1
|
Soles LV, Liu L, Zou X, Yoon Y, Li S, Tian L, Valdez MC, Yu A, Yin H, Li W, Ding F, Seelig G, Li L, Shi Y. A nuclear RNA degradation code for eukaryotic transcriptome surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604837. [PMID: 39211185 PMCID: PMC11361069 DOI: 10.1101/2024.07.23.604837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The RNA exosome plays critical roles in eukaryotic RNA degradation, but it remains unclear how the exosome specifically recognizes its targets. The PAXT connection is an adaptor that recruits the exosome to polyadenylated RNAs in the nucleus, especially transcripts polyadenylated at intronic poly(A) sites. Here we show that PAXT-mediated RNA degradation is induced by the combination of a 5' splice site and a poly(A) junction, but not by either sequence alone. These sequences are bound by U1 snRNP and cleavage/polyadenylation factors, which in turn cooperatively recruit PAXT. As the 5' splice site-poly(A) junction combination is typically not found on correctly processed full-length RNAs, we propose that it functions as a "nuclear RNA degradation code" (NRDC). Importantly, disease-associated single nucleotide polymorphisms that create novel 5' splice sites in 3' untranslated regions can induce aberrant mRNA degradation via the NRDC mechanism. Together our study identified the first NRDC, revealed its recognition mechanism, and characterized its role in human diseases.
Collapse
|
2
|
Rovira E, Moreno B, Razquin N, Blázquez L, Hernández-Alcoceba R, Fortes P, Pastor F. Engineering U1-Based Tetracycline-Inducible Riboswitches to Control Gene Expression in Mammals. ACS NANO 2023; 17:23331-23346. [PMID: 37971502 DOI: 10.1021/acsnano.3c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Synthetic riboswitches are promising regulatory devices due to their small size, lack of immunogenicity, and ability to fine-tune gene expression in the absence of exogenous trans-acting factors. Based on a gene inhibitory system developed at our lab, termed U1snRNP interference (U1i), we developed tetracycline (TC)-inducible riboswitches that modulate mRNA polyadenylation through selective U1 snRNP recruitment. First, we engineered different TC-U1i riboswitches, which repress gene expression unless TC is added, leading to inductions of gene expression of 3-to-4-fold. Second, we developed a technique called Systematic Evolution of Riboswitches by Exponential Enrichment (SEREX), to isolate riboswitches with enhanced U1 snRNP binding capacity and activity, achieving inducibilities of up to 8-fold. Interestingly, by multiplexing riboswitches we increased inductions up to 37-fold. Finally, we demonstrated that U1i-based riboswitches are dose-dependent and reversible and can regulate the expression of reporter and endogenous genes in culture cells and mouse models, resulting in attractive systems for gene therapy applications. Our work probes SEREX as a much-needed technology for the in vitro identification of riboswitches capable of regulating gene expression in vivo.
Collapse
Affiliation(s)
- Eric Rovira
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona 31008, Spain
| | - Beatriz Moreno
- Department of Molecular Therapy, Aptamer Unit, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona 31008, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona 31008, Spain
| | - Lorea Blázquez
- Department of Neurosciences, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ruben Hernández-Alcoceba
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Madrid 28029, Spain
| | - Puri Fortes
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Madrid 28029, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid 28029, Spain
| | - Fernando Pastor
- Department of Molecular Therapy, Aptamer Unit, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28029, Spain
| |
Collapse
|
3
|
Lee S, Aubee JI, Lai EC. Regulation of alternative splicing and polyadenylation in neurons. Life Sci Alliance 2023; 6:e202302000. [PMID: 37793776 PMCID: PMC10551640 DOI: 10.26508/lsa.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cell-type-specific gene expression is a fundamental feature of multicellular organisms and is achieved by combinations of regulatory strategies. Although cell-restricted transcription is perhaps the most widely studied mechanism, co-transcriptional and post-transcriptional processes are also central to the spatiotemporal control of gene functions. One general category of expression control involves the generation of multiple transcript isoforms from an individual gene, whose balance and cell specificity are frequently tightly regulated via diverse strategies. The nervous system makes particularly extensive use of cell-specific isoforms, specializing the neural function of genes that are expressed more broadly. Here, we review regulatory strategies and RNA-binding proteins that direct neural-specific isoform processing. These include various classes of alternative splicing and alternative polyadenylation events, both of which broadly diversify the neural transcriptome. Importantly, global alterations of splicing and alternative polyadenylation are characteristic of many neural pathologies, and recent genetic studies demonstrate how misregulation of individual neural isoforms can directly cause mutant phenotypes.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Joseph I Aubee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
4
|
Rovira E, Moreno B, Razquin N, Hjerpe R, Gonzalez-Lopez M, Barrio R, Ruiz de los Mozos I, Ule J, Pastor F, Blazquez L, Fortes P. U1A is a positive regulator of the expression of heterologous and cellular genes involved in cell proliferation and migration. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:831-846. [PMID: 35664701 PMCID: PMC9136276 DOI: 10.1016/j.omtn.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
Abstract
Here, we show that direct recruitment of U1A to target transcripts can increase gene expression. This is a new regulatory role, in addition to previous knowledge showing that U1A decreases the levels of U1A mRNA and other specific targets. In fact, genome-wide, U1A more often increases rather than represses gene expression and many U1A-upregulated transcripts are directly bound by U1A according to individual nucleotide resolution crosslinking and immunoprecipitation (iCLIP) studies. Interestingly, U1A-mediated positive regulation can be transferred to a heterologous system for biotechnological purposes. Finally, U1A-bound genes are enriched for those involved in cell cycle and adhesion. In agreement with this, higher U1A mRNA expression associates with lower disease-free survival and overall survival in many cancer types, and U1A mRNA levels positively correlate with those of some oncogenes involved in cell proliferation. Accordingly, U1A depletion leads to decreased expression of these genes and the migration-related gene CCN2/CTGF, which shows the strongest regulation by U1A. A decrease in U1A causes a strong drop in CCN2 expression and CTGF secretion and defects in the expression of CTGF EMT targets, cell migration, and proliferation. These results support U1A as a putative therapeutic target for cancer treatment. In addition, U1A-binding sequences should be considered in biotechnological applications.
Collapse
Affiliation(s)
- Eric Rovira
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Beatriz Moreno
- Department of Molecular Therapy, Aptamer Unit, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Roland Hjerpe
- Department of Functional Genomics, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Monika Gonzalez-Lopez
- Department of Functional Genomics, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Rosa Barrio
- Department of Functional Genomics, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Igor Ruiz de los Mozos
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, WC1B5EH London, UK
- RNA Networks Lab, The Francis Crick Institute, NW11BF London, UK
| | - Jernej Ule
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, WC1B5EH London, UK
- RNA Networks Lab, The Francis Crick Institute, NW11BF London, UK
| | - Fernando Pastor
- Department of Molecular Therapy, Aptamer Unit, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Lorea Blazquez
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, WC1B5EH London, UK
- RNA Networks Lab, The Francis Crick Institute, NW11BF London, UK
- Neurosciences Area, Biodonostia Health Research Institute, 20014 San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Corresponding author. Lorea Blazquez, Department of Neuromuscular Diseases, Institute of Neurology, UCL, WC1B5EH London, UK.
| | - Puri Fortes
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
- Corresponding author. Puri Fortes, Neurosciences Area, Biodonostia Health Research Institute, 20014 San Sebastian, Spain.
| |
Collapse
|
5
|
Lee ES, Smith HW, Wolf EJ, Guvenek A, Wang YE, Emili A, Tian B, Palazzo AF. ZFC3H1 and U1-70K promote the nuclear retention of mRNAs with 5' splice site motifs within nuclear speckles. RNA (NEW YORK, N.Y.) 2022; 28:878-894. [PMID: 35351812 PMCID: PMC9074902 DOI: 10.1261/rna.079104.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/12/2022] [Indexed: 05/22/2023]
Abstract
Quality control of mRNA represents an important regulatory mechanism for gene expression in eukaryotes. One component of this quality control is the nuclear retention and decay of misprocessed RNAs. Previously, we demonstrated that mature mRNAs containing a 5' splice site (5'SS) motif, which is typically found in misprocessed RNAs such as intronic polyadenylated (IPA) transcripts, are nuclear retained and degraded. Using high-throughput sequencing of cellular fractions, we now demonstrate that IPA transcripts require the zinc finger protein ZFC3H1 for their nuclear retention and degradation. Using reporter mRNAs, we demonstrate that ZFC3H1 promotes the nuclear retention of mRNAs with intact 5'SS motifs by sequestering them into nuclear speckles. Furthermore, we find that U1-70K, a component of the spliceosomal U1 snRNP, is also required for the nuclear retention of these reporter mRNAs and likely functions in the same pathway as ZFC3H1. Finally, we show that the disassembly of nuclear speckles impairs the nuclear retention of reporter mRNAs with 5'SS motifs. Our results highlight a splicing independent role of U1 snRNP and indicate that it works in conjunction with ZFC3H1 in preventing the nuclear export of misprocessed mRNAs by sequestering them into nuclear speckles.
