1
|
Zhu S, Xu H, Liu Y, Hong Y, Yang H, Zhou C, Tao L. Computational advances in biosynthetic gene cluster discovery and prediction. Biotechnol Adv 2025:108532. [PMID: 39924008 DOI: 10.1016/j.biotechadv.2025.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Biosynthetic gene clusters (BGCs) are groups of clustered genes found in bacteria, fungi, and some plants and animals that are crucial for synthesizing secondary metabolites. In recent years, genome mining of BGCs has emerged as a prominent research focus, particularly in natural product discovery and drug development. Compared to traditional experimental methods, applying computational techniques has significantly enhanced the efficiency of BGC identification and annotation, thereby facilitating the discovery of novel metabolites. The advent of artificial intelligence, particularly machine learning models and more advanced deep learning algorithms, has significantly enhanced both the speed and precision of BGC mining. This review offers a comprehensive introduction to currently developed BGC databases and prediction tools, highlighting the potential of machine learning technologies in BGC mining. Additionally, it summarizes the challenges computational methods face in this area and discusses future research directions.
Collapse
Affiliation(s)
- Sisi Zhu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongquan Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuhong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanfeng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Haowen Yang
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Changli Zhou
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Fu Y, Pateri E, Kuipers OP. Discovery, Biosynthesis, and Characterization of Rodencin, a Two-Component Lanthipeptide, Harboring d-Amino Acids Introduced by the Unusual Dehydrogenase RodJ A. JOURNAL OF NATURAL PRODUCTS 2024; 87:2344-2354. [PMID: 39302883 PMCID: PMC11519912 DOI: 10.1021/acs.jnatprod.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Lanthipeptides, a group of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit diverse structures and bioactivities. Their biosynthetic enzymes serve as valuable tools for peptide bioengineering. Here, we report a class II lanthipeptide biosynthetic gene cluster in a Bacillus strain, driving the biosynthesis of a two-component lanthipeptide, termed rodencin, featured by the presence of two different d-amino acids, i.e., d-Ala and d-Abu. Rodencin displays synergistic antimicrobial activity against food-borne pathogens such as Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. The α-peptide of rodencin contains one d-Ala and the β-peptide features both d-Ala and d-Abu. These are installed by dehydratases RodM1 and RodM2 and dehydrogenase RodJA, the activities of which were successfully reconstituted using a dedicated E. coli expression system. To illustrate the unusual d-Abu incorporation potential of the enzymes, analogous to the d-amino acid-containing β peptide of lacticin 3147, was successfully produced with the rodencin heterologous expression system, by employing RodM2 and the dehydrogenase RodJA.
Collapse
Affiliation(s)
- Yuxin Fu
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| | - Eleftheria Pateri
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| |
Collapse
|
3
|
King AM, Zhang Z, Glassey E, Siuti P, Clardy J, Voigt CA. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nat Microbiol 2023; 8:2420-2434. [PMID: 37973865 DOI: 10.1038/s41564-023-01524-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Human-associated bacteria secrete modified peptides to control host physiology and remodel the microbiota species composition. Here we scanned 2,229 Human Microbiome Project genomes of species colonizing skin, gastrointestinal tract, urogenital tract, mouth and trachea for gene clusters encoding RiPPs (ribosomally synthesized and post-translationally modified peptides). We found 218 lanthipeptides and 25 lasso peptides, 70 of which were synthesized and expressed in E. coli and 23 could be purified and functionally characterized. They were tested for activity against bacteria associated with healthy human flora and pathogens. New antibiotics were identified against strains implicated in skin, nasal and vaginal dysbiosis as well as from oral strains selectively targeting those in the gut. Extended- and narrow-spectrum antibiotics were found against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Mining natural products produced by human-associated microbes will enable the elucidation of ecological relationships and may be a rich resource for antimicrobial discovery.
Collapse
Affiliation(s)
- Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Piro Siuti
- Synthetic Biology Group, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Lee YY, Guler M, Chigumba DN, Wang S, Mittal N, Miller C, Krummenacher B, Liu H, Cao L, Kannan A, Narayan K, Slocum ST, Roth BL, Gurevich A, Behsaz B, Kersten RD, Mohimani H. HypoRiPPAtlas as an Atlas of hypothetical natural products for mass spectrometry database search. Nat Commun 2023; 14:4219. [PMID: 37452020 PMCID: PMC10349150 DOI: 10.1038/s41467-023-39905-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Recent analyses of public microbial genomes have found over a million biosynthetic gene clusters, the natural products of the majority of which remain unknown. Additionally, GNPS harbors billions of mass spectra of natural products without known structures and biosynthetic genes. We bridge the gap between large-scale genome mining and mass spectral datasets for natural product discovery by developing HypoRiPPAtlas, an Atlas of hypothetical natural product structures, which is ready-to-use for in silico database search of tandem mass spectra. HypoRiPPAtlas is constructed by mining genomes using seq2ripp, a machine-learning tool for the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs). In HypoRiPPAtlas, we identify RiPPs in microbes and plants. HypoRiPPAtlas could be extended to other natural product classes in the future by implementing corresponding biosynthetic logic. This study paves the way for large-scale explorations of biosynthetic pathways and chemical structures of microbial and plant RiPP classes.
