1
|
Gomes R, Denison Kroschel A, Day S, Jansen R. High variation across E. coli hybrid isolates identified in metabolism-related biological pathways co-expressed with virulent genes. Gut Microbes 2023; 15:2228042. [PMID: 37417543 PMCID: PMC10332235 DOI: 10.1080/19490976.2023.2228042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Virulent genes present in Escherichia coli (E. coli) can cause significant human diseases. These enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) isolates with virulent genes show different expression levels when grown under diverse laboratory conditions. In this research, we have performed differential gene expression analysis using publicly available RNA-seq data on three pathogenic E. coli hybrid isolates in an attempt to characterize the variation in gene interactions that are altered by the presence or absence of virulent factors within the genome. Almost 26.7% of the common genes across these strains were found to be differentially expressed. Out of the 88 differentially expressed genes with virulent factors identified from PATRIC, nine were common in all these strains. A combination of Weighted Gene Co-Expression Network Analysis and Gene Ontology Enrichment Analysis reveals significant differences in gene co-expression involving virulent genes common among the three investigated strains. The co-expression pattern is observed to be especially variable among biological pathways involving metabolism-related genes. This suggests a potential difference in resource allocation or energy generation across the three isolates based on genomic variation.
Collapse
Affiliation(s)
- Rahul Gomes
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | | | - Stephanie Day
- Department of Earth, Environment, and Geospatial Sciences, North Dakota State University, Fargo, ND, USA
| | - Rick Jansen
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
2
|
Sun Y, Ma Y, Guan H, Liang H, Zhao X, Wang D. Adhesion mechanism and biofilm formation of Escherichia coli O157:H7 in infected cucumber (Cucumis sativus L.). Food Microbiol 2021; 105:103885. [DOI: 10.1016/j.fm.2021.103885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
|
3
|
Serapio-Palacios A, Finlay BB. Dynamics of expression, secretion and translocation of type III effectors during enteropathogenic Escherichia coli infection. Curr Opin Microbiol 2020; 54:67-76. [PMID: 32058947 DOI: 10.1016/j.mib.2019.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea and mortality worldwide. The locus of enterocyte effacement (LEE) pathogenicity island in the EPEC genome encodes a type 3 secretion system (T3SS). This nanomachine directly injects a sophisticated arsenal of effectors into host cells, which is critical for EPEC pathogenesis. To colonize the gut mucosa, EPEC alters its gene expression in response to host environmental signals. Regulation of the LEE has been studied extensively, revealing key mechanisms of transcriptional regulation, and more recently at the posttranscriptional and posttranslational levels. Moreover, the T3SS assembly and secretion is a highly coordinated process that ensures hierarchical delivery of effectors upon cell contact. EPEC effectors and virulence factors not only manipulate host cellular processes, but also modulate effector translocation by controlling T3SS formation. In this review, we focus on the regulation of EPEC virulence genes and modulation of effector secretion and translocation.
Collapse
Affiliation(s)
| | - Barton Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Slater SL, Sågfors AM, Pollard DJ, Ruano-Gallego D, Frankel G. The Type III Secretion System of Pathogenic Escherichia coli. Curr Top Microbiol Immunol 2019; 416:51-72. [PMID: 30088147 DOI: 10.1007/82_2018_116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection with enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), enteroinvasive E. coli (EIEC) and Shigella relies on the elaboration of a type III secretion system (T3SS). Few strains also encode a second T3SS, named ETT2. Through the integration of coordinated intracellular and extracellular cues, the modular T3SS is assembled within the bacterial cell wall, as well as the plasma membrane of the host cell. As such, the T3SS serves as a conduit, allowing the chaperone-regulated translocation of effector proteins directly into the host cytosol to subvert eukaryotic cell processes. Recent technological advances revealed high structural resolution of the T3SS apparatus and how it could be exploited to treat enteric disease. This chapter summarises the current knowledge of the structure and function of the E. coli T3SSs.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Agnes M Sågfors
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Dominic J Pollard
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David Ruano-Gallego
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
5
|
Platenkamp A, Mellies JL. Environment Controls LEE Regulation in Enteropathogenic Escherichia coli. Front Microbiol 2018; 9:1694. [PMID: 30140259 PMCID: PMC6094958 DOI: 10.3389/fmicb.2018.01694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a significant cause of infant morbidity and mortality in developing regions of the world. Horizontally acquired genetic elements encode virulence structures, effectors, and regulators that promote bacterial colonization and disease. One such genetic element, the locus of enterocyte effacement (LEE), encodes the type three secretion system (T3SS) which acts as a bridge between bacterial and host cells to pass effector molecules that exert changes on the host. Due to its importance in EPEC virulence, regulation of the LEE has been of high priority and its investigation has elucidated many virulence regulators, including master regulator of the LEE Ler, H-NS, other nucleoid-associated proteins, GrlA, and PerC. Media type, environmental signals, sRNA signaling, metabolic processes, and stress responses have profound, strain-specific effects on regulators and LEE expression, and thus T3SS formation. Here we review virulence gene regulation in EPEC, which includes approaches for lessening disease by exploiting the elucidated regulatory pathways.
