1
|
Yang M, Tang Y, Zhu P, Lu H, Wan X, Guo Q, Xiao L, Liu C, Guo L, Liu W, Yang Y. The advances of E2A-PBX1 fusion in B-cell acute lymphoblastic Leukaemia. Ann Hematol 2024; 103:3385-3398. [PMID: 38148344 DOI: 10.1007/s00277-023-05595-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
The E2A-PBX1 gene fusion is a common translocation in B-cell acute lymphoblastic leukaemia. Patients harbouring the E2A-PBX1 fusion gene typically exhibit an intermediate prognosis. Furthermore, minimal residual disease has unsatisfactory prognostic value in E2A-PBX1 B-cell acute lymphoblastic leukaemia. However, the mechanism of E2A-PBX1 in the occurrence and progression of B-cell acute lymphoblastic leukaemia is not well understood. Here, we mainly review the roles of E2A and PBX1 in the differentiation and development of B lymphocytes, the mechanism of E2A-PBX1 gene fusion in B-cell acute lymphoblastic leukaemia, and the potential therapeutic approaches.
Collapse
Affiliation(s)
- Mengting Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanhui Tang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Zhu
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, People's Republic of China
| | - Haiquan Lu
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohong Wan
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Xiao
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunyan Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenjun Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
| | - You Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Monti A, Scognamiglio PL, Ruvo M, Vitagliano L, Doti N. The Characterization of Multifaceted PREP1 Peptides Provides Insights into Correlations between Spectroscopic and Structural Properties of Amyloid-like Assemblies. Chemistry 2024; 30:e202400846. [PMID: 38682403 DOI: 10.1002/chem.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The widespread ability of proteins and peptides to self-assemble by forming cross-β structure is one of the most significant discoveries in structural biology. Intriguingly, the cross-β association of proteins/peptides may generate intricate supramolecular architectures with uncommon spectroscopic properties. We have recently characterized self-assembled peptides extracted from the PREP1 protein that are endowed with interesting structural/spectroscopic properties. We here demonstrate that the green fluorescence emission of the peptide PREP1[117-132] (λem ~520 nm), can be induced by excitation with UV radiation. The associated unusually large Stokes shift (Δλ ~150 nm) represents, to the best of our knowledge, the first evidence of an internal resonance energy transfer in amyloid-like structures, where the blue emission of some assemblies becomes the excitation radiation for others. Moreover, the characterization of PREP1[117-132] variants provides insights into the sequence/structure and structure/spectroscopic properties relationships. Our data suggests that the green fluorescence is plausibly associated with antiparallel β-sheet states of the peptide whereas parallel β-sheet assemblies are only endowed with blue fluorescence. Notably, the different PREP1[117-132] variants also form assemblies characterized by distinct morphologies. Indeed, the parent peptide and single mutants form compact but structured aggregates whereas most of the double mutants exhibit elongated and highly extended fibers.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | - Pasqualina Liana Scognamiglio
- Department of Sciences, University of Basilicata, Macchia Romana Campus 10, Viale dell'Ateneo Lucano, 85100, Potenza, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| |
Collapse
|
3
|
Kao TW, Chen HH, Lin J, Wang TL, Shen YA. PBX1 as a novel master regulator in cancer: Its regulation, molecular biology, and therapeutic applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189085. [PMID: 38341110 DOI: 10.1016/j.bbcan.2024.189085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiao-Han Chen
- Department of General Medicine, National Taiwan University Hospital, Taipei 100224, Taiwan
| | - James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
4
|
Bobola N, Sagerström CG. TALE transcription factors: Cofactors no more. Semin Cell Dev Biol 2024; 152-153:76-84. [PMID: 36509674 DOI: 10.1016/j.semcdb.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Exd/PBX, Hth/MEIS and PREP proteins belong to the TALE (three-amino-acid loop extension) superclass of transcription factors (TFs) with an atypical homedomain (HD). Originally discovered as "cofactors" to HOX proteins, revisiting their traditional role in light of genome-wide experiments reveals a strong and reproducible pattern of HOX and TALE co-occupancy across diverse embryonic tissues. While confirming that TALE increases HOX specificity and selectivity in vivo, this wider outlook also reveals novel aspects of HOX:TALE collaboration, namely that HOX TFs generally require pre-bound TALE factors to access their functional binding sites in vivo. In contrast to the restricted expression domains of HOX TFs, TALE factors are largely ubiquitous, and PBX and PREP are expressed at the earliest developmental stages. PBX and MEIS control development of many organs and tissues and their dysregulation is associated with congenital disease and cancer. Accordingly, many instances of TALE cooperation with non HOX TFs have been documented in various systems. The model that emerges from these studies is that TALE TFs create a permissive chromatin platform that is selected by tissue-restricted TFs for binding. In turn, HOX and other tissue-restricted TFs selectively convert a ubiquitous pool of low affinity TALE binding events into high confidence, tissue-restricted binding events associated with transcriptional activation. As a result, TALE:TF complexes are associated with active chromatin and domain/lineage-specific gene activity. TALE ubiquitous expression and broad genomic occupancy, as well as the increasing examples of TALE tissue-specific partners, reveal a universal and obligatory role for TALE in the control of tissue and lineage-specific transcriptional programs, beyond their initial discovery as HOX co-factors.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, UK.
| | - Charles G Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, Aurora, CO, USA.
| |
Collapse
|
5
|
Muranyi A, Ammer T, Kechter A, Rawat VP, Sinha A, Gonzalez-Menendez I, Quintanilla-Martinez L, Azoitei A, Günes C, Mupo A, Vassiliou G, Bamezai S, Buske C. Npm1 haploinsufficiency in collaboration with MEIS1 is sufficient to induce AML in mice. Blood Adv 2023; 7:351-364. [PMID: 35468619 PMCID: PMC9898611 DOI: 10.1182/bloodadvances.2022007015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
NPM1 is among the most frequently mutated genes in acute myeloid leukemia (AML). Mutations in the NPM1 gene result in the increased export of NPM1 to the cytoplasm (NPM1c) and are associated with multiple transforming events including the aberrant upregulation of MEIS1 that maintains stem cell and cell cycle-associated pathways in NPM1c AML. However, another consequence of the NPM1c mutation is the inadequate levels of NPM1 wild-type in the nucleus and nucleolus, caused by the loss of one wild-type allele in addition to enforced NPM1 nuclear export. The contribution of NPM1 haploinsufficiency independently of the NPM1 mutation to AML development and its relationship with MEIS1 function is poorly understood. Using mouse models, our study shows that NPM1 haploinsufficiency paired with MEIS1 overexpression is sufficient to induce a fully penetrant AML in mice that transcriptionally resembles human NPM1c AML. NPM1 haploinsufficiency alters MEIS1-binding occupancies such that it binds the promoter of the oncogene structural maintenance of chromosome protein 4 (SMC4) in NPM1 haploinsufficient AML cells but not in NPM1 wild-type-harboring Hoxa9/Meis1-transformed cells. SMC4 is higher expressed in haploinsufficient and NPM1c+ AML cells, which are more vulnerable to the disruption of the MEIS1-SMC4 axis compared with AML cells with nonmutated NPM1. Taken together, our study underlines that NPM1 haploinsufficiency on its own is a key factor of myeloid leukemogenesis and characterizes the MEIS1-SMC4 axis as a potential therapeutic target in this AML subtype.
Collapse
Affiliation(s)
- Andrew Muranyi
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Tobias Ammer
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Anna Kechter
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Vijay P.S. Rawat
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence, Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence, Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Anca Azoitei
- Department of Urology, Ulm University, Ulm, Germany
| | | | - Annalisa Mupo
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - George Vassiliou
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Shiva Bamezai
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
6
|
Ruscitti F, Cerminara M, Iascone M, Pezzoli L, Rosti G, Romano F, Ronchetto P, Martucciello G, Buratti S, Buffelli F, Bocciardi R, Puliti A, Divizia MT. An example of parenchymal renal sparing in the context of complex malformations due to a novel mutation in the PBX1 gene. Birth Defects Res 2022; 114:674-681. [PMID: 35751431 DOI: 10.1002/bdr2.2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION PBX1 encodes the pre-B cell leukemia factor 1, a Three Amino acid Loop Extension (TALE) transcription factor crucial to regulate basic developmental processes. PBX1 loss-of-function variants have been initially described in association with renal malformations in both isolated and syndromic forms. CASE REPORT Herein, we report a male infant presenting multiple organ malformations (cleidosternal dysostosis, micrognathia, left lung hypoplasia, wide interatrial defect, pulmonary hypertension, total anomalous pulmonary venous return, intestinal malrotation) and carrying the heterozygous de novo c.868C > T (p.Arg290Trp) variant in PBX1. This novel variant affects the highly conserved homeodomain of the protein, leading to a non-conservative substitution and consequently altering its tridimensional structure and DNA-binding capacity. CONCLUSION So far, PBX1 has been reported in association with a broad spectrum of renal anomalies. However, given the role of this gene in many different developing processes, whole-exome sequencing can detect mutations in PBX1 even in patients with different phenotypes, not necessarily involving the renal primordium. This report presents a novel PBX1 variant with a predicted strong deleterious effect. The mutation leads to a non-conservative substitution in a very highly conserved domain of the protein, thus altering its tertiary structure and DNA-binding capacity.