Collapse
Affiliation(s)
- Yi-Yuan Lee
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Cornell University, Ithaca, NY, 14850, USA
| | - Mustafa Guler
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shen Wang
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Neel Mittal
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | | | - Haodong Liu
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Liu Cao
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Aditya Kannan
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Alexey Gurevich
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
- Department of Computer Science, Saarland University, Saarbrücken, Germany
| | - Bahar Behsaz
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
5
|
Xu Z, Park TJ, Cao H. Advances in mining and expressing microbial biosynthetic gene clusters. Crit Rev Microbiol 2023; 49:18-37. [PMID: 35166616 DOI: 10.1080/1040841x.2022.2036099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Natural products (NPs) especially the secondary metabolites originated from microbes exhibit great importance in biomedical, industrial and agricultural applications. However, mining biosynthetic gene clusters (BGCs) to produce novel NPs has been hindered owing that a large population of environmental microbes are unculturable. In the past decade, strategies to explore BGCs directly from (meta)genomes have been established along with the fast development of high-throughput sequencing technologies and the powerful bioinformatics data-processing tools, which greatly expedited the exploitations of novel BGCs from unculturable microbes including the extremophilic microbes. In this review, we firstly summarized the popular bioinformatics tools and databases available to mine novel BGCs from (meta)genomes based on either pure cultures or pristine environmental samples. Noticeably, approaches rooted from machine learning and deep learning with focuses on the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs) were dramatically increased in recent years. Moreover, synthetic biology techniques to express the novel BGCs in culturable native microbes or heterologous hosts were introduced. This working pipeline including the discovery and biosynthesis of novel NPs will greatly advance the exploitations of the abundant but unexplored microbial BGCs.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Tae-Jin Park
- HME Healthcare Co., Ltd, Suwon-si, Republic of Korea
| | - Huiluo Cao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
He Y, Fan A, Han M, Li H, Li M, Fan H, An X, Song L, Zhu S, Tong Y. Mammalian Commensal Streptococci Utilize a Rare Family of Class VI Lanthipeptide Synthetases to Synthesize Miniature Lanthipeptide-type Ribosomal Peptide Natural Products. Biochemistry 2023; 62:462-475. [PMID: 36577516 DOI: 10.1021/acs.biochem.2c00534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are natural products with remarkable chemical and functional diversities. These peptides are often synthesized as signals or antibiotics and frequently associated with quorum sensing (QS) systems. With the increasing number of available genomes, many hitherto unseen RiPP biosynthetic pathways have been mined, providing new resources for novel bioactive compounds. Herein, we investigated the underexplored biosynthetic potential of Streptococci, prevalent bacteria in mammal-microbiomes that include pathogenic, mutualistic, and commensal members. Using the transcription factor-centric genome mining strategy, we discovered a new family of lanthipeptide biosynthetic loci under the control of potential QS. By in vitro studies, we investigated the reaction of one of these lanthipeptide synthetases and found that it installs only one lanthionine moiety onto its short precursor peptide by connecting a conserved TxxC region. Bioinformatics and in vitro studies revealed that these lanthipeptide synthetases (class VI) are novel lanthipeptide synthetases with a truncated lyase, a kinase, and a truncated cyclase domain. Our data provide important insights into the processing and evolution of lanthipeptide synthetase to tailor smaller substrates. The data are important for obtaining a mechanistic understanding of the post-translational biosynthesis machinery of the growing variety of lanthipeptides.
Collapse
Affiliation(s)
- Yile He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People's Republic of China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaozhou Zhu
- National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
7
|
Glassey E, King AM, Anderson DA, Zhang Z, Voigt CA. Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli under uniform expression and purification conditions. PLoS One 2022; 17:e0266488. [PMID: 36121811 PMCID: PMC9484694 DOI: 10.1371/journal.pone.0266488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
RiPPs (ribosomally-synthesized and post-translationally modified peptides) are a class of pharmaceutically-relevant natural products expressed as precursor peptides before being enzymatically processed into their final functional forms. Bioinformatic methods have illuminated hundreds of thousands of RiPP enzymes in sequence databases and the number of characterized chemical modifications is growing rapidly; however, it remains difficult to functionally express them in a heterologous host. One challenge is peptide stability, which we addressed by designing a RiPP stabilization tag (RST) based on a small ubiquitin-like modifier (SUMO) domain that can be fused to the N- or C-terminus of the precursor peptide and proteolytically removed after modification. This is demonstrated to stabilize expression of eight RiPPs representative of diverse phyla. Further, using Escherichia coli for heterologous expression, we identify a common set of media and growth conditions where 24 modifying enzymes, representative of diverse chemistries, are functional. The high success rate and broad applicability of this system facilitates: (i) RiPP discovery through high-throughput “mining” and (ii) artificial combination of enzymes from different pathways to create a desired peptide.
Collapse
Affiliation(s)
- Emerson Glassey
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Andrew M. King
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Daniel A. Anderson
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zhengan Zhang
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Christopher A. Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Habibi Y, Weerasinghe NW, Uggowitzer KA, Thibodeaux CJ. Partially Modified Peptide Intermediates in Lanthipeptide Biosynthesis Alter the Structure and Dynamics of a Lanthipeptide Synthetase. J Am Chem Soc 2022; 144:10230-10240. [PMID: 35647706 DOI: 10.1021/jacs.2c00727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lanthipeptide synthetases construct macrocyclic peptide natural products by catalyzing an iterative cascade of post-translational modifications. Class II lanthipeptide synthetases (LanM enzymes) catalyze multiple rounds of peptide dehydration and thioether macrocycle formation in a manner that guides precursor peptide maturation to the biologically active final product with high fidelity. The mechanistic details underlying the contradictory phenomena of substrate flexibility coupled with high biosynthetic fidelity have proven challenging to illuminate. In this work, we employ mass spectrometry to investigate how the structure of a maturing precursor lanthipeptide (HalA2) influences the local and global structure of its cognate lanthipeptide synthetase (HalM2). Using enzymatically synthesized HalA2 peptides that contain sets of native thioether macrocycles, we employ ion mobility mass spectrometry (IM-MS) to show that HalA2 macrocyclization alters the conformational landscape of the HalM2 enzyme in a systematic manner. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies show that local HalM2 structural dynamics also change in response to HalA2 post-translational modification. Notably, deuterium uptake in a critical HalM2 α-helical region depends on the number of thioether macrocycles present in the HalA2 core peptide. Binding of the isolated leader and core peptide portions of the modular HalA2 precursor led to a synergistic structuring of this α-helical region, providing evidence for distinct leader and core peptide binding sites that independently alter the dynamics of this functionally critical α-helix. The data support a mechanistic model where the sequential post-translational modification of HalA2 alters the conformational dynamics of HalM2 in regions of the enzyme that are known to be functionally critical.
