1
|
Watanabe-Takano H, Kato K, Oguri-Nakamura E, Ishii T, Kobayashi K, Murata T, Tsujikawa K, Miyata T, Kubota Y, Hanada Y, Nishiyama K, Watabe T, Fässler R, Ishii H, Mochizuki N, Fukuhara S. Endothelial cells regulate alveolar morphogenesis by constructing basement membranes acting as a scaffold for myofibroblasts. Nat Commun 2024; 15:1622. [PMID: 38438343 PMCID: PMC10912381 DOI: 10.1038/s41467-024-45910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Alveologenesis is a spatially coordinated morphogenetic event, during which alveolar myofibroblasts surround the terminal sacs constructed by epithelial cells and endothelial cells (ECs), then contract to form secondary septa to generate alveoli in the lungs. Recent studies have demonstrated the important role of alveolar ECs in this morphogenetic event. However, the mechanisms underlying EC-mediated alveologenesis remain unknown. Herein, we show that ECs regulate alveologenesis by constructing basement membranes (BMs) acting as a scaffold for myofibroblasts to induce septa formation through activating mechanical signaling. Rap1, a small GTPase of the Ras superfamily, is known to stimulate integrin-mediated cell adhesions. EC-specific Rap1-deficient (Rap1iECKO) mice exhibit impaired septa formation and hypo-alveolarization due to the decreased mechanical signaling in myofibroblasts. In Rap1iECKO mice, ECs fail to stimulate integrin β1 to recruit Collagen type IV (Col-4) into BMs required for myofibroblast-mediated septa formation. Consistently, EC-specific integrin β1-deficient mice show hypo-alveolarization, defective mechanical signaling in myofibroblasts, and disorganized BMs. These data demonstrate that alveolar ECs promote integrin β1-mediated Col-4 recruitment in a Rap1-dependent manner, thereby constructing BMs acting as a scaffold for myofibroblasts to induce mechanical signal-mediated alveologenesis. Thus, this study unveils a mechanism of organ morphogenesis mediated by ECs through intrinsic functions.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Katsuhiro Kato
- Department of Cardiology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koichiro Tsujikawa
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Yasuyuki Hanada
- Department of Cardiology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Laboratory for Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan
| | - Koichi Nishiyama
- Laboratory for Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate, School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
2
|
Masuzawa R, Takahashi K, Takano K, Nishino I, Sakai T, Endo T. DA-Raf and the MEK inhibitor trametinib reverse skeletal myocyte differentiation inhibition or muscle atrophy caused by myostatin and GDF11 through the non-Smad Ras-ERK pathway. J Biochem 2021; 171:109-122. [PMID: 34676394 DOI: 10.1093/jb/mvab116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Myostatin (Mstn) and GDF11 are critical factors that are involved in muscle atrophy in the young and sarcopenia in the elderly, respectively. These TGF-β superfamily proteins activate not only Smad signaling but also non-Smad signaling including the Ras-mediated ERK pathway (Raf-MEK-ERK phosphorylation cascade). Although Mstn and GDF11 have been shown to induce muscle atrophy or sarcopenia by Smad2/3-mediated Akt inhibition, participation of the non-Smad Ras-ERK pathway in atrophy and sarcopenia has not been well determined. We show here that both Mstn and GDF11 prevented skeletal myocyte differentiation but that the MEK inhibitor U0126 or trametinib restored differentiation in Mstn- or GDF11-treated myocytes. These MEK inhibitors induced the expression of DA-Raf1 (DA-Raf), which is a dominant-negative antagonist of the Ras-ERK pathway. Exogenous expression of DA-Raf in Mstn- or GDF11-treated myocytes restored differentiation. Furthermore, administration of trametinib to aged mice resulted in an increase in myofiber size, or recovery from muscle atrophy. The trametinib administration downregulated ERK activity in these muscles. These results imply that the Mstn/GDF11-induced Ras-ERK pathway plays critical roles in the inhibition of myocyte differentiation and muscle regeneration, which leads to muscle atrophy. Trametinib and similar approved drugs might be applicable to the treatment of muscle atrophy in sarcopenia or cachexia.