Collapse
Affiliation(s)
| | - Maria Cerminara
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Pezzoli
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giulia Rosti
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Patrizia Ronchetto
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuseppe Martucciello
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Chirurgia Pediatrica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Buratti
- UOC Terapia Intensiva Neonatale e Pediatrica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Buffelli
- Fetal-Perinatal Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Renata Bocciardi
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Aldamaria Puliti
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
7
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
8
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
9
|
Yao M, Gu Y, Yang Z, Zhong K, Chen Z. MEIS1 and its potential as a cancer therapeutic target (Review). Int J Mol Med 2021; 48:181. [PMID: 34318904 PMCID: PMC8354308 DOI: 10.3892/ijmm.2021.5014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/08/2021] [Indexed: 01/26/2023] Open
Abstract
Meis homeobox 1 (Meis1) was initially discovered in 1995 as a factor involved in leukemia in an animal model. Subsequently, 2 years later, MEIS1, the human homolog, was cloned in the liver and cerebellum, and was found to be highly expressed in myeloid leukemia cells. The MEIS1 gene, located on chromosome 2p14, encodes a 390-amino acid protein with six domains. The expression of homeobox protein MEIS1 is affected by cell type, age and environmental conditions, as well as the pathological state. Certain types of modifications of MEIS1 and its protein interaction with homeobox or pre-B-cell leukemia homeobox proteins have been described. As a transcription factor, MEIS1 protein is involved in cell proliferation in leukemia and some solid tumors. The present review article discusses the molecular biology, modifications, protein-protein interactions, as well as the role of MEIS1 in cell proliferation of cancer cells and MEIS1 inhibitors. It is suggested by the available literature MEIS1 has potential to become a cancer therapeutic target.
Collapse
Affiliation(s)
- Maozhong Yao
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, Hainan 570203, P.R. China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, Hainan 570203, P.R. China
| | - Zhaoxin Yang
- Teaching Experimental Animal Center, Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Keyan Zhong
- Teaching Experimental Animal Center, Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhanjuan Chen
- Chemical Experiment Teaching Center, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
10
|
Depreter B, De Moerloose B, Vandepoele K, Uyttebroeck A, Van Damme A, Terras E, Denys B, Dedeken L, Dresse MF, Van der Werff Ten Bosch J, Hofmans M, Philippé J, Lammens T. Deciphering molecular heterogeneity in pediatric AML using a cancer vs. normal transcriptomic approach. Pediatr Res 2021; 89:1695-1705. [PMID: 33069162 DOI: 10.1038/s41390-020-01199-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Still 30-40% of pediatric acute myeloid leukemia (pedAML) patients relapse. Delineation of the transcriptomic profile of leukemic subpopulations could aid in a better understanding of molecular biology and provide novel biomarkers. METHODS Using microarray profiling and quantitative PCR validation, transcript expression was measured in leukemic stem cells (LSC, n = 24) and leukemic blasts (L-blast, n = 25) from pedAML patients in comparison to hematopoietic stem cells (HSCs, n = 19) and control myeloblasts (C-blast, n = 20) sorted from healthy subjects. Gene set enrichment analysis was performed to identify relevant gene set enrichment signatures, and functional protein associations were identified by STRING analysis. RESULTS Highly significantly overexpressed genes in LSC and L-blast were identified with a vast majority not studied in AML. CDKN1A, CFP, and CFD (LSC) and HOMER3, CTSA, and GADD45B (L-blast) represent potentially interesting biomarkers and therapeutic targets. Eleven LSC downregulated targets were identified that potentially qualify as tumor suppressor genes, with MYCT1, PBX1, and PTPRD of highest interest. Inflammatory and immune dysregulation appeared to be perturbed biological networks in LSC, whereas dysregulated metabolic profiles were observed in L-blast. CONCLUSION Our study illustrates the power of taking into account cell population heterogeneity and reveals novel targets eligible for functional evaluation and therapy in pedAML. IMPACT Novel transcriptional targets were discovered showing a significant differential expression in LSCs and blasts from pedAML patients compared to their normal counterparts from healthy controls. Deregulated pathways, including immune and metabolic dysregulation, were addressed for the first time in children, offering a deeper understanding of the molecular pathogenesis. These novel targets have the potential of acting as biomarkers for risk stratification, follow-up, and targeted therapy. Multiple LSC-downregulated targets endow tumor suppressor roles in other cancer entities, and further investigation whether hypomethylating therapy could result into LSC eradication in pedAML is warranted.
Collapse
Affiliation(s)
- Barbara Depreter
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Karl Vandepoele
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anne Uyttebroeck
- Department of Pediatrics, University Hospital Gasthuisberg, Leuven, Belgium
| | - An Van Damme
- Department of Pediatric Hematology Oncology, University Hospital Saint-Luc, Brussels, Belgium
| | - Eva Terras
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara Denys
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Laurence Dedeken
- Department of Pediatric Hematology Oncology, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | | | | | - Mattias Hofmans
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jan Philippé
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Reichlmeir M, Elias L, Schulte D. Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse. Front Cell Dev Biol 2021; 9:648765. [PMID: 33768097 PMCID: PMC7985065 DOI: 10.3389/fcell.2021.648765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome’s sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lena Elias
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
12
|
Keinan N, Scharff Y, Goldstein O, Chamo M, Ilic S, Gazit R. Syngeneic leukemia models using lentiviral transgenics. Cell Death Dis 2021; 12:193. [PMID: 33602907 PMCID: PMC7893004 DOI: 10.1038/s41419-021-03477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Animal models are necessary to study cancer and develop treatments. After decades of intensive research, effective treatments are available for only a few types of leukemia, while others are currently incurable. Our goal was to generate novel leukemia models in immunocompetent mice. We had achieved abilities for overexpression of multiple driving oncogenes simultaneously in normal primary cells, which can be transplanted and followed in vivo. Our experiments demonstrated the induction of primary malignant growth. Leukemia lines that model various types of leukemia, such as acute myeloid leukemia (AML) or chronic lymphocytic leukemia (CLL), were passaged robustly in congenic wild-type immunocompetent mice. These novel leukemia lines, which may complement previous models, offer the flexibility to generate tailored models of defined oncogenes of interest. The characterization of our leukemia models in immunocompetent animals can uncover the mechanisms of malignancy progression and offer a unique opportunity to stringently test anti-cancer chemotherapies.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Viral
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/virology
- Immunocompetence
- Lentivirus/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/virology
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Transplantation
- Oncogenes
- Transplantation, Isogeneic
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
- Mice
Collapse
Affiliation(s)
- Nurit Keinan
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Ye'ela Scharff
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Oron Goldstein
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Michael Chamo
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Stefan Ilic
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Roi Gazit
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel.
| |
Collapse
|
13
|
Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. ACTA ACUST UNITED AC 2021; 44:328-355. [PMID: 33402862 PMCID: PMC7759197 DOI: 10.3906/biy-2006-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
MEIS proteins are historically associated with tumorigenesis, metastasis, and invasion in cancer. MEIS and associated PBX-HOX proteins may act as tumor suppressors or oncogenes in different cellular settings. Their expressions tend to be misregulated in various cancers. Bioinformatic analyses have suggested their upregulation in leukemia/lymphoma, thymoma, pancreas, glioma, and glioblastoma, and downregulation in cervical, uterine, rectum, and colon cancers. However, every cancer type includes, at least, a subtype with high MEIS expression. In addition, studies have highlighted that MEIS proteins and associated factors may function as diagnostic or therapeutic biomarkers for various diseases. Herein, MEIS proteins and associated factors in tumorigenesis are discussed with recent discoveries in addition to how they could be modulated by noncoding RNAs or newly developed small-molecule MEIS inhibitors.