Collapse
Affiliation(s)
- Yeganeh Habibi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Nuwani W Weerasinghe
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Kevin A Uggowitzer
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
9
|
Zhang SS, Xiong J, Cui JJ, Ma KL, Wu WL, Li Y, Luo S, Gao K, Dong SH. Lanthipeptides from the Same Core Sequence: Characterization of a Class II Lanthipeptide Synthetase from Microcystis aeruginosa NIES-88. Org Lett 2022; 24:2226-2231. [PMID: 35293207 DOI: 10.1021/acs.orglett.2c00573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class II lanthipeptide synthetases (LanMs) are relatively promiscuous to core peptide variations. Previous studies have shown that different LanMs catalyze identical reactions on the same core sequence fused to their respective cognate leaders. We characterized a new LanM enzyme from Microcystis aeruginosa NIES-88, MalM, and demonstrated that MalM and ProcM exhibited disparate dehydration and cyclization patterns on identical core peptides. Our study provided new insights into the regioselectivity of LanMs and showcased an appropriate strategy for lanthipeptide structural diversity engineering.
Collapse
Affiliation(s)
- Sha-Sha Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jiang Xiong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jiao-Jiao Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kai-Liang Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wen-Liang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ya Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
10
|
King AM, Anderson DA, Glassey E, Segall-Shapiro TH, Zhang Z, Niquille DL, Embree AC, Pratt K, Williams TL, Gordon DB, Voigt CA. Selection for constrained peptides that bind to a single target protein. Nat Commun 2021; 12:6343. [PMID: 34732700 PMCID: PMC8566587 DOI: 10.1038/s41467-021-26350-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Peptide secondary metabolites are common in nature and have diverse pharmacologically-relevant functions, from antibiotics to cross-kingdom signaling. Here, we present a method to design large libraries of modified peptides in Escherichia coli and screen them in vivo to identify those that bind to a single target-of-interest. Constrained peptide scaffolds were produced using modified enzymes gleaned from microbial RiPP (ribosomally synthesized and post-translationally modified peptide) pathways and diversified to build large libraries. The binding of a RiPP to a protein target leads to the intein-catalyzed release of an RNA polymerase σ factor, which drives the expression of selectable markers. As a proof-of-concept, a selection was performed for binding to the SARS-CoV-2 Spike receptor binding domain. A 1625 Da constrained peptide (AMK-1057) was found that binds with similar affinity (990 ± 5 nM) as an ACE2-derived peptide. This demonstrates a generalizable method to identify constrained peptides that adhere to a single protein target, as a step towards "molecular glues" for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel A Anderson
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas H Segall-Shapiro
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David L Niquille
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katelin Pratt
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - D Benjamin Gordon
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
11
|
Li C, Alam K, Zhao Y, Hao J, Yang Q, Zhang Y, Li R, Li A. Mining and Biosynthesis of Bioactive Lanthipeptides From Microorganisms. Front Bioeng Biotechnol 2021; 9:692466. [PMID: 34395400 PMCID: PMC8358304 DOI: 10.3389/fbioe.2021.692466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is one of the most serious public health issues in the worldwide and only a few new antimicrobial drugs have been discovered in recent decades. To overcome the ever-increasing emergence of multidrug-resistant (MDR) pathogens, discovery of new natural products (NPs) against MDR pathogens with new technologies is in great demands. Lanthipeptides which are ribosomally synthesized and post-translationally modified peptides (RiPPs) display high diversity in their chemical structures and mechanisms of action. Genome mining and biosynthetic engineering have also yielded new lanthipeptides, which are a valuable source of drug candidates. In this review we cover the recent advances in the field of microbial derived lanthipeptide discovery and development.