Collapse
Affiliation(s)
- Eliza S Lee
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Harrison W Smith
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Eric J Wolf
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Aysegul Guvenek
- Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Yifan E Wang
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Andrew Emili
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Bin Tian
- Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
6
|
Wong J, Martelly W, Sharma S. A Reporter Based Cellular Assay for Monitoring Splicing Efficiency. J Vis Exp 2021. [PMID: 34605821 DOI: 10.3791/63014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During gene expression, the vital step of pre-mRNA splicing involves accurate recognition of splice sites and efficient assembly of spliceosomal complexes to join exons and remove introns prior to cytoplasmic export of the mature mRNA. Splicing efficiency can be altered by the presence of mutations at splice sites, the influence of trans-acting splicing factors, or the activity of therapeutics. Here, we describe the protocol for a cellular assay that can be applied for monitoring the splicing efficiency of any given exon. The assay uses an adaptable plasmid encoded 3-exon/2-intron minigene reporter, which can be expressed in mammalian cells by transient transfection. Post-transfection, total cellular RNA is isolated, and the efficiency of exon splicing in the reporter mRNA is determined by either primer extension or semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). We describe how the impact of disease associated 5' splice-site mutations can be determined by introducing them in the reporter; and how the suppression of these mutations can be achieved by co-transfection with U1 small nuclear RNA (snRNA) construct carrying compensatory mutations in its 5' region that basepairs with the 5'-splice sites at exon-intron junctions in pre-mRNAs. Thus, the reporter can be used for the design of therapeutic U1 particles to improve recognition of mutant 5' splice-sites. Insertion of cis-acting regulatory sites, such as splicing enhancer or silencer sequences, into the reporter can also be used to examine the role of U1 snRNP in regulation mediated by a specific alternative splicing factor. Finally, reporter expressing cells can be incubated with small molecules to determine the effect of potential therapeutics on constitutive pre-mRNA splicing or on exons carrying mutant 5' splice sites. Overall, the reporter assay can be applied to monitor splicing efficiency in a variety of conditions to study fundamental splicing mechanisms and splicing-associated diseases.
Collapse
Affiliation(s)
- Jason Wong
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona
| | - William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona;
| |
Collapse
|
7
|
Palazzo AF, Kang YM. GC-content biases in protein-coding genes act as an "mRNA identity" feature for nuclear export. Bioessays 2020; 43:e2000197. [PMID: 33165929 DOI: 10.1002/bies.202000197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023]
Abstract
It has long been observed that human protein-coding genes have a particular distribution of GC-content: the 5' end of these genes has high GC-content while the 3' end has low GC-content. In 2012, it was proposed that this pattern of GC-content could act as an mRNA identity feature that would lead to it being better recognized by the cellular machinery to promote its nuclear export. In contrast, junk RNA, which largely lacks this feature, would be retained in the nucleus and targeted for decay. Now two recent papers have provided evidence that GC-content does promote the nuclear export of many mRNAs in human cells.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
8
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
9
|
Strobel B, Spöring M, Klein H, Blazevic D, Rust W, Sayols S, Hartig JS, Kreuz S. High-throughput identification of synthetic riboswitches by barcode-free amplicon-sequencing in human cells. Nat Commun 2020; 11:714. [PMID: 32024835 PMCID: PMC7002664 DOI: 10.1038/s41467-020-14491-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022] Open
Abstract
Synthetic riboswitches mediating ligand-dependent RNA cleavage or splicing-modulation represent elegant tools to control gene expression in various applications, including next-generation gene therapy. However, due to the limited understanding of context-dependent structure-function relationships, the identification of functional riboswitches requires large-scale-screening of aptamer-effector-domain designs, which is hampered by the lack of suitable cellular high-throughput methods. Here we describe a fast and broadly applicable method to functionally screen complex riboswitch libraries (~1.8 × 104 constructs) by cDNA-amplicon-sequencing in transiently transfected and stimulated human cells. The self-barcoding nature of each construct enables quantification of differential mRNA levels without additional pre-selection or cDNA-manipulation steps. We apply this method to engineer tetracycline- and guanine-responsive ON- and OFF-switches based on hammerhead, hepatitis-delta-virus and Twister ribozymes as well as U1-snRNP polyadenylation-dependent RNA devices. In summary, our method enables fast and efficient high-throughput riboswitch identification, thereby overcoming a major hurdle in the development cascade for therapeutically applicable gene switches.
Collapse
Affiliation(s)
- Benjamin Strobel
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Maike Spöring
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Holger Klein
- Computational Biology & Genomics, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Dragica Blazevic
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Werner Rust
- Computational Biology & Genomics, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Sergi Sayols
- Computational Biology & Genomics, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Sebastian Kreuz
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
10
|
Venters CC, Oh JM, Di C, So BR, Dreyfuss G. U1 snRNP Telescripting: Suppression of Premature Transcription Termination in Introns as a New Layer of Gene Regulation. Cold Spring Harb Perspect Biol 2019; 11:11/2/a032235. [PMID: 30709878 DOI: 10.1101/cshperspect.a032235] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent observations showed that nascent RNA polymerase II transcripts, pre-mRNAs, and noncoding RNAs are highly susceptible to premature 3'-end cleavage and polyadenylation (PCPA) from numerous intronic cryptic polyadenylation signals (PASs). The importance of this in gene regulation was not previously appreciated as PASs, despite their prevalence, were thought to be active in terminal exons at gene ends. Unexpectedly, antisense oligonucleotide interference with U1 snRNA base-pairing to 5' splice sites, which is necessary for U1 snRNP's (U1) function in splicing, caused widespread PCPA in metazoans. This uncovered U1's PCPA suppression activity, termed telescripting, as crucial for full-length transcription in thousands of vertebrate genes, providing a general role in transcription elongation control. Progressive intron-size expansion in metazoan evolution greatly increased PCPA vulnerability and dependence on U1 telescripting. We describe how these observations unfolded and discuss U1 telescripting's role in shaping the transcriptome.
Collapse
Affiliation(s)
- Christopher C Venters
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jung-Min Oh
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Chao Di
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Byung Ran So
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
11
|
Nucleotide Modifications Decrease Innate Immune Response Induced by Synthetic Analogs of snRNAs and snoRNAs. Genes (Basel) 2018; 9:genes9110531. [PMID: 30400232 PMCID: PMC6266926 DOI: 10.3390/genes9110531] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
Short nuclear regulatory RNAs play a key role in the main stages of maturation of the precursors of the major RNA species. Small nuclear RNAs (snRNAs) form the core of the spliceosome and are responsible for the splicing of pre-mRNA molecules. Small nucleolar RNAs (snoRNAs) direct post-transcriptional modification of pre-rRNAs. A promising strategy for the development of non-coding RNA (ncRNAs) mimicking molecules is the introduction of modified nucleotides, which are normally present in natural ncRNAs, into the structure of synthetic RNAs. We have created a set of snoRNAs and snRNA analogs and studied the effect of base modifications, specifically, pseudouridine (Ψ) and 5-methylcytidine (m⁵C), on the immune-stimulating and cytotoxic properties of these RNAs. Here, we performed a whole-transcriptome study of the influence of synthetic snoRNA analogs with various modifications on gene expression in human cells. Moreover, we confirmed the role of PKR in the recognition of snoRNA and snRNA analogs using the short hairpin RNA (shRNA) technique. We believe that the data obtained will contribute to the understanding of the role of nucleotide modification in ncRNA functions, and can be useful for creating the agents for gene regulation based on the structure of natural snoRNAs and snRNAs.
