophys J 2018; 115:1403-1416. [PMID: 30236782 DOI: 10.1016/j.bpj.2018.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
Double-stranded (ds) RNAs play essential roles in many processes of cell metabolism. The knowledge of three-dimensional (3D) structure, stability, and flexibility of dsRNAs in salt solutions is important for understanding their biological functions. In this work, we further developed our previously proposed coarse-grained model to predict 3D structure, stability, and flexibility for dsRNAs in monovalent and divalent ion solutions through involving an implicit structure-based electrostatic potential. The model can make reliable predictions for 3D structures of extensive dsRNAs with/without bulge/internal loops from their sequences, and the involvement of the structure-based electrostatic potential and corresponding ion condition can improve the predictions for 3D structures of dsRNAs in ion solutions. Furthermore, the model can make good predictions for thermal stability for extensive dsRNAs over the wide range of monovalent/divalent ion concentrations, and our analyses show that the thermally unfolding pathway of dsRNA is generally dependent on its length as well as its sequence. In addition, the model was employed to examine the salt-dependent flexibility of a dsRNA helix, and the calculated salt-dependent persistence lengths are in good accordance with experiments.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Chen-Jie Feng
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Jain S, Laederach A, Ramos SBV, Schlick T. A pipeline for computational design of novel RNA-like topologies. Nucleic Acids Res 2018; 46:7040-7051. [PMID: 30137633 PMCID: PMC6101589 DOI: 10.1093/nar/gky524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Designing novel RNA topologies is a challenge, with important therapeutic and industrial applications. We describe a computational pipeline for design of novel RNA topologies based on our coarse-grained RNA-As-Graphs (RAG) framework. RAG represents RNA structures as tree graphs and describes RNA secondary (2D) structure topologies (currently up to 13 vertices, ≈260 nucleotides). We have previously identified novel graph topologies that are RNA-like among these. Here we describe a systematic design pipeline and illustrate design for six broad design problems using recently developed tools for graph-partitioning and fragment assembly (F-RAG). Following partitioning of the target graph, corresponding atomic fragments from our RAG-3D database are combined using F-RAG, and the candidate atomic models are scored using a knowledge-based potential developed for 3D structure prediction. The sequences of the top scoring models are screened further using available tools for 2D structure prediction. The results indicate that our modular approach based on RNA-like topologies rather than specific 2D structures allows for greater flexibility in the design process, and generates a large number of candidate sequences quickly. Experimental structure probing using SHAPE-MaP for two sequences agree with our predictions and suggest that our combined tools yield excellent candidates for further sequence and experimental screening.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Silvia B V Ramos
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
- NYU-ECNU Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, North Zhongshan Road, 3663 Shanghai, China
| |
Collapse
|
27
|
Jain S, Bayrak CS, Petingi L, Schlick T. Dual Graph Partitioning Highlights a Small Group of Pseudoknot-Containing RNA Submotifs. Genes (Basel) 2018; 9:E371. [PMID: 30044451 PMCID: PMC6115904 DOI: 10.3390/genes9080371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
RNA molecules are composed of modular architectural units that define their unique structural and functional properties. Characterization of these building blocks can help interpret RNA structure/function relationships. We present an RNA secondary structure motif and submotif library using dual graph representation and partitioning. Dual graphs represent RNA helices as vertices and loops as edges. Unlike tree graphs, dual graphs can represent RNA pseudoknots (intertwined base pairs). For a representative set of RNA structures, we construct dual graphs from their secondary structures, and apply our partitioning algorithm to identify non-separable subgraphs (or blocks) without breaking pseudoknots. We report 56 subgraph blocks up to nine vertices; among them, 22 are frequently occurring, 15 of which contain pseudoknots. We then catalog atomic fragments corresponding to the subgraph blocks to define a library of building blocks that can be used for RNA design, which we call RAG-3Dual, as we have done for tree graphs. As an application, we analyze the distribution of these subgraph blocks within ribosomal RNAs of various prokaryotic and eukaryotic species to identify common subgraphs and possible ancestry relationships. Other applications of dual graph partitioning and motif library can be envisioned for RNA structure analysis and design.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, New York University, New York, NY 10003, USA.
| | - Cigdem S Bayrak
- Department of Chemistry, New York University, New York, NY 10003, USA.
| | - Louis Petingi
- Computer Science Department, College of Staten Island, City University of New York, Staten Island, New York, NY 10314, USA.