Collapse
Affiliation(s)
- Caiyun Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Khorshed Alam
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruijuan Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
12
|
|
13
|
Zhao X, Wang X, Shukla R, Kumar R, Weingarth M, Breukink E, Kuipers OP. Brevibacillin 2V, a Novel Antimicrobial Lipopeptide With an Exceptionally Low Hemolytic Activity. Front Microbiol 2021; 12:693725. [PMID: 34220785 PMCID: PMC8245773 DOI: 10.3389/fmicb.2021.693725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial non-ribosomally produced peptides (NRPs) form a rich source of antibiotics, including more than 20 of these antibiotics that are used in the clinic, such as penicillin G, colistin, vancomycin, and chloramphenicol. Here we report the identification, purification, and characterization of a novel NRP, i.e., brevibacillin 2V (lipo-tridecapeptide), from Brevibacillus laterosporus DSM 25. Brevibacillin 2V has a strong antimicrobial activity against Gram-positive bacterial pathogens (minimum inhibitory concentration = 2 mg/L), including difficult-to-treat antibiotic-resistant Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus. Notably, brevibacillin 2V has a much lower hemolytic activity (HC50 > 128 mg/L) and cytotoxicity (CC50 = 45.49 ± 0.24 mg/L) to eukaryotic cells than previously reported NRPs of the lipo-tridecapeptide family, including other brevibacillins, which makes it a promising candidate for antibiotic development. In addition, our results demonstrate that brevibacillins display a synergistic action with established antibiotics against Gram-negative bacterial pathogens. Probably due to the presence of non-canonical amino acids and D-amino acids, brevibacillin 2V showed good stability in human plasma. Thus, we identified and characterized a novel and promising antimicrobial candidate (brevibacillin 2V) with low hemolytic activity and cytotoxicity, which can be used either on its own or as a template for further total synthesis and modification.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Rhythm Shukla
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands.,NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raj Kumar
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Zhao X, Kuipers OP. BrevicidineB, a New Member of the Brevicidine Family, Displays an Extended Target Specificity. Front Microbiol 2021; 12:693117. [PMID: 34177875 PMCID: PMC8219939 DOI: 10.3389/fmicb.2021.693117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
The group of bacterial non-ribosomally produced peptides (NRPs) has formed a rich source for drug development. Brevicidine, a bacterial non-ribosomally produced cyclic lipo-dodecapeptide, displays selective antimicrobial activity against Gram-negative pathogens. Here, we show that brevicidineB, which contains a single substitution (Tyr2 to Phe2) in the amino acid sequence of the linear part of brevicidine, has a broadened antimicrobial spectrum, showing bactericidal activity against both Gram-negative (with a MIC value of 2 to 4 mg/L) and Gram-positive (with a MIC value of 2 to 8 mg/L) pathogens. Compared with an earlier reported member of the brevicidine family, the broadened antimicrobial spectrum of brevicidineB is caused by its increased membrane disruptive capacity on Gram-positive pathogens, which was evidenced by fluorescence microscopy assays. In addition, DiSC3(5) and resazurin assays show that brevicidine and brevicidineB exert their antimicrobial activity against Gram-negative bacteria via disrupting the proton motive force of cells. Notably, as a brevicidine family member, brevicidineB also showed neither hemolytic activity nor cytotoxicity at a high concentration of 64 mg/L. This study provides a promising antibiotic candidate (brevicidineB) with a broad antimicrobial spectrum, and provides novel insights into the antimicrobial mode of action of brevicidines.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Exploring structural signatures of the lanthipeptide prochlorosin 2.8 using tandem mass spectrometry and trapped ion mobility-mass spectrometry. Anal Bioanal Chem 2021; 413:4815-4824. [PMID: 34105020 DOI: 10.1007/s00216-021-03437-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Lanthipeptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by intramolecular thioether cross-links formed between a dehydrated serine/threonine (dSer/dThr) and a cysteine residue. Prochlorosin 2.8 (Pcn2.8) is a class II lanthipeptide that exhibits a non-overlapping thioether ring pattern, for which no biological activity has been reported yet. The variant Pcn2.8[16RGD] has been shown to bind tightly to the αvβ3 integrin receptor. In the present work, tandem mass spectrometry, using collision-induced dissociation (CID) and electron capture dissociation (ECD), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) were used to investigate structural signatures for the non-overlapping thioether ring pattern of Pcn2.8. CID experiments on Pcn2.8 yielded bi and yj fragments between the thioether cross-links, evidencing the presence of a non-overlapping thioether ring pattern. ECD experiments of Pcn2.8 showed a significant increase of hydrogen migration events near the residues involved in the thioether rings with a more pronounced effect at the dehydrated residues as compared to the cysteine residues. The high-resolution mobility analysis, aided by site-directed mutagenesis ([P8A], [P11A], [P12A], [P8A/P11A], [P8A/P12A], [P11A/P12A], and [P8A/P11A/P12A] variants), demonstrated that Pcn2.8 adopts cis/trans-conformations at Pro8, Pro11, and Pro12 residues. These observations were complementary to recent NMR findings, for which only the Pro8 residue was evidenced to adopt cis/trans-orientations. This study highlights the analytical power of the TIMS-MS/MS workflow for the structural characterization of lanthipeptides and could be a useful tool in our understanding of the biologically important structural elements that drive the thioether cyclization process.
Collapse
|
16
|
Agrawal P, Amir S, Deepak, Barua D, Mohanty D. RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining. J Mol Biol 2021; 433:166887. [PMID: 33972022 DOI: 10.1016/j.jmb.2021.166887] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
RiPPMiner-Genome is a unique bioinformatics resource for identifying Biosynthetic Gene Clusters (BGC) for RiPPs (Ribosomally Synthesized and Post-translationally Modified Peptides) and automated prediction of crosslinked chemical structures of RiPPs starting from genomic sequences. It is a major update of the RiPPMiner webserver, which used only peptide sequence of RiPP precursors as input for predicting RiPP class and crosslinked chemical structures. Other major improvements are, machine learning (ML) based identification of correct RiPP precursor peptide from among multiple small ORFs (Open Reading Frames) in a BGC, prediction of the cleavage site and cross-links in thiopeptides and identification of non-crosslinked modified residues in lanthipeptides. It has been benchmarked on a dataset of 204 experimentally characterized RiPP BGCs. RiPPMiner-Genome also facilitates visualization of the RiPP BGCs and depiction of the chemical structure of crosslinked RiPP. It also has an interface for searching characterized RiPPs, similar to the predicted core peptide sequence or crosslinked chemical structure.