Collapse
Affiliation(s)
- Birkan Gİrgİn
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| | - Medine KaradaĞ-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| | - Fatih KocabaŞ
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
14
|
Bruckmann C, Tamburri S, De Lorenzi V, Doti N, Monti A, Mathiasen L, Cattaneo A, Ruvo M, Bachi A, Blasi F. Mapping the native interaction surfaces of PREP1 with PBX1 by cross-linking mass-spectrometry and mutagenesis. Sci Rep 2020; 10:16809. [PMID: 33033354 PMCID: PMC7545097 DOI: 10.1038/s41598-020-74032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/25/2020] [Indexed: 02/08/2023] Open
Abstract
Both onco-suppressor PREP1 and the oncogene MEIS1 bind to PBX1. This interaction stabilizes the two proteins and allows their translocation into the nucleus and thus their transcriptional activity. Here, we have combined cross-linking mass-spectrometry and systematic mutagenesis to detail the binding geometry of the PBX1-PREP1 (and PBX1-MEIS1) complexes, under native in vivo conditions. The data confirm the existence of two distinct interaction sites within the PBC domain of PBX1 and unravel differences among the highly similar binding sites of MEIS1 and PREP1. The HR2 domain has a fundamental role in binding the PBC-B domain of PBX1 in both PREP1 and MEIS1. The HR1 domain of MEIS1, however, seem to play a less stringent role in PBX1 interaction with respect to that of PREP1. This difference is also reflected by the different binding affinity of the two proteins to PBX1. Although partial, this analysis provides for the first time some ideas on the tertiary structure of the complexes not available before. Moreover, the extensive mutagenic analysis of PREP1 identifies the role of individual hydrophobic HR1 and HR2 residues, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Bruckmann
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy.
| | - Simone Tamburri
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Valentina De Lorenzi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56124, Pisa, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Lisa Mathiasen
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
| | - Angela Cattaneo
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Cogentech S.R.L. Benefit Corporation IT, Via Adamello 16, 20139, Milan, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Angela Bachi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
| | - Francesco Blasi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
15
|
Doti N, Monti A, Bruckmann C, Calvanese L, Smaldone G, Caporale A, Falcigno L, D'Auria G, Blasi F, Ruvo M, Vitagliano L. Identification and characterization of cytotoxic amyloid-like regions in human Pbx-regulating protein-1. Int J Biol Macromol 2020; 163:618-629. [PMID: 32634512 DOI: 10.1016/j.ijbiomac.2020.06.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
The ability of many proteins to fold into well-defined structures has been traditionally considered a prerequisite for fulfilling their functions. Protein folding is also regarded as a valuable loophole to escape uncontrolled and harmful aggregations. Here we show that the PBX-regulating protein-1 (PREP1), an important homeodomain transcription factor involved in cell growth and differentiation during embryogenesis, is endowed with an uncommon thermostability. Indeed, circular dichroism analyses indicate that it retains most of its secondary structure at very high temperatures. These findings have important implications for PREP1 functions since it is a stabilizing factor of its partner PBX1. Predictive analyses suggest that the observed PREP1 thermostability could be related to the presence of aggregation-prone regions. Interestingly, synthetic peptides corresponding to these regions exhibit a remarkable propensity to form toxic β-rich amyloid-like aggregates in physiological conditions. On this basis, we suggest that PREP1 stability is an effective way to prevent or limit the formation of harmful aggregates. Notably, one of these PREP1 fragments (residues 117-132) is able to reversibly switch from α-helical to β-rich states depending on the environmental conditions. The chameleon conformational behavior of this peptide makes it an ideal system to study this intriguing and widespread structural transition.
Collapse
Affiliation(s)
- Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology, Milan, Italy
| | - Luisa Calvanese
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | | | - Andrea Caporale
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Lucia Falcigno
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Gabriella D'Auria
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology, Milan, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
16
|
Ao X, Ding W, Ge H, Zhang Y, Ding D, Liu Y. PBX1 is a valuable prognostic biomarker for patients with breast cancer. Exp Ther Med 2020; 20:385-394. [PMID: 32565927 PMCID: PMC7286203 DOI: 10.3892/etm.2020.8705] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pre-B-cell leukemia transcription factor (PBX) proteins have important roles in the development of numerous organs. To date, four members of the PBX family have been identified to be involved in human cancer but little is known about their expression patterns and precise functions in breast cancer (BC) progression. The aim of the present study was to determine whether they have the potential to be prognostic biomarkers in patients with BC. The expression patterns of PBXs were evaluated using Oncomine, Cancer Cell Line Encyclopedia and Gene expression-based Outcome for Breast cancer Online algorithm analyses. The prognostic value of PBX1 was determined by Kaplan-Meier plotter analysis. It was observed that, among all PBX family members, only PBX1 was significantly upregulated in BC vs. normal tissues. Meta-analysis in the Oncomine database revealed that PBX1 was significantly upregulated in invasive breast carcinoma stroma, ductal breast carcinoma, invasive lobular breast carcinoma, invasive mixed breast carcinoma and male breast carcinoma compared with normal tissues. In addition, PBX1 was significantly correlated with forkhead box protein A1. Subtype analysis indicated that PBX1 overexpression was associated with luminal-like and hormone receptor-sensitive subtypes. In the survival analysis, a high expression level of PBX1 was associated with poor prognosis of patients with estrogen receptor (ER)-positive, luminal A and luminal B subtypes of BC. The results of the present study indicate that PBX1 may serve as a specific biomarker and essential prognostic factor for ER-positive, luminal A and luminal B subtypes of BC.
Collapse
Affiliation(s)
- Xiang Ao
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Hu Ge
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China.,Department of Molecular Informatics, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, P.R. China
| | - Yuan Zhang
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Dan Ding
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Ying Liu
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
17
|
Remesal L, Roger-Baynat I, Chirivella L, Maicas M, Brocal-Ruiz R, Pérez-Villalba A, Cucarella C, Casado M, Flames N. PBX1 acts as terminal selector for olfactory bulb dopaminergic neurons. Development 2020; 147:dev.186841. [PMID: 32156753 DOI: 10.1242/dev.186841] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 02/03/2023]
Abstract
Neuronal specification is a protracted process that begins with the commitment of progenitor cells and culminates with the generation of mature neurons. Many transcription factors are continuously expressed during this process but it is presently unclear how these factors modify their targets as cells transition through different stages of specification. In olfactory bulb adult neurogenesis, the transcription factor PBX1 controls neurogenesis in progenitor cells and the survival of migrating neuroblasts. Here, we show that, at later differentiation stages, PBX1 also acts as a terminal selector for the dopaminergic neuron fate. PBX1 is also required for the morphological maturation of dopaminergic neurons and to repress alternative interneuron fates, findings that expand the known repertoire of terminal-selector actions. Finally, we reveal that the temporal diversification of PBX1 functions in neuronal specification is achieved, at least in part, through the dynamic regulation of alternative splicing. In Caenorhabditis elegans, PBX/CEH-20 also acts as a dopaminergic neuron terminal selector, which suggests an ancient role for PBX factors in the regulation of terminal differentiation of dopaminergic neurons.
Collapse
Affiliation(s)
- Laura Remesal
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Isabel Roger-Baynat
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Laura Chirivella
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Miren Maicas
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Rebeca Brocal-Ruiz
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Ana Pérez-Villalba
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), and Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Carme Cucarella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Metabolic Experimental Pathology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Metabolic Experimental Pathology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| |
Collapse
|
18
|
Gain-of-Function MN1 Truncation Variants Cause a Recognizable Syndrome with Craniofacial and Brain Abnormalities. Am J Hum Genet 2020; 106:13-25. [PMID: 31839203 DOI: 10.1016/j.ajhg.2019.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/15/2019] [Indexed: 01/20/2023] Open
Abstract
MN1 was originally identified as a tumor-suppressor gene. Knockout mouse studies have suggested that Mn1 is associated with craniofacial development. However, no MN1-related phenotypes have been established in humans. Here, we report on three individuals who have de novo MN1 variants that lead to a protein lacking the carboxyl (C) terminus and who presented with severe developmental delay, craniofacial abnormalities with specific facial features, and structural abnormalities in the brain. An in vitro study revealed that the deletion of the C-terminal region led to increased protein stability, an inhibitory effect on cell proliferation, and enhanced MN1 aggregation in nuclei compared to what occurred in the wild type, suggesting that a gain-of-function mechanism is involved in this disease. Considering that C-terminal deletion increases the fraction of intrinsically disordered regions of MN1, it is possible that altered phase separation could be involved in the mechanism underlying the disease. Our data indicate that MN1 participates in transcriptional regulation of target genes through interaction with the transcription factors PBX1, PKNOX1, and ZBTB24 and that mutant MN1 impairs the binding with ZBTB24 and RING1, which is an E3 ubiquitin ligase. On the basis of our findings, we propose the model that C-terminal deletion interferes with MN1's interaction molecules related to the ubiquitin-mediated proteasome pathway, including RING1, and increases the amount of the mutant protein; this increase leads to the dysregulation of MN1 target genes by inhibiting rapid MN1 protein turnover.