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, NY 10003, USA.
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
- NYU-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 3663, China.
| |
Collapse
|
28
|
Abstract
The structure of RNA has been a natural subject for mathematical modeling, inviting many innovative computational frameworks. This single-stranded polynucleotide chain can fold upon itself in numerous ways to form hydrogen-bonded segments, imperfect with single-stranded loops. Illustrating these paired and non-paired interaction networks, known as RNA's secondary (2D) structure, using mathematical graph objects has been illuminating for RNA structure analysis. Building upon such seminal work from the 1970s and 1980s, graph models are now used to study not only RNA structure but also describe RNA's recurring modular units, sample the conformational space accessible to RNAs, predict RNA's three-dimensional folds, and apply the combined aspects to novel RNA design. In this article, we outline the development of the RNA-As-Graphs (or RAG) approach and highlight current applications to RNA structure prediction and design.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA; New York University ECNU - Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
29
|
Shi YZ, Jin L, Feng CJ, Tan YL, Tan ZJ. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions. PLoS Comput Biol 2018; 14:e1006222. [PMID: 29879103 PMCID: PMC6007934 DOI: 10.1371/journal.pcbi.1006222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/19/2018] [Accepted: 05/22/2018] [Indexed: 01/30/2023] Open
Abstract
RNA pseudoknots are a kind of minimal RNA tertiary structural motifs, and their three-dimensional (3D) structures and stability play essential roles in a variety of biological functions. Therefore, to predict 3D structures and stability of RNA pseudoknots is essential for understanding their functions. In the work, we employed our previously developed coarse-grained model with implicit salt to make extensive predictions and comprehensive analyses on the 3D structures and stability for RNA pseudoknots in monovalent/divalent ion solutions. The comparisons with available experimental data show that our model can successfully predict the 3D structures of RNA pseudoknots from their sequences, and can also make reliable predictions for the stability of RNA pseudoknots with different lengths and sequences over a wide range of monovalent/divalent ion concentrations. Furthermore, we made comprehensive analyses on the unfolding pathway for various RNA pseudoknots in ion solutions. Our analyses for extensive pseudokonts and the wide range of monovalent/divalent ion concentrations verify that the unfolding pathway of RNA pseudoknots is mainly dependent on the relative stability of unfolded intermediate states, and show that the unfolding pathway of RNA pseudoknots can be significantly modulated by their sequences and solution ion conditions.
Collapse
Affiliation(s)
- Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Jin
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Chen-Jie Feng
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Xu X, Chen SJ. Hierarchical Assembly of RNA Three-Dimensional Structures Based on Loop Templates. J Phys Chem B 2018; 122:5327-5335. [PMID: 29258305 DOI: 10.1021/acs.jpcb.7b10102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current RNA structure prediction methods cannot keep up the pace of the rapidly increasing number of sequences and the emerging new functions of RNAs. Template-based RNA three-dimensional structure prediction methods are restricted by the limited number of known RNA structures, and traditional motif-based search for the templates does not always lead to successful results. Here we report a new template search and assembly algorithm, the hierarchical loop template-assembly method (VfoldLA). The method searches for templates for single strand loop/junctions instead of the whole motifs, which often renders no available templates, or short fragments (several nucleotides), which requires a long computational time to assemble and refine. The VfoldLA method has the advantage of accounting for local and nonlocal interloop interactions. Benchmark tests indicate that this new method can provide low-resolution predictions for RNA conformations at different levels of structural complexities. Furthermore, the VfoldLA-predicted conformations may also serve as reliable putative models for further structure prediction and refinements. VfoldLA is accessible at http://rna.physics.missouri.edu/vfoldLA .