Collapse
Affiliation(s)
- Ryuichi Masuzawa
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| | - Kazuya Takahashi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| | - Kazunori Takano
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan
| | - Toshiyuki Sakai
- Drug Discovery Center and Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
3
|
Wen X, Zhang H, Xiang B, Zhang W, Gong F, Li S, Chen H, Luo X, Deng J, You Y, Hu Z, Jiang C. Hyperoxia-induced miR-342-5p down-regulation exacerbates neonatal bronchopulmonary dysplasia via the Raf1 regulator Spred3. Br J Pharmacol 2021; 178:2266-2283. [PMID: 33434946 DOI: 10.1111/bph.15371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/10/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Bronchopulmonary dysplasia (BPD) is the most prevalent chronic paediatric lung disease and is linked to the development of chronic obstructive pulmonary disease. MicroRNA-based regulation of type II alveolar epithelial cell (T2AEC) proliferation and apoptosis is an important factor in the pathogenesis of BPD and warrants further investigation. EXPERIMENTAL APPROACH Two murine models of hyperoxic lung injury (with or without miR-342-5p or Sprouty-related, EVH1 domain-containing protein 3 [Spred3] modulation) were employed: a hyperoxia-induced acute lung injury model (100% O2 on postnatal days 1-7) and the BPD model (100% O2 on postnatal days 1-4, followed by room air for 10 days). Tracheal aspirate pellets from healthy control and moderate/severe BPD neonates were randomly selected for clinical miR-342-5p analysis. KEY RESULTS Hyperoxia decreased miR-342-5p levels in primary T2AECs, MLE12 cells and neonatal mouse lungs. Transgenic miR-342 overexpression in neonatal mice ameliorated survival rates and improved the BPD phenotype and BPD-associated pulmonary arterial hypertension (PAH). T2AEC-specific miR-342 transgenic overexpression, as well as miR-342-5p mimic therapy, also ameliorated the BPD phenotype and associated PAH. miR-342-5p targets the 3'UTR of the Raf1 regulator Spred3, inhibiting Spred3 expression. Treatment with recombinant Spred3 exacerbated the BPD phenotype and associated PAH. Notably, miR-342-5p inhibition under room air conditions did not mimic the BPD phenotype. Moderate/severe BPD tracheal aspirate pellets exhibited decreased miR-342-5p levels relative to healthy control pellets. CONCLUSION AND IMPLICATIONS These findings suggest that miR-342-5p mimic therapy may show promise in the treatment or prevention of BPD.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zhang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Xiang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyu Zhang
- Department of Pediatrics, Chongqing Jiulongpo District Maternity Child Health Care Hospital, Chongqing, China
| | - Fang Gong
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shiling Li
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Chen
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Luo
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Deng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yaoyao You
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zhangxue Hu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Changke Jiang
- Department of Pediatrics, Chongqing Yongchuan District Maternity Child Health Care Hospital, Chongqing, China.,Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
The Role of Matrix Metalloproteinases in the Progression and Vulnerabilization of Coronary Atherosclerotic Plaques. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2021. [DOI: 10.2478/jce-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Extracellular matrix (ECM) plays an important role in the development and progression of atherosclerotic lesions. Changes in the ECM are involved in the pathophysiology of many cardiovascular diseases, including atherosclerosis. Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteases, also known as matrixins, with proteolytic activity in the ECM, being responsible for the process of tissue remodeling in various systemic pathologies, including cardiac and vascular diseases. MMPs play an important role in maintaining normal vascular structure, but also in secondary cardiovascular remodeling, in the formation of atherosclerotic plaques and in their vulnerabilization process. In addition to the assigned effect of MMPs in vulnerable plaques, they have a well-defined role in post-infarction ventricular remodeling and in various types of cardiomyopathies, followed by onset of congestive heart failure, with repeated hospitalizations and death. The aim of this manuscript was to provide a summary on the role of serum matrix metalloproteinases in the process of initiation, progression and complication of atherosclerotic lesions, from a molecular level to clinical applicability and risk prediction in patients with vulnerable coronary plaques.