Collapse
|
19
|
Gulyaeva O, Nguyen H, Sambeat A, Heydari K, Sul HS. Sox9-Meis1 Inactivation Is Required for Adipogenesis, Advancing Pref-1 + to PDGFRα + Cells. Cell Rep 2019; 25:1002-1017.e4. [PMID: 30355480 PMCID: PMC6903418 DOI: 10.1016/j.celrep.2018.09.086] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/27/2018] [Accepted: 09/26/2018] [Indexed: 12/28/2022] Open
Abstract
Adipocytes arise from the commitment and differentiation of adipose precursors in white adipose tissue (WAT). In studying adipogenesis, precursor markers, including Pref-1 and PDGFRα, are used to isolate precursors from stromal vascular fractions of WAT, but the relation among the markers is not known. Here, we used the Pref-1 promoter-rtTA system in mice for labeling Pref-1+ cells and for inducible inactivation of the Pref-1 target Sox9. We show the requirement of Sox9 for the maintenance of Pref-1+ proliferative, early precursors. Upon Sox9 inactivation, these Pref-1+ cells become PDGFRα+ cells that express early adipogenic markers. Thus, we show that Pref-1+ cells precede PDGFRα+ cells in the adipogenic pathway and that Sox9 inactivation is required for WAT growth and expansion. Furthermore, we show that in maintaining early adipose precursors, Sox9 activates Meis1, which prevents adipogenic differentiation. Our study also demonstrates the Pref-1 promoter-rtTA system for inducible gene inactivation in early adipose precursor populations. The relationship among Sox9+, Pref-1+, and PDGFRα+ WAT precursors has not been studied. Gulyaeva et al. show that Pref-1+ cells are early adipose precursors and, upon Sox9 inactivation, they become PDGFRα+ cells at a later stage of the adipogenic pathway. In maintaining Pref-1+ adipose precursors, Sox9 activates Meis1, which prevents adipogenic differentiation.
Collapse
Affiliation(s)
- Olga Gulyaeva
- Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hai Nguyen
- Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Audrey Sambeat
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kartoosh Heydari
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Cimmino I, Margheri F, Prisco F, Perruolo G, D'Esposito V, Laurenzana A, Fibbi G, Paciello O, Doti N, Ruvo M, Miele C, Beguinot F, Formisano P, Oriente F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism. FASEB J 2019; 33:13893-13904. [PMID: 31618597 DOI: 10.1096/fj.201901230rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiogenesis depends on a delicate balance between the different transcription factors, and their control should be considered necessary for preventing or treating diseases. Pre-B-cell leukemia transcription factor regulating protein 1 (Prep1) is a homeodomain transcription factor that plays a primary role in organogenesis and metabolism. Observations performed in a Prep1 hypomorphic mouse model, expressing 3-5% of the protein, show an increase of embryonic lethality due, in part, to defects in angiogenesis. In this study, we provide evidence that overexpression of Prep1 in mouse aortic endothelial cells (MAECs) stimulates migration, proliferation, and tube formation. These effects are paralleled by an increase of several proangiogenic factors and by a decrease of the antiangiogenic gene neurogenic locus notch homolog protein 1 (Notch1). Prep1-mediated angiogenesis involves the activation of the p160 Myb-binding protein (p160)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Indeed, Prep1 overexpression increases its binding with p160 and induces a 4-fold increase of p160 and 70% reduction of PGC-1α compared with control cells. Incubation of MAECs with a synthetic Prep1(54-72) peptide, mimicking the Prep1 region involved in the interaction with p160, reverts the proangiogenic effects mediated by Prep1. In addition, Prep1 levels increase by 3.2-fold during the fibroblast growth factor β (bFGF)-mediated endothelial colony-forming cells' activation, whereas Prep1(54-72) peptide reduces the capability of these cells to generate tubular-like structures in response to bFGF, suggesting a possible role of Prep1 both in angiogenesis from preexisting vessels and in postnatal vasculogenesis. Finally, Prep1 hypomorphic heterozygous mice, expressing low levels of Prep1, show attenuated placental angiogenesis and vessel formation within Matrigel plugs. All of these observations indicate that Prep1, complexing with p160, decreases PGC-1α and stimulates angiogenesis.-Cimmino, I., Margheri, F., Prisco, F., Perruolo, G., D'Esposito, V., Laurenzana, A., Fibbi, G., Paciello, O., Doti, N., Ruvo, M., Miele, C., Beguinot, F., Formisano, P., Oriente, F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Vittoria D'Esposito
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Nunzianna Doti
- Institute of Biostructure and Bioimaging, National Research Council-Interuniversity Research Centre on Bioactive Peptides, Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council-Interuniversity Research Centre on Bioactive Peptides, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
22
|
Völkel S, Stielow B, Finkernagel F, Berger D, Stiewe T, Nist A, Suske G. Transcription factor Sp2 potentiates binding of the TALE homeoproteins Pbx1:Prep1 and the histone-fold domain protein Nf-y to composite genomic sites. J Biol Chem 2018; 293:19250-19262. [PMID: 30337366 DOI: 10.1074/jbc.ra118.005341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
Different transcription factors operate together at promoters and enhancers to regulate gene expression. Transcription factors either bind directly to their target DNA or are tethered to it by other proteins. The transcription factor Sp2 serves as a paradigm for indirect genomic binding. It does not require its DNA-binding domain for genomic DNA binding and occupies target promoters independently of whether they contain a cognate DNA-binding motif. Hence, Sp2 is strikingly different from its closely related paralogs Sp1 and Sp3, but how Sp2 recognizes its targets is unknown. Here, we sought to gain more detailed insights into the genomic targeting mechanism of Sp2. ChIP-exo sequencing in mouse embryonic fibroblasts revealed genomic binding of Sp2 to a composite motif where a recognition sequence for TALE homeoproteins and a recognition sequence for the trimeric histone-fold domain protein nuclear transcription factor Y (Nf-y) are separated by 11 bp. We identified a complex consisting of the TALE homeobox protein Prep1, its partner PBX homeobox 1 (Pbx1), and Nf-y as the major partners in Sp2-promoter interactions. We found that the Pbx1:Prep1 complex together with Nf-y recruits Sp2 to co-occupied regulatory elements. In turn, Sp2 potentiates binding of Pbx1:Prep1 and Nf-y. We also found that the Sp-box, a short sequence motif close to the Sp2 N terminus, is crucial for Sp2's cofactor function. Our findings reveal a mechanism by which the DNA binding-independent activity of Sp2 potentiates genomic loading of Pbx1:Prep1 and Nf-y to composite motifs present in many promoters of highly expressed genes.
Collapse
Affiliation(s)
- Sara Völkel
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| | - Bastian Stielow
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| | | | - Dana Berger
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| | - Thorsten Stiewe
- the Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps-University of Marburg, 35043 Marburg, Germany
| | - Andrea Nist
- the Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps-University of Marburg, 35043 Marburg, Germany
| | - Guntram Suske
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| |
Collapse
|
23
|
PKNOX2 expression and regulation in the bone marrow mesenchymal stem cells of Fanconi anemia patients and healthy donors. Mol Biol Rep 2018; 46:669-678. [DOI: 10.1007/s11033-018-4522-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022]
|
24
|
He C, Wang Z, Zhang L, Yang L, Li J, Chen X, Zhang J, Chang Q, Yu Y, Liu B, Zhu Z. A hydrophobic residue in the TALE homeodomain of PBX1 promotes epithelial-to-mesenchymal transition of gastric carcinoma. Oncotarget 2018; 8:46818-46833. [PMID: 28514754 PMCID: PMC5564525 DOI: 10.18632/oncotarget.17473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 01/24/2023] Open
Abstract
Pre-B-cell leukemia homeobox 1 (PBX1) was originally identified as a proto-oncogene in human leukemia. Although this protein has been shown to contribute to cellular development and tumorigenesis, the role of PBX1 in gastric carcinoma (GC) remains unclear. In this study, we observed increased expression of PBX1 in GC tissues compared with adjacent normal tissues. This increase in PBX1 expression levels negatively correlated with HOXB9 mRNA expression and was also associated with malignancy and metastasis. PBX1 promoted proliferation and metastasis of GC cells both in vitro and in vivo. These phenomena were also accompanied by epithelial-to-mesenchymal transition (EMT). Additionally, we observed that PBX1 promotes the expression of tumor growth and angiogenic factors. A structural model of the PBX1-HOX complex revealed that hydrophobic binding between PBX1 and the hexapeptide motif might be required for EMT induction. This analysis also demonstrated that the Phe252 residue in the first helix of the TALE homeodomain is involved in the latter hydrophobic binding reaction. In vitro data from PBX1 mutants suggest that PBX1 cannot promote tumorigenesis of GC cells via EMT induction when Phe252 residues lose hydrophobicity. It is likely that the presence of this residue is essential in facilitating hydrophobic binding with the hexapeptide motif. These findings suggest that PBX1 may be a potential target for GC treatment and this study provides a platform to elucidate the molecular mechanisms that underpin the role of PBX1 in GC tumorigenesis.