Collapse
Affiliation(s)
- Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering , Jiangsu University of Technology , Changzhou , Jiangsu 213001 , China.,Department of Physics, Department of Biochemistry, and Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
31
|
Jain S, Schlick T. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly. J Mol Biol 2017; 429:3587-3605. [PMID: 28988954 PMCID: PMC5693719 DOI: 10.1016/j.jmb.2017.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
Coarse-grained models represent attractive approaches to analyze and simulate ribonucleic acid (RNA) molecules, for example, for structure prediction and design, as they simplify the RNA structure to reduce the conformational search space. Our structure prediction protocol RAGTOP (RNA-As-Graphs Topology Prediction) represents RNA structures as tree graphs and samples graph topologies to produce candidate graphs. However, for a more detailed study and analysis, construction of atomic from coarse-grained models is required. Here we present our graph-based fragment assembly algorithm (F-RAG) to convert candidate three-dimensional (3D) tree graph models, produced by RAGTOP into atomic structures. We use our related RAG-3D utilities to partition graphs into subgraphs and search for structurally similar atomic fragments in a data set of RNA 3D structures. The fragments are edited and superimposed using common residues, full atomic models are scored using RAGTOP's knowledge-based potential, and geometries of top scoring models is optimized. To evaluate our models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue interactions) with respect to experimentally solved structures and compare our results to other fragment assembly programs. For a set of 50 RNA structures, we obtain atomic models with reasonable geometries and interactions, particularly good for RNAs containing junctions. Additional improvements to our protocol and databases are outlined. These results provide a good foundation for further work on RNA structure prediction and design applications.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, North Zhongshan Road, 3663 Shanghai, China.
| |
Collapse
|
32
|
Gong S, Wang Y, Wang Z, Zhang W. Computational Methods for Modeling Aptamers and Designing Riboswitches. Int J Mol Sci 2017; 18:E2442. [PMID: 29149090 PMCID: PMC5713409 DOI: 10.3390/ijms18112442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 02/04/2023] Open
Abstract
Riboswitches, which are located within certain noncoding RNA region perform functions as genetic "switches", regulating when and where genes are expressed in response to certain ligands. Understanding the numerous functions of riboswitches requires computation models to predict structures and structural changes of the aptamer domains. Although aptamers often form a complex structure, computational approaches, such as RNAComposer and Rosetta, have already been applied to model the tertiary (three-dimensional (3D)) structure for several aptamers. As structural changes in aptamers must be achieved within the certain time window for effective regulation, kinetics is another key point for understanding aptamer function in riboswitch-mediated gene regulation. The coarse-grained self-organized polymer (SOP) model using Langevin dynamics simulation has been successfully developed to investigate folding kinetics of aptamers, while their co-transcriptional folding kinetics can be modeled by the helix-based computational method and BarMap approach. Based on the known aptamers, the web server Riboswitch Calculator and other theoretical methods provide a new tool to design synthetic riboswitches. This review will represent an overview of these computational methods for modeling structure and kinetics of riboswitch aptamers and for designing riboswitches.
Collapse
Affiliation(s)
- Sha Gong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China.
| | - Yanli Wang
- Department of Physics, Wuhan University, Wuhan 430072, China.
| | - Zhen Wang
- Department of Physics, Wuhan University, Wuhan 430072, China.
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
33
|
Sloma MF, Mathews DH. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs. PLoS Comput Biol 2017; 13:e1005827. [PMID: 29107980 PMCID: PMC5690697 DOI: 10.1371/journal.pcbi.1005827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 11/16/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.
Collapse
Affiliation(s)
- Michael F. Sloma
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bayrak CS, Kim N, Schlick T. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction. Nucleic Acids Res 2017; 45:5414-5422. [PMID: 28158755 PMCID: PMC5435971 DOI: 10.1093/nar/gkx045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/22/2017] [Indexed: 12/15/2022] Open
Abstract
Kink turns are widely occurring motifs in RNA, located in internal loops and associated with many biological functions including translation, regulation and splicing. The associated sequence pattern, a 3-nt bulge and G-A, A-G base-pairs, generates an angle of ∼50° along the helical axis due to A-minor interactions. The conserved sequence and distinct secondary structures of kink-turns (k-turn) suggest computational folding rules to predict k-turn-like topologies from sequence. Here, we annotate observed k-turn motifs within a non-redundant RNA dataset based on sequence signatures and geometrical features, analyze bending and torsion angles, and determine distinct knowledge-based potentials with and without k-turn motifs. We apply these scoring potentials to our RAGTOP (RNA-As-Graph-Topologies) graph sampling protocol to construct and sample coarse-grained graph representations of RNAs from a given secondary structure. We present graph-sampling results for 35 RNAs, including 12 k-turn and 23 non k-turn internal loops, and compare the results to solved structures and to RAGTOP results without special k-turn potentials. Significant improvements are observed with the updated scoring potentials compared to the k-turn-free potentials. Because k-turns represent a classic example of sequence/structure motif, our study suggests that other such motifs with sequence signatures and unique geometrical features can similarly be utilized for RNA structure prediction and design.