Collapse
|
12
|
Palazzo AF, Lee ES. Sequence Determinants for Nuclear Retention and Cytoplasmic Export of mRNAs and lncRNAs. Front Genet 2018; 9:440. [PMID: 30386371 PMCID: PMC6199362 DOI: 10.3389/fgene.2018.00440] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 11/26/2022] Open
Abstract
Eukaryotes are divided into two major compartments: the nucleus where RNA is synthesized and processed, and the cytoplasm, where mRNA is translated into proteins. Although many different RNAs are made, only a subset is allowed access to the cytoplasm, primarily RNAs involved in protein synthesis (mRNA, tRNA, and rRNA). In contrast, nuclear retained transcripts are mostly long non-coding RNAs (lncRNAs) whose role in cell physiology has been a source of much investigation in the past few years. In addition, it is likely that many non-functional RNAs, which arise by spurious transcription and misprocessing of functional RNAs, are also retained in the nucleus and degraded. In this review, the main sequence features that dictate whether any particular mRNA or lncRNA is a substrate for retention in the nucleus, or export to the cytoplasm, are discussed. Although nuclear export is promoted by RNA-splicing due to the fact that the spliceosome can help recruit export factors to the mature RNA, nuclear export does not require splicing. Indeed, most stable unspliced transcripts are well exported and associate with these same export factors in a splicing-independent manner. In contrast, nuclear retention is promoted by specialized cis-elements found in certain RNAs. This new understanding of the determinants of nuclear retention and cytoplasmic export provides a deeper understanding of how information flow is regulated in eukaryotic cells. Ultimately these processes promote the evolution of complexity in eukaryotes by shaping the genomic content through constructive neutral evolution.
Collapse
|
13
|
Verbeeren J, Verma B, Niemelä EH, Yap K, Makeyev EV, Frilander MJ. Alternative exon definition events control the choice between nuclear retention and cytoplasmic export of U11/U12-65K mRNA. PLoS Genet 2017; 13:e1006824. [PMID: 28549066 PMCID: PMC5473595 DOI: 10.1371/journal.pgen.1006824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/16/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cellular homeostasis of the minor spliceosome is regulated by a negative feed-back loop that targets U11-48K and U11/U12-65K mRNAs encoding essential components of the U12-type intron-specific U11/U12 di-snRNP. This involves interaction of the U11 snRNP with an evolutionarily conserved splicing enhancer giving rise to unproductive mRNA isoforms. In the case of U11/U12-65K, this mechanism controls the length of the 3′ untranslated region (3′UTR). We show that this process is dynamically regulated in developing neurons and some other cell types, and involves a binary switch between translation-competent mRNAs with a short 3′UTR to non-productive isoforms with a long 3′UTR that are retained in the nucleus or/and spliced to the downstream amylase locus. Importantly, the choice between these alternatives is determined by alternative terminal exon definition events regulated by conserved U12- and U2-type 5′ splice sites as well as sequence signals used for pre-mRNA cleavage and polyadenylation. We additionally show that U11 snRNP binding to the U11/U12-65K mRNA species with a long 3′UTR is required for their nuclear retention. Together, our studies uncover an intricate molecular circuitry regulating the abundance of a key spliceosomal protein and shed new light on the mechanisms limiting the export of non-productively spliced mRNAs from the nucleus to the cytoplasm. The cellular homeostasis of many components of the eukaryotic RNA processing machinery is regulated via negative feed-back pathways that result in the formation of both productive and non-productive mRNA species. Typically, the formation of non-productive mRNAs species results from changes in alternative splicing that disrupt the reading frame of the protein coding region and leads to destabilization of the mRNA. Here, we have investigated the homeostasis regulation of the U11/U12-65K mRNA that encodes an essential protein component of the minor (U12-dependent) spliceosome intron recognition complex. We show that homeostasis is regulated at the level of nuclear mRNA export and mRNA 3′-end formation, and that it can be further regulated during neuronal differentiation. We describe a multilayered regulatory system utilizing alternative exon definition interactions that use the input from both spliceosomes and the polyadenylation machinery to decide between productive and non-productive mRNA formation. Because the 65K protein is an essential component of the minor spliceosome, this regulatory pathway can potentially affect the expression of ~700 genes containing U12-type introns.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Bhupendra Verma
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Elina H. Niemelä
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Karen Yap
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Eugene V. Makeyev
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Mikko J. Frilander
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
14
|
Kaida D. The reciprocal regulation between splicing and 3'-end processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:499-511. [PMID: 27019070 PMCID: PMC5071671 DOI: 10.1002/wrna.1348] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Most eukaryotic precursor mRNAs are subjected to RNA processing events, including 5′‐end capping, splicing and 3′‐end processing. These processing events were historically studied independently; however, since the early 1990s tremendous efforts by many research groups have revealed that these processing factors interact with each other to control each other's functions. U1 snRNP and its components negatively regulate polyadenylation of precursor mRNAs. Importantly, this function is necessary for protecting the integrity of the transcriptome and for regulating gene length and the direction of transcription. In addition, physical and functional interactions occur between splicing factors and 3′‐end processing factors across the last exon. These interactions activate or inhibit splicing and 3′‐end processing depending on the context. Therefore, splicing and 3′‐end processing are reciprocally regulated in many ways through the complex protein–protein interaction network. Although interesting questions remain, future studies will illuminate the molecular mechanisms underlying the reciprocal regulation. WIREs RNA 2016, 7:499–511. doi: 10.1002/wrna.1348 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
15
|
Pieperhoff MS, Pall GS, Jiménez-Ruiz E, Das S, Melatti C, Gow M, Wong EH, Heng J, Müller S, Blackman MJ, Meissner M. Conditional U1 Gene Silencing in Toxoplasma gondii. PLoS One 2015; 10:e0130356. [PMID: 26090798 PMCID: PMC4474610 DOI: 10.1371/journal.pone.0130356] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
The functional characterisation of essential genes in apicomplexan parasites, such as Toxoplasma gondii or Plasmodium falciparum, relies on conditional mutagenesis systems. Here we present a novel strategy based on U1 snRNP-mediated gene silencing. U1 snRNP is critical in pre-mRNA splicing by defining the exon-intron boundaries. When a U1 recognition site is placed into the 3'-terminal exon or adjacent to the termination codon, pre-mRNA is cleaved at the 3'-end and degraded, leading to an efficient knockdown of the gene of interest (GOI). Here we describe a simple method that combines endogenous tagging with DiCre-mediated positioning of U1 recognition sites adjacent to the termination codon of the GOI which leads to a conditional knockdown of the GOI upon rapamycin-induction. Specific knockdown mutants of the reporter gene GFP and several endogenous genes of T. gondii including the clathrin heavy chain gene 1 (chc1), the vacuolar protein sorting gene 26 (vps26), and the dynamin-related protein C gene (drpC) were silenced using this approach and demonstrate the potential of this technology. We also discuss advantages and disadvantages of this method in comparison to other technologies in more detail.
Collapse
Affiliation(s)
- Manuela S. Pieperhoff
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, Lanarkshire, United Kingdom
| | - Gurman S. Pall
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, Lanarkshire, United Kingdom
| | - Elena Jiménez-Ruiz
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, Lanarkshire, United Kingdom
| | - Sujaan Das
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Carmen Melatti
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, Lanarkshire, United Kingdom
| | - Matthew Gow
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, Lanarkshire, United Kingdom
| | - Eleanor H. Wong
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, Lanarkshire, United Kingdom
| | - Joanne Heng
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, Lanarkshire, United Kingdom
| | - Sylke Müller
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, Lanarkshire, United Kingdom
| | - Michael J. Blackman
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
- * E-mail: (MM); (MJB)
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, Lanarkshire, United Kingdom
- * E-mail: (MM); (MJB)
| |
Collapse
|
16
|
Rugarabamu G, Marq JB, Guérin A, Lebrun M, Soldati-Favre D. Distinct contribution of Toxoplasma gondii rhomboid proteases 4 and 5 to micronemal protein protease 1 activity during invasion. Mol Microbiol 2015; 97:244-62. [PMID: 25846828 DOI: 10.1111/mmi.13021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Host cell entry by the Apicomplexa is associated with the sequential secretion of invasion factors from specialized apical organelles. Secretion of micronemal proteins (MICs) complexes by Toxoplasma gondii facilitates parasite gliding motility, host cell attachment and entry, as well as egress from infected cells. The shedding of MICs during these steps is mediated by micronemal protein proteases MPP1, MPP2 and MPP3. The constitutive activity of MPP1 leads to the cleavage of transmembrane MICs and is linked to the surface rhomboid protease 4 (ROM4) and possibly to rhomboid protease 5 (ROM5). To determine their importance and respective contribution to MPP1 activity, in this study ROM4 and ROM5 genes were abrogated using Cre-recombinase and CRISPR-Cas9 nuclease, respectively, and shown to be dispensable for parasite survival. Parasites lacking ROM4 predominantly engage in twirling motility and exhibit enhanced attachment and impaired invasion, whereas intracellular growth and egress is not affected. The substrates MIC2 and MIC6 are not cleaved in rom4-ko parasites, in contrast, intramembrane cleavage of AMA1 is reduced but not completely abolished. Shedding of MICs and invasion are not altered in the absence of ROM5; however, this protease responsible for the residual cleavage of AMA1 is able to cleave other AMA family members and exhibits a detectable contribution to invasion in the absence of ROM4.
