1
|
Lagunas-Rangel FA. DNA damage accumulation and repair defects in FLT3-ITD acute myeloid leukemia: Implications for clonal evolution and disease progression. Hematol Oncol 2023; 41:26-38. [PMID: 36131612 PMCID: PMC10087755 DOI: 10.1002/hon.3076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 09/17/2022] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia is a group of hematological diseases that have a high mortality rate. During the development of this pathology, hematopoietic cells acquire chromosomal rearrangements and multiple genetic mutations, including FLT3-ITD. FLT3-ITD is a marker associated with a poor clinical prognosis and involves the activation of pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT that favor the survival and proliferation of leukemic cells. In addition, FLT3-ITD leads to overproduction of reactive oxygen species and defective DNA damage repair, both implicated in the appearance of new mutations and leukemic clones. Thus, the purpose of this review is to illustrate the molecular mechanisms through which FLT3-ITD generates genetic instability and how it facilitates clonal evolution with the generation of more resistant and aggressive cells. Likewise, this article discusses the feasibility of combined therapies with FLT3 inhibitors and inhibitors of DNA repair pathways.
Collapse
|
2
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
3
|
Pacharne S, Dovey OM, Cooper JL, Gu M, Friedrich MJ, Rajan SS, Barenboim M, Collord G, Vijayabaskar MS, Ponstingl H, De Braekeleer E, Bautista R, Mazan M, Rad R, Tzelepis K, Wright P, Gozdecka M, Vassiliou GS. SETBP1 overexpression acts in the place of class-defining mutations to drive FLT3-ITD-mutant AML. Blood Adv 2021; 5:2412-2425. [PMID: 33956058 PMCID: PMC8114559 DOI: 10.1182/bloodadvances.2020003443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in cancer genomics have revealed genomic classes of acute myeloid leukemia (AML) characterized by class-defining mutations, such as chimeric fusion genes or in genes such as NPM1, MLL, and CEBPA. These class-defining mutations frequently synergize with internal tandem duplications in FLT3 (FLT3-ITDs) to drive leukemogenesis. However, ∼20% of FLT3-ITD-positive AMLs bare no class-defining mutations, and mechanisms of leukemic transformation in these cases are unknown. To identify pathways that drive FLT3-ITD mutant AML in the absence of class-defining mutations, we performed an insertional mutagenesis (IM) screening in Flt3-ITD mice, using Sleeping Beauty transposons. All mice developed acute leukemia (predominantly AML) after a median of 73 days. Analysis of transposon insertions in 38 samples from Flt3-ITD/IM leukemic mice identified recurrent integrations at 22 loci, including Setbp1 (20/38), Ets1 (11/38), Ash1l (8/38), Notch1 (8/38), Erg (7/38), and Runx1 (5/38). Insertions at Setbp1 led exclusively to AML and activated a transcriptional program similar, but not identical, to those of NPM1-mutant and MLL-rearranged AMLs. Guide RNA targeting of Setbp1 was highly detrimental to Flt3ITD/+/Setbp1IM+, but not to Flt3ITD/+/Npm1cA/+, AMLs. Also, analysis of RNA-sequencing data from hundreds of human AMLs revealed that SETBP1 expression is significantly higher in FLT3-ITD AMLs lacking class-defining mutations. These findings propose that SETBP1 overexpression collaborates with FLT3-ITD to drive a subtype of human AML. To identify genetic vulnerabilities of these AMLs, we performed genome-wide CRISPR-Cas9 screening in Flt3ITD/+/Setbp1IM+ AMLs and identified potential therapeutic targets, including Kdm1a, Brd3, Ezh2, and Hmgcr. Our study gives new insights into epigenetic pathways that can drive AMLs lacking class-defining mutations and proposes therapeutic approaches against such cases.