Collapse
Affiliation(s)
- Cigdem Sevim Bayrak
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Namhee Kim
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| |
Collapse
|
35
|
RNA structure prediction: from 2D to 3D. Emerg Top Life Sci 2017; 1:275-285. [DOI: 10.1042/etls20160027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 11/17/2022]
Abstract
We summarize different levels of RNA structure prediction, from classical 2D structure to extended secondary structure and motif-based research toward 3D structure prediction of RNA. We outline the importance of classical secondary structure during all those levels of structure prediction.
Collapse
|
36
|
Schlick T, Pyle AM. Opportunities and Challenges in RNA Structural Modeling and Design. Biophys J 2017; 113:225-234. [PMID: 28162235 PMCID: PMC5529161 DOI: 10.1016/j.bpj.2016.12.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 01/27/2023] Open
Abstract
We describe opportunities and challenges in RNA structural modeling and design, as recently discussed during the second Telluride Science Research Center workshop organized in June 2016. Topics include fundamental processes of RNA, such as structural assemblies (hierarchical folding, multiple conformational states and their clustering), RNA motifs, and chemical reactivity of RNA, as used for structural prediction and functional inference. We also highlight the software and database issues associated with RNA structures, such as the multiple approaches for motif annotation, the need for frequent database updating, and the importance of quality control of RNA structures. We discuss various modeling approaches for structure prediction, mechanistic analysis of RNA reactions, and RNA design, and the complementary roles that both atomistic and coarse-grained approaches play in such simulations. Collectively, as scientists from varied disciplines become familiar and drawn into these unique challenges, new approaches and collaborative efforts will undoubtedly be catalyzed.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York.
| | - Anna Marie Pyle
- Department of Molecular and Cellular and Developmental Biology and Department of Chemistry, Yale University; Howard Hughes Medical Institute, New Haven, Connecticut.
| |
Collapse
|
37
|
Dršata T, Réblová K, Beššeová I, Šponer J, Lankaš F. rRNA C-Loops: Mechanical Properties of a Recurrent Structural Motif. J Chem Theory Comput 2017; 13:3359-3371. [DOI: 10.1021/acs.jctc.7b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomáš Dršata
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Kamila Réblová
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivana Beššeová
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Filip Lankaš
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Laboratory
of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
38
|
Bell DR, Cheng SY, Salazar H, Ren P. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations. Sci Rep 2017; 7:45812. [PMID: 28393861 PMCID: PMC5385882 DOI: 10.1038/srep45812] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/06/2017] [Indexed: 01/25/2023] Open
Abstract
We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3-4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes).
Collapse
Affiliation(s)
- David R. Bell
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sara Y. Cheng
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Heber Salazar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
39
|
Hua L, Song Y, Kim N, Laing C, Wang JTL, Schlick T. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking. PLoS One 2016; 11:e0147097. [PMID: 26789998 PMCID: PMC4720362 DOI: 10.1371/journal.pone.0147097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023] Open
Abstract
RNA junctions are important structural elements of RNA molecules. They are formed when three or more helices come together in three-dimensional space. Recent studies have focused on the annotation and prediction of coaxial helical stacking (CHS) motifs within junctions. Here we exploit such predictions to develop an efficient alignment tool to handle RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topologies as tree graphs to incorporate constrained tree matching and dynamic programming algorithms into a new method, called CHSalign, for aligning the secondary structures of RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient alignment tool for RNAs containing similar junctions. Experimental results based on thousands of alignments demonstrate that CHSalign can align two RNA secondary structures containing CHS motifs more accurately than other RNA secondary structure alignment tools. CHSalign yields a high score when aligning two RNA secondary structures with similar CHS motifs or helical arrangement patterns, and a low score otherwise. This new method has been implemented in a web server, and the program is also made freely available, at http://bioinformatics.njit.edu/CHSalign/.