Collapse
Affiliation(s)
- Amy Platenkamp
- Department of Biology, Reed College, Portland, OR, United States
| | - Jay L Mellies
- Department of Biology, Reed College, Portland, OR, United States
| |
Collapse
|
6
|
Yuan B, Economou A, Karamanou S. Optimization of type 3 protein secretion in enteropathogenic Escherichia coli. FEMS Microbiol Lett 2018; 365:5003382. [PMID: 29800479 DOI: 10.1093/femsle/fny122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
The type 3 secretion system (T3SS) is a protein export pathway common to Gram-negative pathogens. It comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. In enteropathogenic Escherichia coli, exported substrates are chaperone-delivered to the major translocase component, EscV, and cross the membrane in strict hierarchical manner, e.g. first 'translocators', then 'effectors'. The in vitro dissection of the T3SS and the determination of its structure are hampered by the low numbers of the injectisomes per cell. We have now defined an optimal M9 minimal medium and established that the per transcriptional regulator enhances the number of filamented cells, the number of injectisomes per cell and the secretion of T3S substrates. Our findings provide a valuable tool for further biochemical and biophysical analysis of the T3SS and suggest that additional improvement to maximize injectisome production is possible in future efforts.
Collapse
Affiliation(s)
- Biao Yuan
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
7
|
Newman SL, Will WR, Libby SJ, Fang FC. The curli regulator CsgD mediates stationary phase counter-silencing of csgBA in Salmonella Typhimurium. Mol Microbiol 2018; 108:101-114. [PMID: 29388265 DOI: 10.1111/mmi.13919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/23/2022]
Abstract
Integration of horizontally acquired genes into transcriptional networks is essential for the regulated expression of virulence in bacterial pathogens. In Salmonella enterica, expression of such genes is repressed by the nucleoid-associated protein H-NS, which recognizes and binds to AT-rich DNA. H-NS-mediated silencing must be countered by other DNA-binding proteins to allow expression under appropriate conditions. Some genes that can be transcribed by RNA polymerase (RNAP) associated with the alternative sigma factor σS or the housekeeping sigma factor σ70 in vitro appear to be preferentially transcribed by σS in the presence of H-NS, suggesting that σS may act as a counter-silencer. To determine whether σS directly counters H-NS-mediated silencing and whether co-regulation by H-NS accounts for the σS selectivity of certain promoters, we examined the csgBA operon, which is required for curli fimbriae expression and is known to be regulated by both H-NS and σS . Using genetics and in vitro biochemical analyses, we found that σS is not directly required for csgBA transcription, but rather up-regulates csgBA via an indirect upstream mechanism. Instead, the biofilm master regulator CsgD directly counter-silences the csgBA promoter by altering the DNA-protein complex structure to disrupt H-NS-mediated silencing in addition to directing the binding of RNAP.
Collapse
Affiliation(s)
- S L Newman
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - W R Will
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - S J Libby
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - F C Fang
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Department of Microbiology, University of Washington, Seattle WA, USA
| |
Collapse
|
8
|
Shin M. The mechanism underlying Ler-mediated alleviation of gene repression by H-NS. Biochem Biophys Res Commun 2016; 483:392-396. [PMID: 28013045 DOI: 10.1016/j.bbrc.2016.12.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022]
Abstract
Secretion of effector proteins in Enteropathogeneic Escherichia coli (EPEC) and Enterohemorrhagic Escherichia coli (EHEC) is mediated by a specialized type III secretion system, components of which are encoded in the LEE operons 1 to 5. H-NS, a global repressor in E. coli, silences the expression of LEE operons. Ler, a master regulator in LEE operons, shares 24% amnio acid identity and 44% amino acid similarity to H-NS. Interestingly, rather than a gene silencer, its main role has been characterized as an antagonizing protein that relieves H-NS-mediated transcriptional silencing. In the previous study we reported molecular mechanism for the repression of LEE5 promoter in EPEC and EHEC by H-NS as a protein interaction between upstream DNA-bound H-NS and the αCTD of promoter-bound RNA polymerase. The mechanism underlying Ler-mediated alleviation of the genes repression by H-NS is largely unknown. We examined regulatory effect of these proteins on LEE5p activity using various in vitro tools. Our results revealed that binding affinity of Ler to the LEE5p DNA is about 40 folds greater than that of H-NS as determined by surface plasmon resonance. We verified that Ler binding removed H-NS bound to the same stretch of DNA on LEE5 promoter resulting in a derepression.