Collapse
Affiliation(s)
- Changyu He
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqiang Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyun Yang
- Department of Otolaryngology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehua Chen
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Clinical Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yingyan Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Palmigiano A, Santaniello F, Cerutti A, Penkov D, Purushothaman D, Makhija E, Luzi L, di Fagagna FD, Pelicci PG, Shivashankar V, Dellino GI, Blasi F. PREP1 tumor suppressor protects the late-replicating DNA by controlling its replication timing and symmetry. Sci Rep 2018; 8:3198. [PMID: 29453404 PMCID: PMC5816642 DOI: 10.1038/s41598-018-21363-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
The synthesis of middle-to-late-replicating DNA can be affected independently of the rest of the genome by down-regulating the tumor suppressor PREP1 (PKNOX1). Indeed, DNA combing shows that PREP1 down-regulation affects DNA replication rate, increases the number of simultaneously firing origins and the asymmetry of DNA replication, leading to DNA damage. Genome-wide analysis of replication timing by Repli-seq shows that, upon PREP1 down-regulation, 25% of the genome is replicated earlier in the S-phase. The targeted DNA sequences correspond to Lamin-Associated Domains (LADs), and include late-replicating (LRRs) and temporal transition regions (TTRs). Notably, the distribution of PREP1 DNA binding sites and of its target genes indicates that DNA replication defects are independent of the overall PREP1 transcriptional activity. Finally, PREP1 down-regulation causes a substantial decrease in Lamin B1 levels. This suggests that DNA is released from the nuclear lamina earlier than in the control cells and is available for replication, thus explaining timing defects and DNA damage.This is the first evidence that the replication timing of a specific fraction of the human genome is affected by PREP1 tumor suppressor. This previously unknown function might significantly contribute to the genomic instability observed in human tumors.
Collapse
Affiliation(s)
- Angela Palmigiano
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan, 20138, Italy
| | - Francesco Santaniello
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy
| | - Aurora Cerutti
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Oncogenomics Department, Netherland Cancer Institute (NKI), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Dmitry Penkov
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Lomonosov Moscow State University, Leninskiye Gori 1, 119991, Moscow, Russia
| | - Divya Purushothaman
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
| | - Ekta Makhija
- Mechano-Biology Institute, National University of Singapore, Singapore, Singapore
| | - Lucilla Luzi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20142, Milan, Italy
| | - Viveswara Shivashankar
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Mechano-Biology Institute, National University of Singapore, Singapore, Singapore
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20142, Milan, Italy.
| | - Francesco Blasi
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW HOXA9 is a homeodomain transcription factor that plays an essential role in normal hematopoiesis and acute leukemia, in which its overexpression is strongly correlated with poor prognosis. The present review highlights recent advances in the understanding of genetic alterations leading to deregulation of HOXA9 and the downstream mechanisms of HOXA9-mediated transformation. RECENT FINDINGS A variety of genetic alterations including MLL translocations, NUP98-fusions, NPM1 mutations, CDX deregulation, and MOZ-fusions lead to high-level HOXA9 expression in acute leukemias. The mechanisms resulting in HOXA9 overexpression are beginning to be defined and represent attractive therapeutic targets. Small molecules targeting MLL-fusion protein complex members, such as DOT1L and menin, have shown promising results in animal models, and a DOT1L inhibitor is currently being tested in clinical trials. Essential HOXA9 cofactors and collaborators are also being identified, including transcription factors PU.1 and C/EBPα, which are required for HOXA9-driven leukemia. HOXA9 targets including IGF1, CDX4, INK4A/INK4B/ARF, mir-21, and mir-196b and many others provide another avenue for potential drug development. SUMMARY HOXA9 deregulation underlies a large subset of aggressive acute leukemias. Understanding the mechanisms regulating the expression and activity of HOXA9, along with its critical downstream targets, shows promise for the development of more selective and effective leukemia therapies.
Collapse
|
27
|
Neto M, Naval-Sánchez M, Potier D, Pereira PS, Geerts D, Aerts S, Casares F. Nuclear receptors connect progenitor transcription factors to cell cycle control. Sci Rep 2017; 7:4845. [PMID: 28687780 PMCID: PMC5501803 DOI: 10.1038/s41598-017-04936-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/23/2017] [Indexed: 01/31/2023] Open
Abstract
The specification and growth of organs is controlled simultaneously by networks of transcription factors. While the connection between these transcription factors with fate determinants is increasingly clear, how they establish the link with the cell cycle is far less understood. Here we investigate this link in the developing Drosophila eye, where two transcription factors, the MEIS1 homologue hth and the Zn-finger tsh, synergize to stimulate the proliferation of naïve eye progenitors. Experiments combining transcriptomics, open-chromatin profiling, motif analysis and functional assays indicate that these progenitor transcription factors exert a global regulation of the proliferation program. Rather than directly regulating cell cycle genes, they control proliferation through an intermediary layer of nuclear receptors of the ecdysone/estrogen-signaling pathway. This regulatory subnetwork between hth, tsh and nuclear receptors might be conserved from Drosophila to mammals, as we find a significant co-overexpression of their human homologues in specific cancer types.
Collapse
Affiliation(s)
- Marta Neto
- CABD, Andalusian Centre for Developmental Biology, CSIC-UPO-JA, 41013, Seville, Spain.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | | | - Delphine Potier
- School of Medicine, University of Leuven, box 602 3000, Leuven, Belgium
| | - Paulo S Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Dirk Geerts
- Department of Medical Biology L2-109, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stein Aerts
- School of Medicine, University of Leuven, box 602 3000, Leuven, Belgium.
| | - Fernando Casares
- CABD, Andalusian Centre for Developmental Biology, CSIC-UPO-JA, 41013, Seville, Spain.
| |
Collapse
|
28
|
Wang J, Shidfar A, Ivancic D, Ranjan M, Liu L, Choi MR, Parimi V, Gursel DB, Sullivan ME, Najor MS, Abukhdeir AM, Scholtens D, Khan SA. Overexpression of lipid metabolism genes and PBX1 in the contralateral breasts of women with estrogen receptor-negative breast cancer. Int J Cancer 2017; 140:2484-2497. [PMID: 28263391 DOI: 10.1002/ijc.30680] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
Abstract
Risk biomarkers for estrogen receptor (ER)-negative breast cancer have clear value for breast cancer prevention. We previously reported a set of lipid metabolism (LiMe) genes with high expression in the contralateral unaffected breasts (CUBs) of ER-negative cancer cases. We now further examine LiMe gene expression in both tumor and CUB, and investigate the role of Pre-B-cell leukemia homeobox-1 (PBX1) as a candidate common transcription factor for LiMe gene expression. mRNA was extracted from laser-capture microdissected epithelium from tumor and CUB of 84 subjects (28 ER-positive cases, 28 ER-negative cases, 28 healthy controls). Gene expression was quantitated by qRT-PCR. Logistic regression models were generated to predict ER status of the contralateral cancer. Protein expression of HMGCS2 and PBX1 was measured using immunohistochemistry. The effect of PBX1 on LiMe gene expression was examined by overexpressing PBX1 in MCF10A cells with or without ER, and by suppressing PBX1 in MDA-MB-453 cells. The expression of DHRS2, HMGCS2, UGT2B7, UGT2B11, ALOX15B, HPGD, UGT2B28 and GLYATL1 was significantly higher in ER-negative versus ER-positive CUBs, and predicted ER status of the tumor in test and validation sets. In contrast, LiMe gene expression was significantly lower in ER-negative than ER-positive tumors. PBX1 overexpression in MCF10A cells up-regulated most LiMe genes, but not in MCF10A cells overexpressing ER. Suppressing PBX1 in MDA-MB-453 cells resulted in decrease of LiMe gene expression. Four binding sites of PBX1 and cofactor were identified in three lipid metabolism genes using ChIP-qPCR. These data suggest a novel role for PBX1 in the regulation of lipid metabolism genes in benign breast, which may contribute to ER-negative tumorigenesis.