Collapse
Affiliation(s)
- Lei Hua
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Yang Song
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Namhee Kim
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Christian Laing
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Jason T. L. Wang
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- * E-mail: (JW); (TS)
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York, United States of America
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
- * E-mail: (JW); (TS)
| |
Collapse
|
40
|
Boniecki MJ, Lach G, Dawson WK, Tomala K, Lukasz P, Soltysinski T, Rother KM, Bujnicki JM. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res 2015; 44:e63. [PMID: 26687716 PMCID: PMC4838351 DOI: 10.1093/nar/gkv1479] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/05/2015] [Indexed: 01/08/2023] Open
Abstract
RNA molecules play fundamental roles in cellular processes. Their function and interactions with other biomolecules are dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. Here, we present SimRNA: a new method for computational RNA 3D structure prediction, which uses a coarse-grained representation, relies on the Monte Carlo method for sampling the conformational space, and employs a statistical potential to approximate the energy and identify conformations that correspond to biologically relevant structures. SimRNA can fold RNA molecules using only sequence information, and, on established test sequences, it recapitulates secondary structure with high accuracy, including correct prediction of pseudoknots. For modeling of complex 3D structures, it can use additional restraints, derived from experimental or computational analyses, including information about secondary structure and/or long-range contacts. SimRNA also can be used to analyze conformational landscapes and identify potential alternative structures.
Collapse
Affiliation(s)
- Michal J Boniecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Grzegorz Lach
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Wayne K Dawson
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Konrad Tomala
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Pawel Lukasz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Tomasz Soltysinski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Kristian M Rother
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
41
|
Somarowthu S. Progress and Current Challenges in Modeling Large RNAs. J Mol Biol 2015; 428:736-747. [PMID: 26585404 DOI: 10.1016/j.jmb.2015.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 12/21/2022]
Abstract
Recent breakthroughs in next-generation sequencing technologies have led to the discovery of several classes of non-coding RNAs (ncRNAs). It is now apparent that RNA molecules are not only just carriers of genetic information but also key players in many cellular processes. While there has been a rapid increase in the number of ncRNA sequences deposited in various databases over the past decade, the biological functions of these ncRNAs are largely not well understood. Similar to proteins, RNA molecules carry out a function by forming specific three-dimensional structures. Understanding the function of a particular RNA therefore requires a detailed knowledge of its structure. However, determining experimental structures of RNA is extremely challenging. In fact, RNA-only structures represent just 1% of the total structures deposited in the PDB. Thus, computational methods that predict three-dimensional RNA structures are in high demand. Computational models can provide valuable insights into structure-function relationships in ncRNAs and can aid in the development of functional hypotheses and experimental designs. In recent years, a set of diverse RNA structure prediction tools have become available, which differ in computational time, input data and accuracy. This review discusses the recent progress and challenges in RNA structure prediction methods.
Collapse
Affiliation(s)
- Srinivas Somarowthu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, Kline Biology Tower, New Haven, CT 06511, USA.
| |
Collapse
|
42
|
Baba N, Elmetwaly S, Kim N, Schlick T. Predicting Large RNA-Like Topologies by a Knowledge-Based Clustering Approach. J Mol Biol 2015; 428:811-821. [PMID: 26478223 DOI: 10.1016/j.jmb.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022]
Abstract
An analysis and expansion of our resource for classifying, predicting, and designing RNA structures, RAG (RNA-As-Graphs), is presented, with the goal of understanding features of RNA-like and non-RNA-like motifs and exploiting this information for RNA design. RAG was first reported in 2004 for cataloging RNA secondary structure motifs using graph representations. In 2011, the RAG resource was updated with the increased availability of RNA structures and was improved by utilities for analyzing RNA structures, including substructuring and search tools. We also classified RNA structures as graphs up to 10 vertices (~200 nucleotides) into three classes: existing, RNA-like, and non-RNA-like using clustering approaches. Here, we focus on the tree graphs and evaluate the newly founded RNAs since 2011, which also support our refined predictions of RNA-like motifs. We expand the RAG resource for large tree graphs up to 13 vertices (~260 nucleotides), thereby cataloging more than 10 times as many secondary structures. We apply clustering algorithms based on features of RNA secondary structures translated from known tertiary structures to suggest which hypothetical large RNA motifs can be considered "RNA-like". The results by the PAM (Partitioning Around Medoids) approach, in particular, reveal good accuracy, with small error for the largest cases. The RAG update here up to 13 vertices offers a useful graph-based tool for exploring RNA motifs and suggesting large RNA motifs for design.