Collapse
Affiliation(s)
- Priyesh Agrawal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Sana Amir
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Deepak
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Drishtee Barua
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
17
|
Uggowitzer KA, Habibi Y, Wei W, Moitessier N, Thibodeaux CJ. Mutations in Dynamic Structural Elements Alter the Kinetics and Fidelity of the Multifunctional Class II Lanthipeptide Synthetase, HalM2. Biochemistry 2021; 60:412-430. [PMID: 33507068 DOI: 10.1021/acs.biochem.0c00919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Class II lanthipeptide synthetases (LanM enzymes) catalyze the multistep post-translational modification of genetically encoded precursor peptides into macrocyclic (often antimicrobial) lanthipeptides. The reaction sequence involves dehydration of serine/threonine residues, followed by intramolecular addition of cysteine thiols onto the nascent dehydration sites to construct thioether bridges. LanMs utilize two separate active sites in an iterative yet highly coordinated manner to maintain a remarkable level of regio- and stereochemical control over the multistep maturation. The mechanisms underlying this biosynthetic fidelity remain enigmatic. We recently demonstrated that proper function of the haloduracin β synthetase (HalM2) requires dynamic structural elements scattered across the surface of the enzyme. Here, we perform kinetic simulations, structural analysis of reaction intermediates, hydrogen-deuterium exchange mass spectrometry studies, and molecular dynamics simulations to investigate the contributions of these dynamic HalM2 structural elements to biosynthetic efficiency and fidelity. Our studies demonstrate that a large, conserved loop (HalM2 residues P349-P405) plays essential roles in defining the precursor peptide binding site, facilitating efficient peptide dehydration, and guiding the order of thioether ring formation. Moreover, mutations near the interface of the HalM2 dehydratase and cyclase domains perturb cyclization fidelity and result in aberrant thioether topologies that cannot be corrected by the wild type enzyme, suggesting an element of kinetic control in the normal cyclization sequence. Overall, this work provides the most comprehensive correlation of the structural and functional properties of a LanM enzyme reported to date and should inform mechanistic studies of the biosynthesis of other ribosomally synthesized and post-translationally modified peptide natural products.
Collapse
|
18
|
Hegemann JD, Süssmuth RD. Matters of class: coming of age of class III and IV lanthipeptides. RSC Chem Biol 2020; 1:110-127. [PMID: 34458752 PMCID: PMC8341899 DOI: 10.1039/d0cb00073f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lanthipeptides belong to the superfamily of ribosomally-synthesized and posttranslationally-modified peptides (RiPPs). Despite the fact that they represent one of the longest known RiPP subfamilies, their youngest members, classes III and IV, have only been described more recently. Since then, a plethora of studies furthered the understanding of their biosynthesis. While there are commonalities between classes III and IV due to the similar domain architectures of their processing enzymes, there are also striking differences that allow their discrimination. In this concise review article, we summarize what is known about the underlying biosynthetic principles of these lanthipeptides and discuss open questions for future research.
Collapse
Affiliation(s)
- Julian D Hegemann
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
19
|
Mimicry of a Non-ribosomally Produced Antimicrobial, Brevicidine, by Ribosomal Synthesis and Post-translational Modification. Cell Chem Biol 2020; 27:1262-1271.e4. [PMID: 32707039 DOI: 10.1016/j.chembiol.2020.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
The group of bacterial non-ribosomally produced peptides (NRPs) forms a rich source of antibiotics, such as daptomycin, vancomycin, and teixobactin. The difficulty of functionally expressing and engineering the corresponding large biosynthetic complexes is a bottleneck in developing variants of such peptides. Here, we apply a strategy to synthesize mimics of the recently discovered antimicrobial NRP brevicidine. We mimicked the molecular structure of brevicidine by ribosomally synthesized, post-translationally modified peptide (RiPP) synthesis, introducing several relevant modifications, such as dehydration and thioether ring formation. Following this strategy, in two rounds peptides were engineered in vivo, which showed antibacterial activity against Gram-negative pathogenic bacteria susceptible to wild-type brevicidine. This study demonstrates the feasibility of a strategy to structurally and functionally mimic NRPs by employing the synthesis and post-translational modifications typical for RiPPs. This enables the future generation of large genetically encoded peptide libraries of NRP-mimicking structures to screen for antimicrobial activity against relevant pathogens.
Collapse
|
20
|
Russell AH, Truman AW. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Comput Struct Biotechnol J 2020; 18:1838-1851. [PMID: 32728407 PMCID: PMC7369419 DOI: 10.1016/j.csbj.2020.06.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023] Open
Abstract
Genome mining is a computational method for the automatic detection and annotation of biosynthetic gene clusters (BGCs) from genomic data. This approach has been increasingly utilised in natural product (NP) discovery due to the large amount of sequencing data that is now available. Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a class of structurally complex NP with diverse bioactivities. RiPPs have recently been shown to occupy a much larger expanse of genomic and chemical space than previously appreciated, indicating that annotation of RiPP BGCs in genomes may have been overlooked in the past. This review provides an overview of the genome mining tools that have been specifically developed to aid in the discovery of RiPP BGCs, which have been built from an increasing knowledgebase of RiPP structures and biosynthesis. Given these recent advances, the application of targeted genome mining has great potential to accelerate the discovery of important molecules such as antimicrobial and anticancer agents whilst increasing our understanding about how these compounds are biosynthesised in nature.