Collapse
Affiliation(s)
- George Rugarabamu
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Amandine Guérin
- UMR 5235 CNRS, Université de Montpellier 2, 34095, Montpellier, France
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier 2, 34095, Montpellier, France
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland
| |
Collapse
|
17
|
U1 interference (U1i) for Antiviral Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:51-69. [DOI: 10.1007/978-1-4939-2432-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Zheng D, Tian B. RNA-binding proteins in regulation of alternative cleavage and polyadenylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:97-127. [PMID: 25201104 DOI: 10.1007/978-1-4939-1221-6_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Almost all eukaryotic pre-mRNAs are processed at the 3' end by the cleavage and polyadenylation (C/P) reaction, which preludes termination of transcription and gives rise to the poly(A) tail of mature mRNA. Genomic studies in recent years have indicated that most eukaryotic mRNA genes have multiple cleavage and polyadenylation sites (pAs), leading to alternative cleavage and polyadenylation (APA) products. APA isoforms generally differ in their 3' untranslated regions (3' UTRs), but can also have different coding sequences (CDSs). APA expands the repertoire of transcripts expressed from the genome, and is highly regulated under various physiological and pathological conditions. Growing lines of evidence have shown that RNA-binding proteins (RBPs) play important roles in regulation of APA. Some RBPs are part of the machinery for C/P; others influence pA choice through binding to adjacent regions. In this chapter, we review cis elements and trans factors involved in C/P, the significance of APA, and increasingly elucidated roles of RBPs in APA regulation. We also discuss analysis of APA using transcriptome-wide techniques as well as molecular biology approaches.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, 185 South Orange Ave., Newark, NJ, 07103, USA
| | | |
Collapse
|
19
|
Rehfeld A, Plass M, Døssing K, Knigge U, Kjær A, Krogh A, Friis-Hansen L. Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors. Front Endocrinol (Lausanne) 2014; 5:46. [PMID: 24782827 PMCID: PMC3995063 DOI: 10.3389/fendo.2014.00046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/22/2014] [Indexed: 12/20/2022] Open
Abstract
The tumorigenesis of small intestinal neuroendocrine tumors (SI-NETs) is poorly understood. Recent studies have associated alternative polyadenylation (APA) with proliferation, cell transformation, and cancer. Polyadenylation is the process in which the pre-messenger RNA is cleaved at a polyA site and a polyA tail is added. Genes with two or more polyA sites can undergo APA. This produces two or more distinct mRNA isoforms with different 3' untranslated regions. Additionally, APA can also produce mRNAs containing different 3'-terminal coding regions. Therefore, APA alters both the repertoire and the expression level of proteins. Here, we used high-throughput sequencing data to map polyA sites and characterize polyadenylation genome-wide in three SI-NETs and a reference sample. In the tumors, 16 genes showed significant changes of APA pattern, which lead to either the 3' truncation of mRNA coding regions or 3' untranslated regions. Among these, 11 genes had been previously associated with cancer, with 4 genes being known tumor suppressors: DCC, PDZD2, MAGI1, and DACT2. We validated the APA in three out of three cases with quantitative real-time-PCR. Our findings suggest that changes of APA pattern in these 16 genes could be involved in the tumorigenesis of SI-NETs. Furthermore, they also point to APA as a new target for both diagnostic and treatment of SI-NETs. The identified genes with APA specific to the SI-NETs could be further tested as diagnostic markers and drug targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Anders Rehfeld
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mireya Plass
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Døssing
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Knigge
- Department of Surgical Gastroenterology and Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Krogh
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lennart Friis-Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Lennart Friis-Hansen, Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen DK 2100, Denmark e-mail:
| |
Collapse
|
20
|
Lu Z, Xu J, Xu M, Pasternak GW, Pan YX. Morphine regulates expression of μ-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the μ-opioid receptor (OPRM1) gene via miR-103/miR-107. Mol Pharmacol 2013; 85:368-80. [PMID: 24302561 DOI: 10.1124/mol.113.089292] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The μ-opioid receptor (MOR-1) gene OPRM1 undergoes extensive alternative splicing, generating an array of splice variants. Of these variants, MOR-1A, an intron-retention carboxyl terminal splice variant identical to MOR-1 except for the terminal intracellular tail encoded by exon 3b, is quite abundant and conserved from rodent to humans. Increasing evidence indicates that miroRNAs (miRNAs) regulate MOR-1 expression and that μ agonists such as morphine modulate miRNA expression. However, little is known about miRNA regulation of the OPRM1 splice variants. Using 3'-rapid amplification cDNA end and Northern blot analyses, we identified the complete 3'-untranslated region (3'-UTR) for both mouse and human MOR-1A and their conserved polyadenylation site, and defined the role the 3'-UTR in mRNA stability using a luciferase reporter assay. Computer models predicted a conserved miR-103/107 targeting site in the 3'-UTR of both mouse and human MOR-1A. The functional relevance of miR-103/107 in regulating expression of MOR-1A protein through the consensus miR-103/107 binding sites in the 3'-UTR was established by using mutagenesis and a miR-107 inhibitor in transfected human embryonic kidney 293 cells and Be(2)C cells that endogenously express human MOR-1A. Chronic morphine treatment significantly upregulated miR-103 and miR-107 levels, leading to downregulation of polyribosome-associated MOR-1A in both Be(2)C cells and the striatum of a morphine-tolerant mouse, providing a new perspective on understanding the roles of miRNAs and OPRM1 splice variants in modulating the complex actions of morphine in animals and humans.
Collapse
Affiliation(s)
- Zhigang Lu
- Department of Neurology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | | | |
Collapse
|
21
|
U1 snRNP-Dependent Suppression of Polyadenylation: Physiological Role and Therapeutic Opportunities in Cancer. Int J Cell Biol 2013; 2013:846510. [PMID: 24285958 PMCID: PMC3826338 DOI: 10.1155/2013/846510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022] Open
Abstract
Pre-mRNA splicing and polyadenylation are critical steps in the maturation of eukaryotic mRNA. U1 snRNP is an essential component of the splicing machinery and participates in splice-site selection and spliceosome assembly by base-pairing to the 5' splice site. U1 snRNP also plays an additional, nonsplicing global function in 3' end mRNA processing; it actively suppresses the polyadenylation machinery from using early, mostly intronic polyadenylation signals which would lead to aberrant, truncated mRNAs. Thus, U1 snRNP safeguards pre-mRNA transcripts against premature polyadenylation and contributes to the regulation of alternative polyadenylation. Here, we review the role of U1 snRNP in 3' end mRNA processing, outline the evidence that led to the recognition of its physiological, general role in inhibiting polyadenylation, and finally highlight the possibility of manipulating this U1 snRNP function for therapeutic purposes in cancer.