Collapse
Affiliation(s)
- Suruchi Pacharne
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Oliver M Dovey
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jonathan L Cooper
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Muxin Gu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mathias J Friedrich
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sandeep S Rajan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- United Kingdom Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maxim Barenboim
- Department of Pediatrics and Children's Cancer Research Center, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Grace Collord
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - M S Vijayabaskar
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Hannes Ponstingl
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Etienne De Braekeleer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ruben Bautista
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Milena Mazan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Research and Development Department, Selvita S.A., Krakow, Poland
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Konstantinos Tzelepis
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Gurdon Institute
- Department of Pathology, and
| | | | - Malgorzata Gozdecka
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S Vassiliou
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Trust, Cambridge, United Kingdom
| |
Collapse
|
4
|
Chung SS, Ng JCF, Laddach A, Thomas NSB, Fraternali F. Short loop functional commonality identified in leukaemia proteome highlights crucial protein sub-networks. NAR Genom Bioinform 2021; 3:lqab010. [PMID: 33709075 PMCID: PMC7936661 DOI: 10.1093/nargab/lqab010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Direct drug targeting of mutated proteins in cancer is not always possible and efficacy can be nullified by compensating protein-protein interactions (PPIs). Here, we establish an in silico pipeline to identify specific PPI sub-networks containing mutated proteins as potential targets, which we apply to mutation data of four different leukaemias. Our method is based on extracting cyclic interactions of a small number of proteins topologically and functionally linked in the Protein-Protein Interaction Network (PPIN), which we call short loop network motifs (SLM). We uncover a new property of PPINs named 'short loop commonality' to measure indirect PPIs occurring via common SLM interactions. This detects 'modules' of PPI networks enriched with annotated biological functions of proteins containing mutation hotspots, exemplified by FLT3 and other receptor tyrosine kinase proteins. We further identify functional dependency or mutual exclusivity of short loop commonality pairs in large-scale cellular CRISPR-Cas9 knockout screening data. Our pipeline provides a new strategy for identifying new therapeutic targets for drug discovery.
Collapse
Affiliation(s)
- Sun Sook Chung
- Department of Haematological Medicine, King's College London, London, SE5 9NU, UK
| | - Joseph C F Ng
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Anna Laddach
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - N Shaun B Thomas
- Department of Haematological Medicine, King's College London, London, SE5 9NU, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| |
Collapse
|
5
|
Ma X, Zhou J, Wang C, Carter-Cooper B, Yang F, Larocque E, Fine J, Tsuji G, Chopra G, Lapidus RG, Sintim HO. Identification of New FLT3 Inhibitors That Potently Inhibit AML Cell Lines via an Azo Click-It/Staple-It Approach. ACS Med Chem Lett 2017; 8:492-497. [PMID: 28523099 DOI: 10.1021/acsmedchemlett.6b00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/14/2017] [Indexed: 12/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy with only a handful of therapeutic options. About 30% of AML patients harbor mutated FLT3 kinase, and thus, this cancer-driver has become a hotly pursued AML target. Herein we report a new class of FLT3 inhibitors, which potently inhibit the proliferation of acute myeloid leukemia (AML) cells at nanomolar concentrations.
Collapse
Affiliation(s)
- Xiaochu Ma
- Department
of Chemistry and Biochemistry, University of Maryland, College
Park, Maryland 20742, United States
| | | | - Changhao Wang
- Department
of Chemistry and Biochemistry, University of Maryland, College
Park, Maryland 20742, United States
| | - Brandon Carter-Cooper
- Translational
Core Laboratory, University of Maryland Greenebaum Cancer Center, 655 West Baltimore Street, Baltimore, Maryland 21201, United States
| | - Fan Yang
- Department
of Chemistry and Biochemistry, University of Maryland, College
Park, Maryland 20742, United States
| | | | | | | | | | - Rena G. Lapidus
- Translational
Core Laboratory, University of Maryland Greenebaum Cancer Center, 655 West Baltimore Street, Baltimore, Maryland 21201, United States
| | - Herman O. Sintim
- Department
of Chemistry and Biochemistry, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|