Collapse
Affiliation(s)
- Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
21
|
Ren H, Shi C, Bothwell IR, van der Donk WA, Zhao H. Discovery and Characterization of a Class IV Lanthipeptide with a Nonoverlapping Ring Pattern. ACS Chem Biol 2020; 15:1642-1649. [PMID: 32356655 DOI: 10.1021/acschembio.0c00267] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lanthipeptides constitute a major family of ribosomally synthesized and post-translationally modified peptides (RiPPs). They are classified into four subfamilies, based on the characteristics of their lanthipeptide synthetases. While over a hundred lanthipeptides have been discovered to date, very few of them are class IV lanthipeptides and the latter are all structurally similar. Here, we identified an uncharacterized group of class IV lanthipeptides using bioinformatics analysis. One representative pathway from Streptomyces sp. NRRL S-1022 was expressed in Escherichia coli, which generated a lanthipeptide with two nonoverlapping rings that have not been reported for known class IV lanthipeptides. Further investigation into the biosynthetic mechanism revealed that multiple modification pathways are in operation in which dehydration and cyclization occur in parallel. While peptidases for maturation of class IV lanthipeptides have been elusive, two aminopeptidases encoded in the genome of Streptomyces sp. NRRL S-1022 were shown to process the modified peptide by the dual endopeptidase/aminopeptidase activity. This work opens doors to discover more class IV lanthipeptides with interesting structural features and biological activities.
Collapse
Affiliation(s)
- Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chengyou Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ian R. Bothwell
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Lagedroste M, Reiners J, Knospe CV, Smits SHJ, Schmitt L. A Structural View on the Maturation of Lanthipeptides. Front Microbiol 2020; 11:1183. [PMID: 32582108 PMCID: PMC7296275 DOI: 10.3389/fmicb.2020.01183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 01/16/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, which display diverse bioactivities (e.g., antifungal, antimicrobial, and antiviral). One characteristic of these lanthipeptides is the presence of thioether bonds, which are termed (methyl-) lanthionine rings. These modifications are installed by corresponding modification enzymes in a two-step modality. First, serine and threonine residues are dehydrated followed by a subsequent catalyzed cyclization reaction, in which the dehydrated serine and threonine residues are undergoing a Michael-type addition with cysteine residues. The dedicated enzymes are encoded by one or two genes and the classification of lanthipeptides is pending on this. The modification steps form the basis of distinguishing the different classes of lanthipeptides and furthermore reflect also important mechanistic differences. Here, we will summarize recent insights into the mechanisms and the structures of the participating enzymes, focusing on the two core modification steps - dehydration and cyclization.
Collapse
Affiliation(s)
- Marcel Lagedroste
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Reiners
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - C Vivien Knospe
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Chu L, Huang J, Muhammad M, Deng Z, Gao J. Genome mining as a biotechnological tool for the discovery of novel marine natural products. Crit Rev Biotechnol 2020; 40:571-589. [PMID: 32308042 DOI: 10.1080/07388551.2020.1751056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compared to terrestrial environments, the oceans harbor a variety of environments, creating higher biodiversity, which gives marine natural products a high occurrence of significant biology and novel chemistry. However, traditional bioassay-guided isolation and purification strategies are severely limiting the discovery of additional novel natural products from the ocean. With an increasing number of marine microorganisms being sequenced, genome mining is gradually becoming a powerful tool to retrieve novel marine natural products. In this review, we have summarized genome mining approaches used to analyze key enzymes of biosynthetic pathways and predict the chemical structure of new gene clusters by introducing successful stories that used genome mining strategy to identify new marine-derived compounds. Furthermore, we also put forward challenges for genome mining techniques and their proposed solutions. The detailed analysis of the genome mining strategy will help researchers to understand this novel technique and its application. With the development of a genome sequence, genome mining strategies will be applied more widely, which will drive rapid development in the field of marine natural product development.
Collapse
Affiliation(s)
- Leixia Chu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinping Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mustafa Muhammad
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangtao Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
24
|
DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Proc Natl Acad Sci U S A 2019; 117:371-380. [PMID: 31871149 DOI: 10.1073/pnas.1901493116] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microbial natural products represent a rich resource of evolved chemistry that forms the basis for the majority of pharmacotherapeutics. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a particularly interesting class of natural products noted for their unique mode of biosynthesis and biological activities. Analyses of sequenced microbial genomes have revealed an enormous number of biosynthetic loci encoding RiPPs but whose products remain cryptic. In parallel, analyses of bacterial metabolomes typically assign chemical structures to only a minority of detected metabolites. Aligning these 2 disparate sources of data could provide a comprehensive strategy for natural product discovery. Here we present DeepRiPP, an integrated genomic and metabolomic platform that employs machine learning to automate the selective discovery and isolation of novel RiPPs. DeepRiPP includes 3 modules. The first, NLPPrecursor, identifies RiPPs independent of genomic context and neighboring biosynthetic genes. The second module, BARLEY, prioritizes loci that encode novel compounds, while the third, CLAMS, automates the isolation of their corresponding products from complex bacterial extracts. DeepRiPP pinpoints target metabolites using large-scale comparative metabolomics analysis across a database of 10,498 extracts generated from 463 strains. We apply the DeepRiPP platform to expand the landscape of novel RiPPs encoded within sequenced genomes and to discover 3 novel RiPPs, whose structures are exactly as predicted by our platform. By building on advances in machine learning technologies, DeepRiPP integrates genomic and metabolomic data to guide the isolation of novel RiPPs in an automated manner.