Collapse
|
22
|
Blázquez L, Aiastui A, Goicoechea M, Martins de Araujo M, Avril A, Beley C, García L, Valcárcel J, Fortes P, López de Munain A. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs. Hum Mutat 2013; 34:1387-95. [PMID: 23864287 DOI: 10.1002/humu.22379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/08/2013] [Indexed: 12/25/2022]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is the most frequent autosomal recessive muscular dystrophy. It is caused by mutations in the calpain-3 (CAPN3) gene. The majority of the mutations described to date are located in the coding sequence of the gene. However, it is estimated that 25% of the mutations are present at exon-intron boundaries and modify the pre-mRNA splicing of the CAPN3 transcript. We have previously described the first deep intronic mutation in the CAPN3 gene: c.1782+1072G>C mutation. This mutation causes the pseudoexonization of an intronic sequence of the CAPN3 gene in the mature mRNA. In the present work, we show that the point mutation generates the inclusion of the pseudoexon in the mRNA using a minigene assay. In search of a treatment that restores normal splicing, splicing modulation was induced by RNA-based strategies, which included antisense oligonucleotides and modified small-nuclear RNAs. The best effect was observed with antisense sequences, which induced pseudoexon skipping in both HeLa cells cotransfected with mutant minigene and in fibroblasts from patients. Finally, transfection of antisense sequences and siRNA downregulation of serine/arginine-rich splicing factor 1 (SRSF1) indicate that binding of this factor to splicing enhancer sequences is involved in pseudoexon activation.
Collapse
Affiliation(s)
- Lorea Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Neuroscience Area, Health Research Institute Biodonostia, San Sebastian, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kikuchi Y, Yamazaki N, Tarashima N, Furukawa K, Takiguchi Y, Itoh K, Minakawa N. Gene suppression via U1 small nuclear RNA interference (U1i) machinery using oligonucleotides containing 2'-modified-4'-thionucleosides. Bioorg Med Chem 2013; 21:5292-6. [PMID: 23871495 DOI: 10.1016/j.bmc.2013.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 10/26/2022]
Abstract
Gene suppression via U1 small nuclear RNA interference (U1i) is considered to be one of the most attractive approaches, and takes the place of general antisense, RNA interference (RNAi), and anti-micro RNA machineries. Since the U1i can be induced by short oligonucleotides (ONs), namely U1 adaptors consisting of a 'target domain' and a 'U1 domain', we prepared adaptor ONs using 2'-modified-4'-thionucleosides developed by our group, and evaluated their U1i activity. As a result, the desired gene suppression via U1i was observed in ONs prepared as a combination of 2'-fluoro-4'-thionucleoside and 2'-fluoronucleoside units as well as only 2'-fluoronucleoside units, while those prepared as combination of 2'-OMe nucleoside/2'-OMe-4'-thionucleoside and 2'-fluoronucleoside units did not show significant activity. Measurement of Tm values indicated that a higher hybridization ability of adaptor ONs with complementary RNA is one of the important factors to show potent U1i activity.
Collapse
Affiliation(s)
- Yusaku Kikuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Weirauch U, Grünweller A, Cuellar L, Hartmann RK, Aigner A. U1 adaptors for the therapeutic knockdown of the oncogene pim-1 kinase in glioblastoma. Nucleic Acid Ther 2013; 23:264-72. [PMID: 23724780 DOI: 10.1089/nat.2012.0407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
U1 small nuclear interference (U1i) has recently been described as a novel gene silencing mechanism. U1i employs short oligonucleotides, so-called U1 adaptors, for specific gene knockdown, expanding the field of current silencing strategies that are primarily based on RNA interference (RNAi) or antisense. Despite the potential of U1 adaptors as therapeutic agents, their in vivo application has not yet been studied. Here we explore U1i by analyzing U1 adaptor-mediated silencing of the oncogene Pim-1 in glioblastoma cells. We have generated Pim-1-specific U1 adaptors comprising DNA, locked nucleic acids (LNA), and 2'-O-Methyl RNA and demonstrate their ability to induce a Pim-1 knockdown, leading to antiproliferative and pro-apoptotic effects. For the therapeutic in vivo application of U1 adaptors, we establish their complexation with branched low molecular weight polyethylenimine (PEI). Upon injection of nanoscale PEI/adaptor complexes into subcutaneous glioblastoma xenografts in mice, we observed the knockdown of Pim-1 that resulted in the suppression of tumor growth. The absence of hepatotoxicity and immune stimulation also demonstrates the biocompatibility of PEI/adaptor complexes. We conclude that U1i represents an alternative to RNAi for the therapeutic silencing of pathologically upregulated genes and demonstrate the functional relevance of Pim-1 oncogene knockdown in glioblastoma. We furthermore introduce nanoscale PEI/adaptor complexes as efficient and safe for in vivo application, thus offering novel therapeutic approaches based on U1i-mediated gene knockdown.
Collapse
Affiliation(s)
- Ulrike Weirauch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
25
|
Davidson L, West S. Splicing-coupled 3' end formation requires a terminal splice acceptor site, but not intron excision. Nucleic Acids Res 2013; 41:7101-14. [PMID: 23716637 PMCID: PMC3737548 DOI: 10.1093/nar/gkt446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Splicing of human pre-mRNA is reciprocally coupled to 3′ end formation by terminal exon definition, which occurs co-transcriptionally. It is required for the final maturation of most human pre-mRNAs and is therefore important to understand. We have used several strategies to block splicing at specific stages in vivo and studied their effect on 3′ end formation. We demonstrate that a terminal splice acceptor site is essential to establish coupling with the poly(A) signal in a chromosomally integrated β-globin gene. This is in part to alleviate the suppression of 3′ end formation by U1 small nuclear RNA, which is known to bind pre-mRNA at the earliest stage of spliceosome assembly. Interestingly, blocks to splicing that are subsequent to terminal splice acceptor site function, but before catalysis, have little observable effect on 3′ end formation. These data suggest that early stages of spliceosome assembly are sufficient to functionally couple splicing and 3′ end formation, but that on-going intron removal is less critical.
Collapse
Affiliation(s)
- Lee Davidson
- Wellcome Trust Centre for Cell Biology, Institute for Cell Biology, University of Edinburgh Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | |
Collapse
|
26
|
Catania F, Lynch M. A simple model to explain evolutionary trends of eukaryotic gene architecture and expression: how competition between splicing and cleavage/polyadenylation factors may affect gene expression and splice-site recognition in eukaryotes. Bioessays 2013; 35:561-70. [PMID: 23568225 DOI: 10.1002/bies.201200127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enormous phylogenetic variation exists in the number and sizes of introns in protein-coding genes. Although some consideration has been given to the underlying role of the population-genetic environment in defining such patterns, the influence of the intracellular environment remains virtually unexplored. Drawing from observations on interactions between co-transcriptional processes involved in splicing and mRNA 3'-end formation, a mechanistic model is proposed for splice-site recognition that challenges the commonly accepted intron- and exon-definition models. Under the suggested model, splicing factors that outcompete 3'-end processing factors for access to intronic binding sites concurrently favor the recruitment of 3'-end processing factors at the pre-mRNA tail. This hypothesis sheds new light on observations such as the intron-mediated enhancement of gene expression and the negative correlation between intron length and levels of gene expression.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| | | |
Collapse
|
27
|
Rehfeld A, Plass M, Krogh A, Friis-Hansen L. Alterations in polyadenylation and its implications for endocrine disease. Front Endocrinol (Lausanne) 2013; 4:53. [PMID: 23658553 PMCID: PMC3647115 DOI: 10.3389/fendo.2013.00053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. PERSPECTIVES Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SUMMARY This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.