Collapse
Affiliation(s)
- Jun Wang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ali Shidfar
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David Ivancic
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Manish Ranjan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Liannian Liu
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Mi-Ran Choi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Vamsi Parimi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Demirkan B Gursel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Megan E Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Matthew S Najor
- Department of Medicine, Rush University Medical Center, Chicago, IL
| | - Abde M Abukhdeir
- Department of Medicine, Rush University Medical Center, Chicago, IL
- Department of Pharmacology, Rush University Medical Center, Chicago, IL
| | - Denise Scholtens
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Seema A Khan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
29
|
Blasi F, Bruckmann C, Penkov D, Dardaei L. A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Dmitry Penkov
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Leila Dardaei
- Massachusetts General Hospital Cancer Center; Charlestown MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| |
Collapse
|
30
|
New Insights into Cooperative Binding of Homeodomain Transcription Factors PREP1 and PBX1 to DNA. Sci Rep 2017; 7:40665. [PMID: 28094776 PMCID: PMC5240567 DOI: 10.1038/srep40665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/09/2016] [Indexed: 01/13/2023] Open
Abstract
PREP1 and PBX1 are homeodomain (HD) transcription factors that play crucial roles in embryonic development. Here, we present the first biophysical characterization of a PREP1 HD, and the NMR spectroscopic study of its DNA binding pocket. The data show that residues flanking the HD participate in DNA binding. The kinetic parameters for DNA binding of individual PREP1 and PBX1 HDs, and of their combination, show that isolated PREP1 and PBX1 HDs bind to DNA in a cooperative manner. A novel PREP1 motif, flanking the HD at the C-terminus, is required for cooperativity.
Collapse
|
31
|
Dardaei L, Penkov D, Mathiasen L, Bora P, Morelli MJ, Blasi F. Tumorigenesis by Meis1 overexpression is accompanied by a change of DNA target-sequence specificity which allows binding to the AP-1 element. Oncotarget 2016; 6:25175-87. [PMID: 26259236 PMCID: PMC4694823 DOI: 10.18632/oncotarget.4488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/23/2015] [Indexed: 11/25/2022] Open
Abstract
Meis1 overexpression induces tumorigenicity but its activity is inhibited by Prep1 tumor suppressor. Why does overexpression of Meis1 cause cancer and how does Prep1 inhibit? Tumor profiling and ChIP-sequencing data in a genetically-defined set of cell lines show that: 1) The number of Meis1 and Prep1 DNA binding sites increases linearly with their concentration resulting in a strong increase of “extra” target genes. 2) At high concentration, Meis1 DNA target specificity changes such that the most enriched consensus becomes that of the AP-1 regulatory element, whereas the specific OCTA consensus is not enriched because diluted within the many extra binding sites. 3) Prep1 inhibits Meis1 tumorigenesis preventing the binding to many of the “extra” genes containing AP-1 sites. 4) The overexpression of Prep1, but not of Meis1, changes the functional genomic distribution of the binding sites, increasing seven fold the number of its “enhancer” and decreasing its “promoter” targets. 5) A specific Meis1 “oncogenic” and Prep1 “tumor suppressing” signature has been identified selecting from the pool of genes bound by each protein those whose expression was modified uniquely by the “tumor-inducing” Meis1 or tumor-inhibiting Prep1 overexpression. In both signatures, the enriched gene categories are the same and are involved in signal transduction. However, Meis1 targets stimulatory genes while Prep1 targets genes that inhibit the tumorigenic signaling pathways.
Collapse
Affiliation(s)
- Leila Dardaei
- IFOM, FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milano, Italy.,Present Address: Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Dmitry Penkov
- IFOM, FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milano, Italy.,Department of Experimental Cardiology, Russian Cardiology Research and Production Complex, Moscow, Russia
| | - Lisa Mathiasen
- IFOM, FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milano, Italy
| | - Pranami Bora
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Francesco Blasi
- IFOM, FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milano, Italy
| |
Collapse
|
32
|
Mathiasen L, Valentini E, Boivin S, Cattaneo A, Blasi F, Svergun DI, Bruckmann C. The flexibility of a homeodomain transcription factor heterodimer and its allosteric regulation by DNA binding. FEBS J 2016; 283:3134-54. [PMID: 27390177 DOI: 10.1111/febs.13801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED Transcription factors are known to modify the DNA that they bind. However, DNA can also serve as an allosteric ligand whose binding modifies the conformation of transcriptional regulators. Here, we describe how heterodimer PBX1:PREP1, formed by proteins playing major roles in embryonic development and tumorigenesis, undergoes an allosteric transition upon DNA binding. We demonstrate through a number of biochemical and biophysical methods that PBX1:PREP1 exhibits a structural change upon DNA binding. Small-angle X-ray scattering (SAXS), circular dichroism (CD), isothermal titration calorimetry (ITC), and limited proteolysis demonstrate a different shape, α-helical content, thermodynamic behavior, and solution environment of the holo-complex (with DNA) compared to the apo-complex (without DNA). Given that PBX1 as such does not have a defined DNA selectivity, structural changes upon DNA binding become major factors in the function of the PBX1:PREP1 complex. The observed changes are mapped at both the amino- and carboxy-terminal regions of the two proteins thereby providing important insights to determine how PBX1:PREP1 dimer functions. DATABASE Small-angle scattering data are available in SASBDB under accession numbers SASDAP7, SASDAQ7, and SASDAR7.
Collapse
Affiliation(s)
- Lisa Mathiasen
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | | | | | - Angela Cattaneo
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Francesco Blasi
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | | | - Chiara Bruckmann
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
33
|
Xu X, Han K, Tang X, Zeng Y, Lin X, Zhao Y, Zhang Z, Cao B, Wu D, Mao X. The Ring Finger Protein RNF6 Induces Leukemia Cell Proliferation as a Direct Target of Pre-B-cell Leukemia Homeobox 1. J Biol Chem 2016; 291:9617-28. [PMID: 26971355 PMCID: PMC4850299 DOI: 10.1074/jbc.m115.701979] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
RNF6 is a little-studied ring finger protein. In the present study, we found that RNF6 was overexpressed in various leukemia cells and that it accelerated leukemia cell proliferation, whereas knockdown of RNF6 delayed tumor growth in xenografts. To find out the mechanism of RNF6 overexpression in leukemia, we designed a series of truncated constructs of RNF6 regulatory regions in the luciferase reporter system. The results revealed that the region between -144 and -99 upstream of the RNF6 transcription start site was critical and that this region contained a PBX1 recognition element (PRE). PBX1 modulated RNF6 expression by binding to the specific PRE. When PRE was mutated, RNF6 transcription was completely abolished. Further studies showed that PBX1 collaborated with PREP1 but not MEIS1 to modulate RNF6 expression. Moreover, RNF6 expression could be suppressed by doxorubicin, a major anti-leukemia agent, via down-regulating PBX1. This study thus suggests that RNF6 overexpression in leukemia is under the direction of PBX1 and that the PBX1/RNF6 axis can be developed as a novel therapeutic target of leukemia.
Collapse
Affiliation(s)
- Xin Xu
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Kunkun Han
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, the Asclepius Technology Company Group and Asclepius Cancer Research Center, Suzhou, Jiangsu 215123, China
| | - Xiaowen Tang
- the Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006
| | - Yuanying Zeng
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Xu Lin
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Yun Zhao
- the Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123
| | - Zubin Zhang
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Biyin Cao
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Depei Wu
- the Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006
| | - Xinliang Mao
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, the Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, and
| |
Collapse
|
34
|
Mian YA, Zeleznik-Le NJ. The miR-17∼92 cluster contributes to MLL leukemia through the repression of MEIS1 competitor PKNOX1. Leuk Res 2016; 46:51-60. [PMID: 27123834 DOI: 10.1016/j.leukres.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022]
Abstract
Mixed lineage leukemias have a relatively poor prognosis and arise as a result of translocations between the MLL(KMT2A) gene and one of multiple partner genes. Downstream targets of MLL are aberrantly upregulated and include the developmentally important HOX genes and MEIS1, as well as multiple microRNAs (miRNAs), including the miR-17∼92 cluster. Here we examined the contribution of specific miRNAs to MLL leukemias through knockdown studies utilizing custom anti-microRNA oligonucleotides. Combinatorial treatment against miR-17-5p and miR-19a-3p of the miR-17∼92 cluster dramatically reduces colony forming ability of MLL-fusion containing cell lines relative to non-MLL acute myeloid leukemia (AML) controls. To determine the mechanism by which these miRNAs contribute to leukemia, we validated PKNOX1 as a target of both miR-17-5p and miR-19a-3p. MEIS1 and PKNOX1 are TALE domain proteins that participate in ternary complexes with HOX and PBX partners. Here we establish the competitive relationship between PKNOX1 and MEIS1 in PBX-containing complex formation and determine the antagonistic role of PKNOX1 to leukemia in a murine MLL-AF9 model. These data implicate the miR-17∼92 cluster as part of a regulatory mechanism necessary to maintain MEIS1/HOXA9 -mediated transformation in MLL leukemia, indicating that targeting multiple non-homologous miRNAs may be utilized as a novel therapeutic regimen.