Collapse
|
5
|
Endo T. M-Ras is Muscle-Ras, Moderate-Ras, Mineral-Ras, Migration-Ras, and Many More-Ras. Exp Cell Res 2020; 397:112342. [PMID: 33130177 DOI: 10.1016/j.yexcr.2020.112342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
The Ras family of small GTPases comprises about 36 members in humans. M-Ras is related to classical Ras with regard to its regulators and effectors, but solely constitutes a subfamily among the Ras family members. Although classical Ras strongly binds Raf and highly activates the ERK pathway, M-Ras less strongly binds Raf and moderately but sustainedly activates the ERK pathway to induce neuronal differentiation. M-Ras also possesses specific effectors, including RapGEFs and the PP1 complex Shoc2-PP1c, which dephosphorylates Raf to activate the ERK pathway. M-Ras is highly expressed in the brain and plays essential roles in dendrite formation during neurogenesis, in contrast to the axon formation by R-Ras. M-Ras is also highly expressed in the bone and induces osteoblastic differentiation and transdifferentiation accompanied by calcification. Moreover, M-Ras elicits epithelial-mesenchymal transition-mediated collective and single cell migration through the PP1 complex-mediated ERK pathway activation. Activating missense mutations in the MRAS gene have been detected in Noonan syndrome, one of the RASopathies, and MRAS gene amplification occurs in several cancers. Furthermore, several SNPs in the MRAS gene are associated with coronary artery disease, obesity, and dyslipidemia. Therefore, M-Ras carries out a variety of cellular, physiological, and pathological functions. Further investigations may reveal more functions of M-Ras.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
6
|
Endo T. Dominant-negative antagonists of the Ras-ERK pathway: DA-Raf and its related proteins generated by alternative splicing of Raf. Exp Cell Res 2019; 387:111775. [PMID: 31843497 DOI: 10.1016/j.yexcr.2019.111775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
The Ras-ERK pathway regulates a variety of cellular and physiological responses, including cell proliferation, differentiation, morphogenesis during animal development, and homeostasis in adults. Deregulated activation of this pathway leads to cellular transformation and tumorigenesis as well as RASopathies. Several negative regulators of this pathway have been documented. Each of these proteins acts at particular points of the pathway, and they exert specific cellular and physiological functions. Among them, DA-Raf1 (DA-Raf), which is a splicing isoform of A-Raf and contains the Ras-binding domain but lacks the kinase domain, antagonizes the Ras-ERK pathway in a dominant-negative manner. DA-Raf induces apoptosis, skeletal myocyte differentiation, lung alveolarization, and fulfills tumor suppressor functions by interfering with the Ras-ERK pathway. After the findings of DA-Raf, several kinase-domain-truncated splicing variants of Raf proteins have also been reported. The family of these truncated proteins represents the concept that alternative splicing can generate antagonistic proteins to their full-length counterparts.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
7
|
DA-Raf, a dominant-negative antagonist of the Ras–ERK pathway, is a putative tumor suppressor. Exp Cell Res 2018; 362:111-120. [DOI: 10.1016/j.yexcr.2017.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/30/2022]
|
8
|
Yin Y, Lian K, Zhao D, Tao C, Chen X, Tan W, Wang X, Xu Z, Hu M, Rao Y, Zhou X, Pan Z, Zhang X, Jiao X. A Promising Listeria-Vectored Vaccine Induces Th1-Type Immune Responses and Confers Protection Against Tuberculosis. Front Cell Infect Microbiol 2017; 7:407. [PMID: 29034213 PMCID: PMC5626977 DOI: 10.3389/fcimb.2017.00407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022] Open
Abstract
Deaths associated with tuberculosis (TB) is rising and accounted for 1.4 million deaths in 2015 many of which were due to drug-resistant bacteria. Vaccines represent an important medical intervention, but the current Bacilli Calmette-Guerin (BCG) vaccine is not ideal for the protection of teenagers and adults. Therefore, a safe and effective vaccine is urgently needed. In this study, we designed a novel vaccine using an attenuated Listeria monocytogenes strain carrying fusion antigen FbpB-ESAT-6 (rLM) and characterized its safety and protective efficacy against Mycobacterium tuberculosis (M.tb) infection in mice. Compared to the wild type strain yzuLM4 and parental strain LMΔactA/plcB (LM1-2), the virulence of rLM was significantly reduced as judged by its infectious kinetics and LD50 dose. Further characterization of intravenous immunization showed that prime-boost vaccination significantly increased the levels of Th1 cytokines (IFN-γ, IL-17, and IL-6), and enhanced cytotoxic T lymphocyte (CTL) CTLs activity, suggesting that rLM could elicit potent Th1/Th17 responses. More importantly, rLM significantly conferred the protection against M.tb H37Rv challenge. Collectively, our findings indicated that rLM is a novel and useful tool to prevent M.tb infection, and can be potentially be used to boost BCG-primed immunity.