Collapse
Affiliation(s)
- Anders Rehfeld
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
| | - Mireya Plass
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Anders Krogh
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Lennart Friis-Hansen
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
- *Correspondence: Lennart Friis-Hansen, Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 4113, Blegdamsvej 9, DK2100 Copenhagen, Denmark. e-mail:
| |
Collapse
|
28
|
O'Reilly D, Dienstbier M, Cowley SA, Vazquez P, Drozdz M, Taylor S, James WS, Murphy S. Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res 2012; 23:281-91. [PMID: 23070852 PMCID: PMC3561869 DOI: 10.1101/gr.142968.112] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human U1 small nuclear (sn)RNA, required for splicing of pre-mRNA, is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes, also located on chromosome 1 (1q12-21), were thought to be pseudogenes. However, many of these "variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells, we have identified global transcriptome changes following interrogation of the Affymetrix Human Exon ST 1.0 array. Our results indicate that this vU1 snRNA regulates expression of a subset of target genes at the level of pre-mRNA processing. This is the first indication that variant U1 snRNAs have a biological function in vivo. Furthermore, some vU1 snRNAs are packaged into unique ribonucleoproteins (RNPs), and many vU1 snRNA genes are differentially expressed in human embryonic stem cells (hESCs) and HeLa cells, suggesting developmental control of RNA processing through expression of different sets of vU1 snRNPs.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Berg MG, Singh LN, Younis I, Liu Q, Pinto AM, Kaida D, Zhang Z, Cho S, Sherrill-Mix S, Wan L, Dreyfuss G. U1 snRNP determines mRNA length and regulates isoform expression. Cell 2012; 150:53-64. [PMID: 22770214 PMCID: PMC3412174 DOI: 10.1016/j.cell.2012.05.029] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 02/01/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023]
Abstract
U1 snRNP (U1), in addition to its splicing role, protects pre-mRNAs from drastic premature termination by cleavage and polyadenylation (PCPA) at cryptic polyadenylation signals (PASs) in introns. Here, a high-throughput sequencing strategy of differentially expressed transcripts (HIDE-seq) mapped PCPA sites genome wide in divergent organisms. Surprisingly, whereas U1 depletion terminated most nascent gene transcripts within ~1 kb, moderate functional U1 level decreases, insufficient to inhibit splicing, dose-dependently shifted PCPA downstream and elicited mRNA 3' UTR shortening and proximal 3' exon switching characteristic of activated immune and neuronal cells, stem cells, and cancer. Activated neurons' signature mRNA shortening could be recapitulated by U1 decrease and antagonized by U1 overexpression. Importantly, we show that rapid and transient transcriptional upregulation inherent to neuronal activation physiology creates U1 shortage relative to pre-mRNAs. Additional experiments suggest cotranscriptional PCPA counteracted by U1 association with nascent transcripts, a process we term telescripting, ensuring transcriptome integrity and regulating mRNA length.
Collapse
|
30
|
Langemeier J, Schrom EM, Rabner A, Radtke M, Zychlinski D, Saborowski A, Bohn G, Mandel-Gutfreund Y, Bodem J, Klein C, Bohne J. A complex immunodeficiency is based on U1 snRNP-mediated poly(A) site suppression. EMBO J 2012; 31:4035-44. [PMID: 22968171 DOI: 10.1038/emboj.2012.252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/10/2012] [Indexed: 01/01/2023] Open
Abstract
Biallelic mutations in the untranslated regions (UTRs) of mRNAs are rare causes for monogenetic diseases whose mechanisms remain poorly understood. We investigated a 3'UTR mutation resulting in a complex immunodeficiency syndrome caused by decreased mRNA levels of p14/robld3 by a previously unknown mechanism. Here, we show that the mutation creates a functional 5' splice site (SS) and that its recognition by the spliceosomal component U1 snRNP causes p14 mRNA suppression in the absence of splicing. Histone processing signals are able to rescue p14 expression. Therefore, the mutation interferes only with canonical poly(A)-site 3' end processing. Our data suggest that U1 snRNP inhibits cleavage or poly(A) site recognition. This is the first description of a 3'UTR mutation that creates a functional 5'SS causative of a monogenetic disease. Moreover, our data endorse the recently described role of U1 snRNP in suppression of intronic poly(A) sites, which is here deleterious for p14 mRNA biogenesis.
Collapse
Affiliation(s)
- Jörg Langemeier
- Cell and Virus Genetics Group, Institute for Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Splicing is a key process for mRNA maturation, particularly in higher eukaryotes where most protein-coding transcripts contain multiple introns. It is achieved by the concerted action of five snRNAs (small nuclear RNAs) and hundreds of accessory proteins that form the spliceosome. Although snRNAs are present in equal amounts in the spliceosome, there is an overall excess of U1 in human cells. This finding led to the opinion that U1 might be involved in processes other than splicing. Research has shown that this is indeed the case and some examples found from studies in human cell systems are described briefly in the present review.
Collapse
|
32
|
Knoepfel SA, Abad A, Abad X, Fortes P, Berkhout B. Design of modified U1i molecules against HIV-1 RNA. Antiviral Res 2012; 94:208-16. [DOI: 10.1016/j.antiviral.2012.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
|
33
|
Abstract
The intron–exon architecture of many eukaryotic genes raises the intriguing question of whether this unique organization serves any function, or is it simply a result of the spread of functionless introns in eukaryotic genomes. In this review, we show that introns in contemporary species fulfill a broad spectrum of functions, and are involved in virtually every step of mRNA processing. We propose that this great diversity of intronic functions supports the notion that introns were indeed selfish elements in early eukaryotes, but then independently gained numerous functions in different eukaryotic lineages. We suggest a novel criterion of evolutionary conservation, dubbed intron positional conservation, which can identify functional introns.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
34
|
Vetukuri RR, Tian Z, Avrova AO, Savenkov EI, Dixelius C, Whisson SC. Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biol 2011; 115:1225-33. [DOI: 10.1016/j.funbio.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/31/2011] [Indexed: 11/25/2022]
|
35
|
Blazquez L, Gonzalez-Rojas SJ, Abad A, Razquin N, Abad X, Fortes P. Increased in vivo inhibition of gene expression by combining RNA interference and U1 inhibition. Nucleic Acids Res 2011; 40:e8. [PMID: 22086952 PMCID: PMC3245954 DOI: 10.1093/nar/gkr956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inhibition of gene expression can be achieved with RNA interference (RNAi) or U1 small nuclear RNA—snRNA—interference (U1i). U1i is based on U1 inhibitors (U1in), U1 snRNA molecules modified to inhibit polyadenylation of a target pre-mRNA. In culture, we have shown that the combination of RNAi and U1i results in stronger inhibition of reporter or endogenous genes than that obtained using either of the techniques alone. We have now used these techniques to inhibit gene expression in mice. We show that U1ins can induce strong inhibition of the expression of target genes in vivo. Furthermore, combining U1i and RNAi results in synergistic inhibitions also in mice. This is shown for the inhibition of hepatitis B virus (HBV) sequences or endogenous Notch1. Surprisingly, inhibition obtained by combining a U1in and a RNAi mediator is higher than that obtained by combining two U1ins or two RNAi mediators. Our results suggest that RNAi and U1i cooperate by unknown mechanisms to result in synergistic inhibitions. Analysis of toxicity and specificity indicates that expression of U1i inhibitors is safe. Therefore, we believe that the combination of RNAi and U1i will be a good option to block damaging endogenous genes, HBV and other infectious agents in vivo.
Collapse
Affiliation(s)
- Lorea Blazquez
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII 55. 31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Vorlová S, Rocco G, Lefave CV, Jodelka FM, Hess K, Hastings ML, Henke E, Cartegni L. Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol Cell 2011; 43:927-39. [PMID: 21925381 DOI: 10.1016/j.molcel.2011.08.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/18/2011] [Accepted: 08/02/2011] [Indexed: 01/23/2023]
Abstract
Alternative intronic polyadenylation (IPA) can generate truncated protein isoforms with significantly altered functions. Here, we describe 31 dominant-negative, secreted variant isoforms of receptor tyrosine kinases (RTKs) that are produced by activation of intronic poly(A) sites. We show that blocking U1-snRNP can activate IPA, indicating a larger role for U1-snRNP in RNA surveillance. Moreover, we report the development of an antisense-based method to effectively and specifically activate expression of individual soluble decoy RTKs (sdRTKs) to alter signaling, with potential therapeutic implications. In particular, a quantitative switch from signal transducing full-length vascular endothelial growth factor receptor-2 (VEGFR2/KDR) to a dominant-negative sKDR results in a strong antiangiogenic effect both on directly targeted cells and on naive cells exposed to conditioned media, suggesting a role for this approach in interfering with angiogenic paracrine and autocrine loops.