Collapse
Affiliation(s)
- Yousaf A Mian
- Molecular Biology Program, Loyola University Chicago, Maywood, IL 60153, United States
| | - Nancy J Zeleznik-Le
- Molecular Biology Program, Loyola University Chicago, Maywood, IL 60153, United States; Department of Medicine, Loyola University Chicago, Maywood, IL 60153, United States.
| |
Collapse
|
35
|
Merabet S, Mann RS. To Be Specific or Not: The Critical Relationship Between Hox And TALE Proteins. Trends Genet 2016; 32:334-347. [PMID: 27066866 DOI: 10.1016/j.tig.2016.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Hox proteins are key regulatory transcription factors that act in different tissues of the embryo to provide specific spatial and temporal coordinates to each cell. These patterning functions often depend on the presence of the TALE-homeodomain class cofactors, which form cooperative DNA-binding complexes with all Hox proteins. How this family of cofactors contributes to the highly diverse and specific functions of Hox proteins in vivo remains an important unsolved question. We review here the most recent advances in understanding the molecular mechanisms underlying Hox-TALE function. In particular, we discuss the role of DNA shape, DNA-binding affinity, and protein-protein interaction flexibility in dictating Hox-TALE specificity. We propose several models to explain how these mechanisms are integrated with each other in the context of the many distinct functions that Hox and TALE factors carry out in vivo.
Collapse
Affiliation(s)
- Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| | | |
Collapse
|
36
|
Collins J, Safah H, Lobelle-Rich P, Whaley S, Campbell S, Saba NS. Reduction in Cell Viability and in Homeobox Protein Levels Following in Vitro Exposure to δ-tocopherol in Acute Myeloid Leukemia. Nutr Cancer 2016; 68:530-4. [PMID: 27008503 DOI: 10.1080/01635581.2016.1153672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
δ-Tocopherol (δ-T), the least prevalent tocopherol in our diet, was described to have a more potent anticancer activity in solid tumors compared to the other tocopherols. δ-T induces tumor cell death through peroxisome proliferator-activated receptor γ (PPAR-γ) induction, cyclin-D1 inhibition, and modulation of redox balance. Nevertheless, the role of δ-T in preventing or treating hematologic malignancies has not been studied. In this study, we screened the efficacy of δ-T against six cell lines representing a wide spectrum of hematologic malignancies: Jurkat (acute T-cell leukemia), K-562 (chronic myeloid leukemia), KG-1 [acute myeloid leukemia (AML)], THP-1 (acute monocytic leukemia), TOM-1 (acute lymphoblastic leukemia), and UMCL01-101 (AIDS-associated diffuse large B-cell lymphoma). Interestingly, the AML cell line KG-1 was the only one to be significantly affected at concentrations of δ-T as low as 20 µM. The antileukemic activity of δ-T in AML was verified in a set of primary cells collected from patients newly diagnosed with AML. Apoptotic induction and cell cycle arrest explained the efficacy of δ-T against KG-1 cells. The mechanism of cell growth inhibition of δ-T was through downregulation of cyclin-D1 and a set of homeobox proteins (HOXA9, PBX1, and Cdx2) that have a well-documented role in the pathobiology of AML.
Collapse
Affiliation(s)
- Julie Collins
- a Department of Medicine , Tulane University , New Orleans , Louisiana , USA
| | - Hana Safah
- b Section of Hematology and Medical Oncology , Department of Medicine, Tulane University , New Orleans , Louisiana , USA
| | - Patricia Lobelle-Rich
- b Section of Hematology and Medical Oncology , Department of Medicine, Tulane University , New Orleans , Louisiana , USA
| | - Sarah Whaley
- c Department of Biomedical Sciences , Quillen College of Medicine, East Tennessee State University , Johnson City , Tennessee , USA
| | - Sharon Campbell
- c Department of Biomedical Sciences , Quillen College of Medicine, East Tennessee State University , Johnson City , Tennessee , USA
| | - Nakhle S Saba
- b Section of Hematology and Medical Oncology , Department of Medicine, Tulane University , New Orleans , Louisiana , USA
| |
Collapse
|
37
|
Yoshioka K, Oda A, Notsu C, Ohtsuka T, Kawai Y, Suzuki S, Nakamura T, Mabuchi Y, Matsuzaki Y, Goitsuka R. Loss of the Homeodomain Transcription Factor Prep1 Perturbs Adult Hematopoiesis in the Bone Marrow. PLoS One 2015; 10:e0136107. [PMID: 26285139 PMCID: PMC4540428 DOI: 10.1371/journal.pone.0136107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022] Open
Abstract
Prep1, a TALE-family homeodomain transcription factor, has been demonstrated to play a critical role in embryonic hematopoiesis, as its insufficiency caused late embryonic lethality associated with defective hematopoiesis and angiogenesis. In the present study, we generated hematopoietic- and endothelial cell-specific Prep1-deficient mice and demonstrated that expression of Prep1 in the hematopoietic cell compartment is not essential for either embryonic or adult hematopoiesis, although its absence causes significant hematopoietic abnormalities in the adult bone marrow. Loss of Prep1 promotes cell cycling of hematopoietic stem/progenitor cells (HSPC), leading to the expansion of the HSPC pool. Prep1 deficiency also results in the accumulation of lineage-committed progenitors, increased monocyte/macrophage differentiation and arrested erythroid maturation. Maturation of T cells and B cells is also perturbed in Prep-deficient mice. These findings provide novel insight into the pleiotropic roles of Prep1 in adult hematopoiesis that were unrecognized in previous studies using germline Prep1 hypomorphic mice.
Collapse
Affiliation(s)
- Kentaro Yoshioka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akihisa Oda
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Chihiro Notsu
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Takafumi Ohtsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasuhiro Kawai
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sadafumi Suzuki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Cancer Biology, Faculty of Medicine, Shimane University, Izumo-shi, Shimane, Japan
| | - Ryo Goitsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| |
Collapse
|
38
|
Garcia-Cuellar MP, Steger J, Füller E, Hetzner K, Slany RK. Pbx3 and Meis1 cooperate through multiple mechanisms to support Hox-induced murine leukemia. Haematologica 2015; 100:905-13. [PMID: 25911551 DOI: 10.3324/haematol.2015.124032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/17/2015] [Indexed: 12/18/2022] Open
Abstract
Hox homeobox transcription factors drive leukemogenesis efficiently only in the presence of Meis or Pbx proteins. Here we show that Pbx3 and Meis1 need to dimerize to support Hox-induced leukemia and we analyze the molecular details of this cooperation. In the absence of Pbx3, Meis1 was highly unstable. As shown by a deletion analysis Meis1 degradation was contingent on a motif coinciding with the Pbx-binding domain. Either deletion of this sequence or binding to Pbx3 prolonged the half-life of Meis1 by preventing its ubiquitination. Meis1 break-down could also be blocked by inhibition of the ubiquitin proteasome system, indicating tight post-transcriptional control. In addition, Meis1 and Pbx3 cooperated genetically as overexpression of Pbx3 induced endogenous Meis1 transcription. These functional interactions translated into in vivo activity. Blocking Meis1/Pbx3 dimerization abrogated the ability to enhance proliferation and colony-forming cell numbers in primary cells transformed by Hoxa9. Furthermore, expression of Meis1 target genes Flt3 and Trib2 was dependent on Pbx3/Meis1 dimerization. This correlated with the requirement of Meis1 to bind Pbx3 in order to form high affinity DNA/Hoxa9/Meis1/Pbx3 complexes in vitro. Finally, kinetics and severity of disease in transplantation assays indicated that Pbx3/Meis1 dimers are rate-limiting factors for Hoxa9-induced leukemia.