Collapse
|
25
|
Mo T, Ji X, Yuan W, Mandalapu D, Wang F, Zhong Y, Li F, Chen Q, Ding W, Deng Z, Yu S, Zhang Q. Thuricin Z: A Narrow‐Spectrum Sactibiotic that Targets the Cell Membrane. Angew Chem Int Ed Engl 2019; 58:18793-18797. [DOI: 10.1002/anie.201908490] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tianlu Mo
- Department of ChemistryFudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wei Yuan
- Department of ChemistryFudan University Shanghai 200433 China
| | - Dhanaraju Mandalapu
- Department of ChemistryFudan University Shanghai 200433 China
- Institute of Mass SpectrometrySchool of Material Science and Chemical EngineeringNingbo University Ningbo Zhejiang 315211 China
| | - Fangting Wang
- Department of ChemistryFudan University Shanghai 200433 China
| | - Yuting Zhong
- Department of ChemistryFudan University Shanghai 200433 China
| | - Fuyou Li
- Department of ChemistryFudan University Shanghai 200433 China
| | - Qin Chen
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Shaoning Yu
- Institute of Mass SpectrometrySchool of Material Science and Chemical EngineeringNingbo University Ningbo Zhejiang 315211 China
| | - Qi Zhang
- Department of ChemistryFudan University Shanghai 200433 China
| |
Collapse
|
26
|
Mo T, Ji X, Yuan W, Mandalapu D, Wang F, Zhong Y, Li F, Chen Q, Ding W, Deng Z, Yu S, Zhang Q. Thuricin Z: A Narrow‐Spectrum Sactibiotic that Targets the Cell Membrane. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tianlu Mo
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wei Yuan
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Dhanaraju Mandalapu
- Department of Chemistry Fudan University Shanghai 200433 China
- Institute of Mass Spectrometry School of Material Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 China
| | - Fangting Wang
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Yuting Zhong
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Fuyou Li
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qin Chen
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Shaoning Yu
- Institute of Mass Spectrometry School of Material Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
27
|
Characterization of glutamyl-tRNA-dependent dehydratases using nonreactive substrate mimics. Proc Natl Acad Sci U S A 2019; 116:17245-17250. [PMID: 31409709 DOI: 10.1073/pnas.1905240116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The peptide natural product nisin has been used as a food preservative for 6 decades with minimal development of resistance. Nisin contains the unusual amino acids dehydroalanine and dehydrobutyrine, which are posttranslationally installed by class I lanthipeptide dehydratases (LanBs) on a linear peptide substrate through an unusual glutamyl-tRNA-dependent dehydration of Ser and Thr. To date, little is known about how LanBs catalyze the transfer of glutamate from charged tRNAGlu to the peptide substrate, or how they carry out the subsequent elimination of the peptide-glutamyl adducts to afford dehydro amino acids. Here, we describe the synthesis of inert analogs that mimic substrate glutamyl-tRNAGlu and the glutamylated peptide intermediate, and determine the crystal structures of 2 LanBs in complex with each of these compounds. Mutational studies were used to characterize the function of the glutamylation and glutamate elimination active-site residues identified through the structural analysis. These combined studies provide insights into the mechanisms of substrate recognition, glutamylation, and glutamate elimination by LanBs to effect a net dehydration reaction of Ser and Thr.
Collapse
|
28
|
Agrawal P, Khater S, Gupta M, Sain N, Mohanty D. RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res 2019; 45:W80-W88. [PMID: 28499008 PMCID: PMC5570163 DOI: 10.1093/nar/gkx408] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/29/2017] [Indexed: 11/12/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) constitute a rapidly growing class of natural products with diverse structures and bioactivities. We have developed RiPPMiner, a novel bioinformatics resource for deciphering chemical structures of RiPPs by genome mining. RiPPMiner derives its predictive power from machine learning based classifiers, trained using a well curated database of more than 500 experimentally characterized RiPPs. RiPPMiner uses Support Vector Machine to distinguish RiPP precursors from other small proteins and classify the precursors into 12 sub-classes of RiPPs. For classes like lanthipeptide, cyanobactin, lasso peptide and thiopeptide, RiPPMiner can predict leader cleavage site and complex cross-links between post-translationally modified residues starting from genome sequences. RiPPMiner can identify correct cross-link pattern in a core peptide from among a very large number of combinatorial possibilities. Benchmarking of prediction accuracy of RiPPMiner on a large lanthipeptide dataset indicated high sensitivity, specificity, accuracy and precision. RiPPMiner also provides interfaces for visualization of the chemical structure, downloading of simplified molecular-input line-entry system and searching for RiPPs having similar sequences or chemical structures. The backend database of RiPPMiner provides information about modification system, precursor sequence, leader and core sequence, modified residues, cross-links and gene cluster for more than 500 experimentally characterized RiPPs. RiPPMiner is available at http://www.nii.ac.in/rippminer.html.