Collapse
Affiliation(s)
- Sandra Vorlová
- Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Polyadenylation [poly(A)] signals (PAS) are a defining feature of eukaryotic protein-coding genes. The central sequence motif AAUAAA was identified in the mid-1970s and subsequently shown to require flanking, auxiliary elements for both 3'-end cleavage and polyadenylation of premessenger RNA (pre-mRNA) as well as to promote downstream transcriptional termination. More recent genomic analysis has established the generality of the PAS for eukaryotic mRNA. Evidence for the mechanism of mRNA 3'-end formation is outlined, as is the way this RNA processing reaction communicates with RNA polymerase II to terminate transcription. The widespread phenomenon of alternative poly(A) site usage and how this interrelates with pre-mRNA splicing is then reviewed. This shows that gene expression can be drastically affected by how the message is ended. A central theme of this review is that while genomic analysis provides generality for the importance of PAS selection, detailed mechanistic understanding still requires the direct analysis of specific genes by genetic and biochemical approaches.
Collapse
Affiliation(s)
- Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
38
|
Guan W, Huang Q, Cheng F, Qiu J. Internal polyadenylation of the parvovirus B19 precursor mRNA is regulated by alternative splicing. J Biol Chem 2011; 286:24793-805. [PMID: 21622561 DOI: 10.1074/jbc.m111.227439] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative processing of parvovirus B19 (B19V) pre-mRNA is critical to generating appropriate levels of B19V mRNA transcripts encoding capsid proteins and small nonstructural proteins. Polyadenylation of the B19V pre-mRNA at the proximal polyadenylation site ((pA)p), which prevents generation of full-length capsid proteins encoding mRNA transcripts, has been suggested as a step that blocks B19V permissiveness. We report here that efficient splicing of the B19V pre-mRNA within the first intron (upstream of the (pA)p site) stimulated the polyadenylation; in contrast, splicing of the B19V pre-mRNA within the second intron (in which the (pA)p site resides) interfered with the polyadenylation, leading to the generation of a sufficient number of B19V mRNA transcripts polyadenylated at the distal polyadenylation site ((pA)d). We also found that splicing within the second intron and polyadenylation at the (pA)p site compete during processing of the B19V pre-mRNA. Furthermore, we discovered that the U1 RNA that binds to the 5' splice donor site of the second intron is fully responsible for inhibiting polyadenylation at the (pA)p site, whereas actual splicing, and perhaps assembly of the functional spliceosome, is not required. Finally, we demonstrated that inhibition of B19V pre-mRNA splicing within the second intron by targeting an intronic splicing enhancer using a Morpholino antisense oligonucleotide prevented B19V mRNA transcripts polyadenylated at the (pA)d site during B19V infection of human erythroid progenitors. Thus, our study reveals the mechanism by which alternative splicing coordinates alternative polyadenylation to generate full-length B19V mRNA transcripts at levels sufficient to support productive B19V infection.
Collapse
Affiliation(s)
- Wuxiang Guan
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
39
|
Koornneef A, van Logtenstein R, Timmermans E, Pisas L, Blits B, Abad X, Fortes P, Petry H, Konstantinova P, Ritsema T. AAV-mediated in vivo knockdown of luciferase using combinatorial RNAi and U1i. Gene Ther 2011; 18:929-35. [PMID: 21472008 PMCID: PMC3169806 DOI: 10.1038/gt.2011.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA interference (RNAi) has been successfully employed for specific inhibition of gene expression; however, safety and delivery of RNAi remain critical issues. We investigated the combinatorial use of RNAi and U1 interference (U1i). U1i is a gene-silencing technique that acts on the pre-mRNA by preventing polyadenylation. RNAi and U1i have distinct mechanisms of action in different cellular compartments and their combined effect allows usage of minimal doses, thereby avoiding toxicity while retaining high target inhibition. As a proof of concept, we investigated knockdown of the firefly luciferase reporter gene by combinatorial use of RNAi and U1i, and evaluated their inhibitory potential both in vitro and in vivo. Co-transfection of RNAi and U1i constructs showed additive reduction of luciferase expression up to 95% in vitro. We attained similar knockdown when RNAi and U1i constructs were hydrodynamically transfected into murine liver, demonstrating for the first time successful in vivo application of U1i. Moreover, we demonstrated long-term gene silencing by AAV-mediated transduction of murine muscle with RNAi/U1i constructs targeting firefly luciferase. In conclusion, these results provide a proof of principle for the combinatorial use of RNAi and U1i to enhance target gene knockdown in vivo.
Collapse
Affiliation(s)
- A Koornneef
- Department of Research and Development, Amsterdam Molecular Therapeutics, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Martinson HG. An active role for splicing in 3′-end formation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:459-70. [DOI: 10.1002/wrna.68] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Excessive RNA splicing and inhibition of HIV-1 replication induced by modified U1 small nuclear RNAs. J Virol 2010; 84:12790-800. [PMID: 20926575 DOI: 10.1128/jvi.01257-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 RNA undergoes a complex splicing process whereby over 40 different mRNA species are produced by alternative splicing. In addition, approximately half of the RNA transcripts remain unspliced and either are used to encode Gag and Gag-Pol proteins or are packaged into virions as genomic RNA. It has previously been shown that HIV-1 splicing is regulated by cis elements that bind to cellular factors. These factors either enhance or repress definition of exons that are flanked by the HIV-1 3' splice sites. Here we report that expression of modified U1 snRNPs with increased affinity to HIV-1 downstream 5' splice sites and to sequences within the first tat coding exon act to selectively increase splicing at the upstream 3' splice sites in cotransfected 293T cells. This results in a decrease of unspliced viral RNA levels and an approximately 10-fold decrease in virus production. In addition, excessive splicing of viral RNA is concomitant with a striking reduction in the relative amounts of Gag processing intermediates and products. We also show that T cell lines expressing modified U1 snRNAs exhibit reduced HIV-1 replication. Our results suggest that induction of excessive HIV-1 RNA splicing may be a novel strategy to inhibit virus replication in human patients.
Collapse
|
42
|
Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, Dreyfuss G. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 2010; 468:664-8. [PMID: 20881964 PMCID: PMC2996489 DOI: 10.1038/nature09479] [Citation(s) in RCA: 456] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 09/09/2010] [Indexed: 11/10/2022]
Abstract
In eukaryotes, U1 small nuclear ribonucleoprotein (snRNP) forms spliceosomes in equal stoichiometry with U2, U4, U5 and U6 snRNPs; however, its abundance in human far exceeds that of the other snRNPs. Here we used antisense morpholino oligonucleotide to U1 snRNA to achieve functional U1 snRNP knockdown in HeLa cells, and identified accumulated unspliced pre-mRNAs by genomic tiling microarrays. In addition to inhibiting splicing, U1 snRNP knockdown caused premature cleavage and polyadenylation in numerous pre-mRNAs at cryptic polyadenylation signals, frequently in introns near (<5 kilobases) the start of the transcript. This did not occur when splicing was inhibited with U2 snRNA antisense morpholino oligonucleotide or the U2-snRNP-inactivating drug spliceostatin A unless U1 antisense morpholino oligonucleotide was also included. We further show that U1 snRNA-pre-mRNA base pairing was required to suppress premature cleavage and polyadenylation from nearby cryptic polyadenylation signals located in introns. These findings reveal a critical splicing-independent function for U1 snRNP in protecting the transcriptome, which we propose explains its overabundance.
Collapse
Affiliation(s)
- Daisuke Kaida
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abad X, Razquin N, Abad A, Fortes P. Combination of RNA interference and U1 inhibition leads to increased inhibition of gene expression. Nucleic Acids Res 2010; 38:e136. [PMID: 20427423 PMCID: PMC2910067 DOI: 10.1093/nar/gkq299] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference (RNAi) has been revolutionary for the specific inhibition of gene expression. However, the application of RNAi has been hampered by the fact that many siRNAs induce dose-dependent unwanted secondary effects. Therefore, new methods to increase inhibition of gene expression with low doses of inhibitors are required. We have tested the combination of RNAi and U1i (U1 small nuclear RNA—snRNA—interference). U1i is based on U1 inhibitors (U1in), U1 snRNA molecules modified to target a pre-mRNA and inhibit its gene expression by blocking nuclear polyadenylation. The combination of RNAi and U1i resulted in stronger inhibition of reporter or endogenous genes than that obtained using either of the techniques alone. The increased inhibition observed is stable over time and allows higher inhibition than the best obtained with either of the inhibitors alone even with decreased doses of the inhibitors. We believe that the combination of RNAi and U1i will be of interest when higher inhibition is required or when potent inhibitors are not available. Also, the combination of these techniques would allow functional inhibition with a decreased dose of inhibitors, avoiding toxicity due to dose-dependent unwanted effects.