Collapse
Affiliation(s)
- Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Kai Lian
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Dan Zhao
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Chengwu Tao
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Weijun Tan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Xiaobo Wang
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Maozhi Hu
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Yan Rao
- ABSL-3 Lab, Wuhan University, Wuhan, China
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| | - Xiaoming Zhang
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Yangzhou, China
| |
Collapse
|
9
|
Clair G, Piehowski PD, Nicola T, Kitzmiller JA, Huang EL, Zink EM, Sontag RL, Orton DJ, Moore RJ, Carson JP, Smith RD, Whitsett JA, Corley RA, Ambalavanan N, Ansong C. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples. Sci Rep 2016; 6:39223. [PMID: 28004771 PMCID: PMC5177886 DOI: 10.1038/srep39223] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
Laser capture microdissection (LCM)-enabled region-specific tissue analyses are critical to better understand complex multicellular processes. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, impacting measurement robustness, quantification and throughput. Here, we coupled LCM with a proteomics workflow that provides fully automated analysis of proteomes from microdissected tissues. Benchmarking against the current state-of-the-art in ultrasensitive global proteomics (FASP workflow), our approach demonstrated significant improvements in quantification (~2-fold lower variance) and throughput (>5 times faster). Using our approach we for the first time characterized, to a depth of >3,400 proteins, the ontogeny of protein changes during normal lung development in microdissected alveolar tissue containing only 4,000 cells. Our analysis revealed seven defined modules of coordinated transcription factor-signaling molecule expression patterns, suggesting a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes.
Collapse
Affiliation(s)
- Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Paul D Piehowski
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Teodora Nicola
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Joseph A Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eric L Huang
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Erika M Zink
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ryan L Sontag
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Daniel J Orton
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ronald J Moore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - James P Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78712, USA
| | - Richard D Smith
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Richard A Corley
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
10
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
11
|
An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. A-Raf: A new star of the family of raf kinases. Crit Rev Biochem Mol Biol 2015; 50:520-31. [PMID: 26508523 DOI: 10.3109/10409238.2015.1102858] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ras-Raf-MEK-MAPK (mitogen-activated protein kinase)-signaling pathway plays a key role in the regulation of many cellular functions, including cell proliferation, differentiation and transformation, by transmitting signals from membrane receptors to various cytoplasmic and nuclear targets. One of the key components of this pathway is the serine/threonine protein kinase, Raf. The Raf family kinases (A-Raf, B-Raf and C-Raf) have been intensively studied since being identified in the early 1980s as retroviral oncogenes, especially with respect to the discovery of activating mutations of B-Raf in a large number of tumors which led to intensified efforts to develop drugs targeting Raf kinases. This also resulted in a rapid increase in our knowledge of the biological functions of the B-Raf and C-Raf isoforms, which may in turn be contrasted with the little that is known about A-Raf. The biological functions of A-Raf remain mysterious, although it appears to share some of the basic properties of the other two isoforms. Recently, emerging evidence has begun to reveal the functions of A-Raf, of which some are kinase-independent. These include the inhibition of apoptosis by binding to MST2, acting as safeguard against oncogenic transformation by suppressing extracellular signal-regulated kinases (ERK) activation and playing a role in resistance to Raf inhibitors. In this review, we discuss the regulation of A-Raf protein expression, and the roles of A-Raf in apoptosis and cancer, with a special focus on its role in resistance to Raf inhibitors. We also describe the scaffold functions of A-Raf and summarize the unexpected complexity of Raf signaling.