Collapse
Affiliation(s)
- Naoto Baba
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Shereef Elmetwaly
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Namhee Kim
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China.
| |
Collapse
|
43
|
Mustoe AM, Al-Hashimi HM, Brooks CL. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme. Nucleic Acids Res 2015; 44:402-12. [PMID: 26481360 PMCID: PMC4705646 DOI: 10.1093/nar/gkv1055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/03/2015] [Indexed: 12/20/2022] Open
Abstract
A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles L Brooks
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Blythe AJ, Fox AH, Bond CS. The ins and outs of lncRNA structure: How, why and what comes next? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:46-58. [PMID: 26325022 DOI: 10.1016/j.bbagrm.2015.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/07/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022]
Abstract
The field of structural biology has the unique advantage of being able to provide a comprehensive picture of biological mechanisms at the molecular and atomic level. Long noncoding RNAs (lncRNAs) represent the new frontier in the molecular biology of complex organisms yet remain the least characterised of all the classes of RNA. Thousands of new lncRNAs are being reported each year yet very little structural data exists for this rapidly expanding field. The length of lncRNAs ranges from 200 nt to over 100 kb in length and they generally exhibit low cellular abundance. Therefore, obtaining sufficient quantities of lncRNA to use for structural analysis is challenging. However, as technologies develop structures of lncRNAs are starting to emerge providing important information regarding their mechanism of action. Here we review the current methods used to determine the structure of lncRNA and lncRNA:protein complexes and describe the significant contribution structural biology has and will make to the field of lncRNA research. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Amanda J Blythe
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Archa H Fox
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
45
|
Boudard M, Bernauer J, Barth D, Cohen J, Denise A. GARN: Sampling RNA 3D Structure Space with Game Theory and Knowledge-Based Scoring Strategies. PLoS One 2015; 10:e0136444. [PMID: 26313379 PMCID: PMC4551674 DOI: 10.1371/journal.pone.0136444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022] Open
Abstract
Cellular processes involve large numbers of RNA molecules. The functions of these RNA molecules and their binding to molecular machines are highly dependent on their 3D structures. One of the key challenges in RNA structure prediction and modeling is predicting the spatial arrangement of the various structural elements of RNA. As RNA folding is generally hierarchical, methods involving coarse-grained models hold great promise for this purpose. We present here a novel coarse-grained method for sampling, based on game theory and knowledge-based potentials. This strategy, GARN (Game Algorithm for RNa sampling), is often much faster than previously described techniques and generates large sets of solutions closely resembling the native structure. GARN is thus a suitable starting point for the molecular modeling of large RNAs, particularly those with experimental constraints. GARN is available from: http://garn.lri.fr/.
Collapse
Affiliation(s)
- Mélanie Boudard
- PRiSM, CNRS UMR 8144, Université de Versailles-St-Quentin-en-Yvelines, 78000 Versailles, France
- LRI, CNRS UMR 8623, Université Paris-Sud, 91405 Orsay, France
- * E-mail: (MB); (JC)
| | - Julie Bernauer
- AMIB, Inria Saclay-Ile de France, 91120 Palaiseau, France
- LIX, CNRS UMR 7161, Ecole Polytechnique, 91120 Palaiseau, France
| | - Dominique Barth
- PRiSM, CNRS UMR 8144, Université de Versailles-St-Quentin-en-Yvelines, 78000 Versailles, France
| | - Johanne Cohen
- LRI, CNRS UMR 8623, Université Paris-Sud, 91405 Orsay, France
- * E-mail: (MB); (JC)
| | - Alain Denise
- LRI, CNRS UMR 8623, Université Paris-Sud, 91405 Orsay, France
- AMIB, Inria Saclay-Ile de France, 91120 Palaiseau, France
- I2BC, CNRS, Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|
46
|
Zahran M, Sevim Bayrak C, Elmetwaly S, Schlick T. RAG-3D: a search tool for RNA 3D substructures. Nucleic Acids Res 2015; 43:9474-88. [PMID: 26304547 PMCID: PMC4627073 DOI: 10.1093/nar/gkv823] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/03/2015] [Indexed: 01/23/2023] Open
Abstract
To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.