Collapse
Affiliation(s)
- X Abad
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | | | | | | |
Collapse
|
44
|
Aparicio O, Carnero E, Abad X, Razquin N, Guruceaga E, Segura V, Fortes P. Adenovirus VA RNA-derived miRNAs target cellular genes involved in cell growth, gene expression and DNA repair. Nucleic Acids Res 2009; 38:750-63. [PMID: 19933264 PMCID: PMC2817457 DOI: 10.1093/nar/gkp1028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adenovirus virus-associated (VA) RNAs are processed to functional viral miRNAs or mivaRNAs. mivaRNAs are important for virus production, suggesting that they may target cellular or viral genes that affect the virus cell cycle. To look for cellular targets of mivaRNAs, we first identified genes downregulated in the presence of VA RNAs by microarray analysis. These genes were then screened for mivaRNA target sites using several bioinformatic tools. The combination of microarray analysis and bioinformatics allowed us to select the splicing and translation regulator TIA-1 as a putative mivaRNA target. We show that TIA-1 is downregulated at mRNA and protein levels in infected cells expressing functional mivaRNAs and in transfected cells that express mivaRNAI-138, one of the most abundant adenoviral miRNAs. Also, reporter assays show that TIA-1 is downregulated directly by mivaRNAI-138. To determine whether mivaRNAs could target other cellular genes we analyzed 50 additional putative targets. Thirty of them were downregulated in infected or transfected cells expressing mivaRNAs. Some of these genes are important for cell growth, transcription, RNA metabolism and DNA repair. We believe that a mivaRNA-mediated fine tune of the expression of some of these genes could be important in adenovirus cell cycle.
Collapse
Affiliation(s)
- Oscar Aparicio
- Digna Biotech and Bioinformatics Unit, CIMA, University of Navarra, Pio XII 55, 31008, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Wypijewski K, Hornyik C, Shaw JA, Stephens J, Goraczniak R, Gunderson SI, Lacomme C. Ectopic 5' splice sites inhibit gene expression by engaging RNA surveillance and silencing pathways in plants. PLANT PHYSIOLOGY 2009; 151:955-65. [PMID: 19666706 PMCID: PMC2754638 DOI: 10.1104/pp.109.139733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/04/2009] [Indexed: 05/25/2023]
Abstract
The quality control of mRNA maturation is a highly regulated process that surveys pre-mRNA integrity and eliminates improperly matured pre-mRNAs. In nature, certain viruses regulate the expression of their genes by hijacking the endogenous RNA quality control machinery. We demonstrate that the inclusion of 5' splice sites within the 3'-untranslated region of a reporter gene in plants alters the pre-mRNA cleavage and polyadenylation process, resulting in pre-mRNA degradation, exemplifying a regulatory mechanism conserved between kingdoms. Altered pre-mRNA processing was associated with an inhibition of homologous gene expression in trans and the preferential accumulation of 24-nucleotide (nt) short-interfering RNAs (siRNAs) as opposed to 21-nt siRNA subspecies, suggesting that degradation of the aberrant pre-mRNA involves the silencing machinery. However, gene expression was not restored by coexpression of a silencing suppressor or in an RNA-dependent RNA polymerase (RDR6)-deficient background despite reduced 24-nt siRNA accumulation. Our data highlight a complex cross talk between the quality control RNA machinery, 3'-end pre-mRNA maturation, and RNA-silencing pathways capable of discriminating among different types of aberrant RNAs.
Collapse
Affiliation(s)
- Krzysztof Wypijewski
- Plant Pathology Department, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
|
48
|
Gene silencing by synthetic U1 adaptors. Nat Biotechnol 2009; 27:257-63. [PMID: 19219028 DOI: 10.1038/nbt.1525] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 01/12/2009] [Indexed: 11/08/2022]
Abstract
We describe a gene silencing method that employs a mechanism of action distinct from those of antisense and RNA interference. U1 Adaptors are bifunctional oligonucleotides with a 'target domain' complementary to a site in the target gene's terminal exon and a 'U1 domain' that binds to the U1 small nuclear RNA component of the U1 small nuclear ribonucleoprotein (U1 snRNP) splicing factor. Tethering of U1 snRNP to the target pre-mRNA inhibits poly(A)-tail addition, causing degradation of that RNA species in the nucleus. U1 Adaptors can inhibit both endogenous and reporter genes in a sequence-specific manner. Comparison of U1 Adaptors with small interfering RNA (siRNA) using a genome-wide microarray analysis indicates that U1 Adaptors have limited off-target effects and no detectable adverse effects on splicing. Further, targeting the same gene either with multiple U1 Adaptors or with a U1 Adaptor and siRNA strongly enhances gene silencing.
Collapse
|
49
|
Jankowska A, Gunderson SI, Andrusiewicz M, Burczynska B, Szczerba A, Jarmolowski A, Nowak-Markwitz E, Warchol JB. Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells. Mol Cancer 2008; 7:26. [PMID: 18339208 PMCID: PMC2335103 DOI: 10.1186/1476-4598-7-26] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 03/14/2008] [Indexed: 11/10/2022] Open
Abstract
Background Secretion of human chorionic gonadotropin, especially its beta subunit by malignant trophoblastic tumors and varieties of tumors of different origin is now well documented; however the role of hCG in tumorogenesis is still unknown. Results This study documents the molecular presence of human chorionic gonadotropin beta subunit in uterine cervix cancer tissues and investigates a novel technique to reduce hCGβ levels based on expression of a modified U1 snRNA as a method to study the hormone's role in biology of human cervical cancer cells cultured in vitro. The property of U1 snRNA to block the accumulation of specific RNA transcript when it binds to its donor sequence within the 3' terminal exon was used. The first 10 nucleotides of the human U1 snRNA gene, which normally binds to the 5'ss in pre-mRNA were replaced by a sequence complementary to a 10-nt segment in the terminal exon of the hCGβ mRNA. Three different 5' end-mutated U1 snRNA expression plasmids were tested, each targeting a different sequence in the hCGβ mRNA, and we found each one blocked the expression of hCGβ in HeLa cells, a cervix carcinoma cell line, as shown by immunohistochemistry and qRT-PCR. Reduction of hCGβ levels resulted in a significantly increased apoptosis rate with almost 90% of cells transfected with modified anti-hCGβ U1 snRNAs showing morphological changes characteristic of the apoptotic process. Conclusion These data suggest that human chorionic gonadotropin beta subunit may act as a tumor growth-stimulating factor.
Collapse
Affiliation(s)
- Anna Jankowska
- Department of Cell Biology, University of Medical Sciences, Rokietnicka 5D, Poznan, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abad X, Vera M, Jung SP, Oswald E, Romero I, Amin V, Fortes P, Gunderson SI. Requirements for gene silencing mediated by U1 snRNA binding to a target sequence. Nucleic Acids Res 2008; 36:2338-52. [PMID: 18299285 PMCID: PMC2367729 DOI: 10.1093/nar/gkn068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
U1 interference (U1i) is a novel method to block gene expression. U1i requires expression of a 5'-end-mutated U1 snRNA designed to base pair to the 3'-terminal exon of the target gene's pre-mRNA that leads to inhibition of polyadenylation. Here, we show U1i is robust (> or =95%) and a 10-nt target length is sufficient for good silencing. Surprisingly, longer U1 snRNAs, which could increase annealing to the target, fail to improve silencing. Extensive mutagenesis of the 10-bp U1 snRNA:target duplex shows that any single mismatch different from GU at positions 3-8, destroys silencing. However, mismatches within the other positions give partial silencing, suggesting that off-target inhibition could occur. The specificity of U1i may be enhanced, however, by the fact that silencing is impaired by RNA secondary structure or by splicing factors binding nearby, the latter mediated by Arginine-Serine (RS) domains. U1i inhibition can be reconstituted in vivo by tethering of RS domains of U1-70K and U2AF65. These results help to: (i) define good target sites for U1i; (ii) identify and understand natural cellular examples of U1i; (iii) clarify the contribution of hydrogen bonding to U1i and to U1 snRNP binding to 5' splice sites and (iv) understand the mechanism of U1i.
Collapse
Affiliation(s)
- Xabi Abad
- Division of Hepatology and Gene Therapy, CIMA/UNAV. Pio XII, 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|