Collapse
Affiliation(s)
- Minsang Shin
- Department of Microbiology, Kyungpook National University School of Medicine, 680 Gukchaebosang-Ro, Jung-gu, Daegu, 41944, South Korea.
| |
Collapse
|
9
|
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [PMID: 27818950 PMCID: PMC5073101 DOI: 10.3389/fcimb.2016.00129] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Meztlli O Gaytán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Verónica I Martínez-Santos
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Eduardo Soto
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
10
|
Duprey A, Muskhelishvili G, Reverchon S, Nasser W. Temporal control of Dickeya dadantii main virulence gene expression by growth phase-dependent alteration of regulatory nucleoprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1470-1480. [PMID: 27498372 DOI: 10.1016/j.bbagrm.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
In bacteria, important genes are often controlled at the transcriptional level by several factors, forming a complex and intertwined web of interactions. Yet, transcriptional regulators are often studied separately and little information is available concerning their interactions. In this work, we dissect the regulation of the major virulence gene pelD in D. dadantii by taking into account the effects of individual binding sites for regulatory proteins FIS and CRP, and the impact of a newly discovered divergent promoter div. Using a combination of biochemistry and genetics approaches we provide an unprecedented level of detail on the multifactorial regulation of bacterial transcription. We show that the growth phase dependent regulation of pelD is under the control of changing composition of higher-order nucleoprotein complexes between FIS, CRP, div and pelD during the growth cycle that allow sequential expression of div and pelD in the early and late exponential growth phases, respectively. This work highlights the importance of "orphan" promoters in gene regulation and that the individual binding sites for a regulator can serve several purposes and have different effects on transcription, adding a new level of complexity to bacterial transcriptional regulation.
Collapse
Affiliation(s)
- Alexandre Duprey
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; INSA-Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Georgi Muskhelishvili
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; INSA-Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Sylvie Reverchon
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; INSA-Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - William Nasser
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; INSA-Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France.
| |
Collapse
|
11
|
Amino acid residues in the Ler protein critical for derepression of the LEE5 promoter in enteropathogenic E. coli. J Microbiol 2016; 54:559-64. [PMID: 27480636 DOI: 10.1007/s12275-016-6027-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/30/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Enteropathogenic E. coli causes attaching and effacing (A/E) intestinal lesions. The genes involved in the formation of A/E lesions are encoded within a chromosomal island comprising of five major operons, LEE1-5. The global regulator H-NS represses the expression of these operons. Ler, a H-NS homologue, counteracts the H-NS-mediated repression. Using a novel genetic approach, we identified the amino acid residues in Ler that are involved in the interaction with H-NS: I20 and L23 in the C-terminal portion of α-helix 3, and I42 in the following unstructured linker region.
Collapse
|
12
|
Fukui N, Oshima T, Ueda T, Ogasawara N, Tobe T. Gene Activation through the Modulation of Nucleoid Structures by a Horizontally Transferred Regulator, Pch, in Enterohemorrhagic Escherichia coli. PLoS One 2016; 11:e0149718. [PMID: 26901318 PMCID: PMC4764244 DOI: 10.1371/journal.pone.0149718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
Abstract
The horizontally transferred chromosomal segments, which are the main source of genetic diversity among bacterial pathogens, are bound by the nucleoid protein H-NS, resulting in the formation of a nucleoprotein complex and the silencing of gene expression. The de-silencing or activation of virulence genes necessary for the colonization of enterohemorrhagic Escherichia coli is achieved mainly by the action of two regulators, Pch and Ler, which are encoded by horizontally transferred elements. Although Ler has been shown to activate transcription by counteracting H-NS silencing, the mechanism for Pch is poorly understood. We show here that Pch activates the LEE1 promoter and also enhances the Ler-mediated activation of other LEE promoters. Transcriptional activation was completely dependent on repression by the H-NS/StpA/Hha/YdgT complex, indicating that Pch-derived activation was achieved by alleviating H-NS-mediated silencing. Expression of pch reduced the binding of H-NS at LEE1 promoter and altered the nucleoprotein complex. Furthermore, in vitro reconstruction of the protein-DNA complex on LEE1 promoter DNA confirmed the exclusive effect of Pch on H-NS binding. These results demonstrated that Pch is another anti-silencing regulator and a modulator of H-NS-containing nucleoprotein complexes. Thus, the anti-silencing mechanism plays a key role in the coordinated regulation of virulence genes in EHEC.
Collapse
Affiliation(s)
- Naoki Fukui
- Department of Biomedical Informatics, Graduate School of Medicine Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taku Oshima
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Takeshi Ueda
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Toru Tobe
- Department of Biomedical Informatics, Graduate School of Medicine Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
van der Valk RA, Vreede J, Crémazy F, Dame RT. Genomic Looping: A Key Principle of Chromatin Organization. J Mol Microbiol Biotechnol 2015; 24:344-59. [DOI: 10.1159/000368851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
H-NS and RNA polymerase: a love-hate relationship? Curr Opin Microbiol 2015; 24:53-9. [PMID: 25638302 DOI: 10.1016/j.mib.2015.01.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/24/2014] [Accepted: 01/10/2015] [Indexed: 01/23/2023]
Abstract
Histone-like nucleoid structuring (H-NS) protein is a component of bacterial chromatin and influences gene expression both locally and on a global scale. Although H-NS is broadly considered a silencer of transcription, the mechanisms by which H-NS inhibits gene expression remain poorly understood. Here we discuss recent advances in the context of a 'love-hate' relationship between H-NS and RNA polymerase, in which these factors recognise similar DNA sequences but interfere with each other's activity. Understanding the complex relationship between H-NS and RNA polymerase may unite the multiple models that have been proposed to describe gene silencing by H-NS.
Collapse
|