Collapse
Affiliation(s)
- Su An
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Yang Yang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Richard Ward
- b Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Scotland , UK
| | - Ying Liu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Xiao-Xi Guo
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Tian-Rui Xu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| |
Collapse
|
12
|
Watanabe-Takano H, Takano K, Hatano M, Tokuhisa T, Endo T. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells. PLoS One 2015; 10:e0127888. [PMID: 25996975 PMCID: PMC4440819 DOI: 10.1371/journal.pone.0127888] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/20/2015] [Indexed: 01/18/2023] Open
Abstract
Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial–mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofibroblasts through EMT. TGF-β induces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf–MEK–ERK). However, the signaling mechanisms regulating TGF-β1-induced EMT are not fully understood. Here, we show that the Ras–ERK pathway negatively regulates TGF-β1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras–ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF-β1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF-β1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras–ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF-β1. Although DA-Raf knockdown abrogated TGF-β1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF-β1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF-β1-induced Ras–ERK pathway in RLE-6TN cells.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
- Biomedical Research Center, Chiba University, Chuo-ku, Chiba, Japan
- Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Kazunori Takano
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
- Department of Nanobiology, Graduate School of Advanced Integral Science, Chiba University, Inage-ku, Chiba, Japan
| | - Masahiko Hatano
- Biomedical Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | - Takeshi Tokuhisa
- Department of Developmental Genetics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
- Department of Nanobiology, Graduate School of Advanced Integral Science, Chiba University, Inage-ku, Chiba, Japan
- * E-mail:
| |
Collapse
|
13
|
Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 2015; 44-46:247-54. [PMID: 25805621 DOI: 10.1016/j.matbio.2015.03.005] [Citation(s) in RCA: 480] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs), which inhibit matrix metalloproteinases (MMPs) as well as the closely related, a disintegrin and metalloproteinases (ADAMs) and ADAMs with thrombospondin motifs (ADAMTSs), were traditionally thought to control extracellular matrix (ECM) proteolysis through direct inhibition of MMP-dependent ECM proteolysis. This classical role for TIMPs suggests that increased TIMP levels results in ECM accumulation (or fibrosis), whereas loss of TIMPs leads to enhanced matrix proteolysis. Mice lacking TIMP family members have provided support for such a role; however, studies with these TIMP deficient mice have also demonstrated that loss of TIMPs can often be associated with an accumulation of ECM. Collectively, these studies suggest that the divergent roles of TIMPs in matrix accumulation and proteolysis, which together can be referred to as ECM turnover, are dependent on the TIMP, specific tissue, and local tissue environment (i.e. health vs. injury/disease). Ultimately, these combined factors dictate the specific metalloproteinases being regulated by a given TIMP, and it is likely the diversity of metalloproteinases and their physiological substrates that determines whether TIMPs inhibit matrix proteolysis or accumulation. In this review, we discuss the evidence for the dichotomous roles of TIMPs in ECM turnover highlighting some of the common findings between different TIMP family members. Importantly, while we now have a better understanding of the role of TIMPs in regulating ECM turnover, much remains to be determined. Data on the specific metalloproteinases inhibited by different TIMPs in vivo remains limited and must be the focus of future studies.
Collapse
Affiliation(s)
- Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael Brock
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
14
|
Weibel ER. On the Tricks Alveolar Epithelial Cells Play to Make a Good Lung. Am J Respir Crit Care Med 2015; 191:504-13. [DOI: 10.1164/rccm.201409-1663oe] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Tahedl D, Wirkes A, Tschanz SA, Ochs M, Mühlfeld C. How common is the lipid body-containing interstitial cell in the mammalian lung? Am J Physiol Lung Cell Mol Physiol 2014; 307:L386-94. [PMID: 24973404 DOI: 10.1152/ajplung.00131.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pulmonary lipofibroblasts are thought to be involved in lung development, regeneration, vitamin A storage, and surfactant synthesis. Most of the evidence for these important functions relies on mouse or rat studies. Therefore, the present study was designed to investigate the presence of lipofibroblasts in a variety of early postnatal and adult mammalian species (including humans) to evaluate the ability to generalize functions of this cell type for other species. For this purpose, lung samples from 14 adult mammalian species as well as from postnatal mice, rats, and humans were investigated using light and electron microscopic stereology to obtain the volume fraction and the total volume of lipid bodies. In adult animals, lipid bodies were observed only, but not in all rodents. In all other species, no lipofibroblasts were observed. In rodents, lipid body volume scaled with body mass with an exponent b = 0.73 in the power law equation. Lipid bodies were not observed in postnatal human lungs but showed a characteristic postnatal increase in mice and rats and persisted at a lower level in the adult animals. Among 14 mammalian species, lipofibroblasts were only observed in rodents. The great increase in lipid body volume during early postnatal development of the mouse lung confirms the special role of lipofibroblasts during rodent lung development. It is evident that the cellular functions of pulmonary lipofibroblasts cannot be transferred easily from rodents to other species, in particular humans.
Collapse
Affiliation(s)
- Daniel Tahedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - André Wirkes
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Gießen, Gießen, Germany
| | | | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| |
Collapse
|