Collapse
Affiliation(s)
| | - Julia Steger
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | - Elisa Füller
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | - Katrin Hetzner
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | - Robert K Slany
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| |
Collapse
|
39
|
Laurent A, Calabrese M, Warnatz HJ, Yaspo ML, Tkachuk V, Torres M, Blasi F, Penkov D. ChIP-Seq and RNA-Seq analyses identify components of the Wnt and Fgf signaling pathways as Prep1 target genes in mouse embryonic stem cells. PLoS One 2015; 10:e0122518. [PMID: 25875616 PMCID: PMC4395233 DOI: 10.1371/journal.pone.0122518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/11/2015] [Indexed: 01/18/2023] Open
Abstract
The Prep1 (Pknox1) homeodomain transcription factor is essential at multiple stages of embryo development. In the E11.5 embryo trunk, we previously estimated that Prep1 binds about 3,300 genomic sites at a highly specific decameric consensus sequence, mainly governing basal cellular functions. We now show that in embryonic stem (ES) cells Prep1 binding pattern only partly overlaps that of the embryo trunk, with about 2,000 novel sites. Moreover, in ES cells Prep1 still binds mostly to promoters, as in total embryo trunk but, among the peaks bound exclusively in ES cells, the percentage of enhancers was three-fold higher. RNA-seq identifies about 1800 genes down-regulated in Prep1-/- ES cells which belong to gene ontology categories not enriched in the E11.5 Prep1i/i differentiated embryo, including in particular essential components of the Wnt and Fgf pathways. These data agree with aberrant Wnt and Fgf expression levels in the Prep1-/- ES cells with a deficient embryoid bodies (EBs) formation and differentiation. Re-establishment of the Prep1 level rescues the phenotype.
Collapse
Affiliation(s)
- Audrey Laurent
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
| | - Manuela Calabrese
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Vsevolod Tkachuk
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Miguel Torres
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francesco Blasi
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
| | - Dmitry Penkov
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
- Department of Experimental Cardiology, Russian Cardiology Research and Production Complex, Moscow, Russia
| |
Collapse
|
40
|
Saadatpour A, Guo G, Orkin SH, Yuan GC. Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol 2014; 15:525. [PMID: 25517911 PMCID: PMC4262970 DOI: 10.1186/s13059-014-0525-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A fundamental challenge for cancer therapy is that each tumor contains a highly heterogeneous cell population whose structure and mechanistic underpinnings remain incompletely understood. Recent advances in single-cell gene expression profiling have created new possibilities to characterize this heterogeneity and to dissect the potential intra-cancer cellular hierarchy. RESULTS Here, we apply single-cell analysis to systematically characterize the heterogeneity within leukemic cells using the MLL-AF9 driven mouse model of acute myeloid leukemia. We start with fluorescence-activated cell sorting analysis with seven surface markers, and extend by using a multiplexing quantitative polymerase chain reaction approach to assay the transcriptional profile of a panel of 175 carefully selected genes in leukemic cells at the single-cell level. By employing a set of computational tools we find striking heterogeneity within leukemic cells. Mapping to the normal hematopoietic cellular hierarchy identifies two distinct subtypes of leukemic cells; one similar to granulocyte/monocyte progenitors and the other to macrophage and dendritic cells. Further functional experiments suggest that these subtypes differ in proliferation rates and clonal phenotypes. Finally, co-expression network analysis reveals similarities as well as organizational differences between leukemia and normal granulocyte/monocyte progenitor networks. CONCLUSIONS Overall, our single-cell analysis pinpoints previously uncharacterized heterogeneity within leukemic cells and provides new insights into the molecular signatures of acute myeloid leukemia.
Collapse
|
41
|
Risolino M, Mandia N, Iavarone F, Dardaei L, Longobardi E, Fernandez S, Talotta F, Bianchi F, Pisati F, Spaggiari L, Harter PN, Mittelbronn M, Schulte D, Incoronato M, Di Fiore PP, Blasi F, Verde P. Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-β-SMAD3 pathway in non-small cell lung adenocarcinoma. Proc Natl Acad Sci U S A 2014; 111:E3775-84. [PMID: 25157139 PMCID: PMC4246949 DOI: 10.1073/pnas.1407074111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (Prep1) is a ubiquitous homeoprotein involved in early development, genomic stability, insulin sensitivity, and hematopoiesis. Previously we have shown that Prep1 is a haploinsufficient tumor suppressor that inhibits neoplastic transformation by competing with myeloid ecotropic integration site 1 for binding to the common heterodimeric partner Pbx1. Epithelial-mesenchymal transition (EMT) is controlled by complex networks of proinvasive transcription factors responsive to paracrine factors such as TGF-β. Here we show that, in addition to inhibiting primary tumor growth, PREP1 is a novel EMT inducer and prometastatic transcription factor. In human non-small cell lung cancer (NSCLC) cells, PREP1 overexpression is sufficient to trigger EMT, whereas PREP1 down-regulation inhibits the induction of EMT in response to TGF-β. PREP1 modulates the cellular sensitivity to TGF-β by inducing the small mothers against decapentaplegic homolog 3 (SMAD3) nuclear translocation through mechanisms dependent, at least in part, on PREP1-mediated transactivation of a regulatory element in the SMAD3 first intron. Along with the stabilization and accumulation of PBX1, PREP1 induces the expression of multiple activator protein 1 components including the proinvasive Fos-related antigen 1 (FRA-1) oncoprotein. Both FRA-1 and PBX1 are required for the mesenchymal changes triggered by PREP1 in lung tumor cells. Finally, we show that the PREP1-induced mesenchymal transformation correlates with significantly increased lung colonization by cells overexpressing PREP1. Accordingly, we have detected PREP1 accumulation in a large number of human brain metastases of various solid tumors, including NSCLC. These findings point to a novel role of the PREP1 homeoprotein in the control of the TGF-β pathway, EMT, and metastasis in NSCLC.
Collapse
Affiliation(s)
- Maurizio Risolino
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Nadia Mandia
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy
| | - Francescopaolo Iavarone
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Leila Dardaei
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy
| | - Elena Longobardi
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy
| | - Serena Fernandez
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Fabrizio Bianchi
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy; Department of Medicine, Surgery, and Dentistry, University of Milan, 20122 Milan, Italy
| | - Federica Pisati
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Medicine, Surgery, and Dentistry, University of Milan, 20122 Milan, Italy
| | - Patrick N Harter
- Neuroscience Center, Neurological Institute (Edinger Institut), 60528 Frankfurt, Germany; and
| | - Michel Mittelbronn
- Neuroscience Center, Neurological Institute (Edinger Institut), 60528 Frankfurt, Germany; and
| | - Dorothea Schulte
- Neuroscience Center, Neurological Institute (Edinger Institut), 60528 Frankfurt, Germany; and
| | | | - Pier Paolo Di Fiore
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy; Department of Medicine, Surgery, and Dentistry, University of Milan, 20122 Milan, Italy
| | - Francesco Blasi
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; Istituto di Ricovero e Cura a Carattere Scientifico SDN (IRCCS SDN), 80142 Naples, Italy
| |
Collapse
|
42
|
The deficiency of tumor suppressor prep1 accelerates the onset of meis1- hoxa9 leukemogenesis. PLoS One 2014; 9:e96711. [PMID: 24809472 PMCID: PMC4014505 DOI: 10.1371/journal.pone.0096711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/11/2014] [Indexed: 11/29/2022] Open
Abstract
Prep1 and Meis1 ortholog TALE transcription factors have opposing roles in tumorigenesis: Meis1 serves as an oncogene, Prep1 as a tumor suppressor. We now report that, Meis1 overexpression in primary Prep1-deficient (Prep1i/i) embryonic hematopoietic cells increases self-renewal potential of cells in vitro but not in vivo, whereas leukemia is instead obtained when Meis1 is combined with another oncogene, HoxA9. Prep1i/i Meis1-HoxA9-generated leukemic cells are less differentiated and grow more aggressively after the second passage in the mouse. These data indicate that Prep1 represents a barrier to the transforming activity of Meis1 in vitro, but its absence is not sufficient to induce early leukemogenesis. On the other hand, the Prep1i/i background appears to favor the insurgence of mutations that cause a more aggressive Meis1-HoxA9-generated leukemia. Indeed, the Prep1i/i leukemic cells upregulate the Polycomb protein Bmi-1 and expectedly down-regulate the Ink4a/Arf locus products. Finally, an important feature contributed by the Prep1i/i background is the post-transcriptional increase in Meis1 protein level.
Collapse
|