Collapse
Affiliation(s)
- Mai Zahran
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY 11201, USA
| | | | - Shereef Elmetwaly
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, NY 10003, USA Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| |
Collapse
|
47
|
Caetano-Anollés G, Caetano-Anollés D. Computing the origin and evolution of the ribosome from its structure - Uncovering processes of macromolecular accretion benefiting synthetic biology. Comput Struct Biotechnol J 2015; 13:427-47. [PMID: 27096056 PMCID: PMC4823900 DOI: 10.1016/j.csbj.2015.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 12/11/2022] Open
Abstract
Accretion occurs pervasively in nature at widely different timeframes. The process also manifests in the evolution of macromolecules. Here we review recent computational and structural biology studies of evolutionary accretion that make use of the ideographic (historical, retrodictive) and nomothetic (universal, predictive) scientific frameworks. Computational studies uncover explicit timelines of accretion of structural parts in molecular repertoires and molecules. Phylogenetic trees of protein structural domains and proteomes and their molecular functions were built from a genomic census of millions of encoded proteins and associated terminal Gene Ontology terms. Trees reveal a ‘metabolic-first’ origin of proteins, the late development of translation, and a patchwork distribution of proteins in biological networks mediated by molecular recruitment. Similarly, the natural history of ancient RNA molecules inferred from trees of molecular substructures built from a census of molecular features shows patchwork-like accretion patterns. Ideographic analyses of ribosomal history uncover the early appearance of structures supporting mRNA decoding and tRNA translocation, the coevolution of ribosomal proteins and RNA, and a first evolutionary transition that brings ribosomal subunits together into a processive protein biosynthetic complex. Nomothetic structural biology studies of tertiary interactions and ancient insertions in rRNA complement these findings, once concentric layering assumptions are removed. Patterns of coaxial helical stacking reveal a frustrated dynamics of outward and inward ribosomal growth possibly mediated by structural grafting. The early rise of the ribosomal ‘turnstile’ suggests an evolutionary transition in natural biological computation. Results make explicit the need to understand processes of molecular growth and information transfer of macromolecules.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101W. Peabody Drive, Urbana, IL 61801, USA; C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Derek Caetano-Anollés
- C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
48
|
Abstract
Despite the success of RNA secondary structure prediction for simple, short RNAs, the problem of predicting RNAs with long-range tertiary folds remains. Furthermore, RNA 3D structure prediction is hampered by the lack of the knowledge about the tertiary contacts and their thermodynamic parameters. Low-resolution structural modeling enables us to estimate the conformational entropies for a number of tertiary folds through rigorous statistical mechanical calculations. The models lead to 3D tertiary folds at coarse-grained level. The coarse-grained structures serve as the initial structures for all-atom molecular dynamics refinement to build the final all-atom 3D structures. In this paper, we present an overview of RNA computational models for secondary and tertiary structures’ predictions and then focus on a recently developed RNA statistical mechanical model—the Vfold model. The main emphasis is placed on the physics behind the models, including the treatment of the non-canonical interactions in secondary and tertiary structure modelings, and the correlations to RNA functions.
Collapse
Affiliation(s)
- Xiaojun Xu
- />Department of Physics, University of Missouri, Columbia, MO 65211 USA
- />Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- />Informatics Institute, University of Missouri, Columbia, MO 65211 USA
| | - Shi-Jie Chen
- />Department of Physics, University of Missouri, Columbia, MO 65211 USA
- />Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- />Informatics Institute, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
49
|
Kerpedjiev P, Höner Zu Siederdissen C, Hofacker IL. Predicting RNA 3D structure using a coarse-grain helix-centered model. RNA (NEW YORK, N.Y.) 2015; 21:1110-1121. [PMID: 25904133 PMCID: PMC4436664 DOI: 10.1261/rna.047522.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures.
Collapse
Affiliation(s)
| | - Christian Höner Zu Siederdissen
- Institute for Theoretical Chemistry, A-1090 Vienna, Austria Bioinformatics Group, Department of Computer Science, Universität Leipzig, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Universität Leipzig, D-04107 Leipzig, Germany
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, A-1090 Vienna, Austria Research Group Bioinformatics and Computational Biology, University of Vienna, A-1090 Vienna, Austria Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Science, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
50
|
Kim N, Zahran M, Schlick T. Computational Prediction of Riboswitch Tertiary Structures Including Pseudoknots by RAGTOP. Methods Enzymol 2015; 553:115-35. [DOI: 10.1016/bs.mie.2014.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|