Collapse
Affiliation(s)
- Priyesh Agrawal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shradha Khater
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Money Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neetu Sain
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
29
|
Hudson GA, Burkhart BJ, DiCaprio AJ, Schwalen CJ, Kille B, Pogorelov TV, Mitchell DA. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides. J Am Chem Soc 2019; 141:8228-8238. [PMID: 31059252 DOI: 10.1021/jacs.9b01519] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently developed bioinformatic tools have bolstered the discovery of ribosomally synthesized and post-translationally modified peptides (RiPPs). Using an improved version of Rapid ORF Description and Evaluation Online (RODEO 2.0), a biosynthetic gene cluster mining algorithm, we bioinformatically mapped the sactipeptide RiPP class via the radical S-adenosylmethionine (SAM) enzymes that form the characteristic sactionine (sulfur-to-α carbon) cross-links between cysteine and acceptor residues. Hundreds of new sactipeptide biosynthetic gene clusters were uncovered, and a novel sactipeptide "huazacin" with growth-suppressive activity against Listeria monocytogenes was characterized. Bioinformatic analysis further suggested that a group of sactipeptide-like peptides heretofore referred to as six cysteines in forty-five residues (SCIFFs) might not be sactipeptides as previously thought. Indeed, the bioinformatically identified SCIFF peptide "freyrasin" was demonstrated to contain six thioethers linking the β carbons of six aspartate residues. Another SCIFF, thermocellin, was shown to contain a thioether cross-linked to the γ carbon of threonine. SCIFFs feature a different paradigm of non-α carbon thioether linkages, and they are exclusively formed by radical SAM enzymes, as opposed to the polar chemistry employed during lanthipeptide biosynthesis. Therefore, we propose the renaming of the SCIFF family as radical non-α thioether peptides (ranthipeptides) to better distinguish them from the sactipeptide and lanthipeptide RiPP classes.
Collapse
|
30
|
Sikandar A, Koehnke J. The role of protein–protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2019; 36:1576-1588. [DOI: 10.1039/c8np00064f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the role of protein–protein complexes in the biosynthesis of selected ribosomally synthesized and post-translationally modified peptide (RiPP) classes.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| |
Collapse
|
31
|
Repka LM, Hetrick KJ, Chee SH, van der Donk WA. Characterization of Leader Peptide Binding During Catalysis by the Nisin Dehydratase NisB. J Am Chem Soc 2018. [PMID: 29537838 DOI: 10.1021/jacs.7b13506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dehydratase NisB performs stepwise tRNAGlu-dependent glutamylation of Ser/Thr residues and subsequent glutamate elimination to effect eight dehydrations in the biosynthesis of the antibacterial peptide nisin. Its substrate, NisA, bears a C-terminal core peptide that is modified and an N-terminal leader peptide (LP) that is not modified but that is required for efficient dehydration. To elucidate the mechanism of LP-NisB interactions during dehydration, we engineered a disulfide that covalently links the NisA LP to NisB. The enzyme fully dehydrated tethered NisA, confirming the functional LP binding site and supporting a mechanism where NisB uses a single LP binding site for glutamylation and elimination. We also show an order of NisA and tRNAGlu binding to NisB that enables dehydration.
Collapse
Affiliation(s)
- Lindsay M Repka
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois, Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Kenton J Hetrick
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois, Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - See Hyun Chee
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois, Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois, Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
32
|
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides containing thioether cross-links formed through addition of a cysteine to a dehydroalanine (to form lanthionine) or to a dehydrobutyrine (to form 3-methyllanthionine). Genome sequencing of marine cyanobacteria lead to the discovery of 1.6 million open reading frames encoding lanthipeptides. In many cases, a genome encodes a single lanthipeptide synthetase, but a large number of substrates. The enzymatic modification process in Prochlorococcus MIT9313 has been reconstituted in vitro, and a variety of experimental approaches have been used to try and understand how one enzyme is capable of modifying 30 different substrates. The methods used to characterize this system will be described along with a brief genomic description of the lanthipeptide landscape found in Prochlorococcus and Synechococcus.
Collapse
|
33
|
Hufsky F, Böcker S. Mining molecular structure databases: Identification of small molecules based on fragmentation mass spectrometry data. MASS SPECTROMETRY REVIEWS 2017; 36:624-633. [PMID: 26763615 DOI: 10.1002/mas.21489] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Mass spectrometry (MS) is a key technology for the analysis of small molecules. For the identification and structural elucidation of novel molecules, new approaches beyond straightforward spectral comparison are required. In this review, we will cover computational methods that help with the identification of small molecules by analyzing fragmentation MS data. We focus on the four main approaches to mine a database of metabolite structures, that is rule-based fragmentation spectrum prediction, combinatorial fragmentation, competitive fragmentation modeling, and molecular fingerprint prediction. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:624-633, 2017.
Collapse
Affiliation(s)
- Franziska Hufsky
- Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, Jena, 07743, Germany
- Bioinformatik für Hochdurchsatzverfahren, Friedrich-Schiller-Universität Jena, Leutragraben 1, Jena, 07743, Germany
| | - Sebastian Böcker
- Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, Jena, 07743, Germany
| |
Collapse
|
34
|
Skinnider MA, Dejong CA, Franczak BC, McNicholas PD, Magarvey NA. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm. J Cheminform 2017; 9:46. [PMID: 29086195 PMCID: PMC5559407 DOI: 10.1186/s13321-017-0234-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/08/2017] [Indexed: 12/25/2022] Open
Abstract
Natural products represent a prominent source of pharmaceutically and industrially important agents. Calculating the chemical similarity of two molecules is a central task in cheminformatics, with applications at multiple stages of the drug discovery pipeline. Quantifying the similarity of natural products is a particularly important problem, as the biological activities of these molecules have been extensively optimized by natural selection. The large and structurally complex scaffolds of natural products distinguish their physical and chemical properties from those of synthetic compounds. However, no analysis of the performance of existing methods for molecular similarity calculation specific to natural products has been reported to date. Here, we present LEMONS, an algorithm for the enumeration of hypothetical modular natural product structures. We leverage this algorithm to conduct a comparative analysis of molecular similarity methods within the unique chemical space occupied by modular natural products using controlled synthetic data, and comprehensively investigate the impact of diverse biosynthetic parameters on similarity search. We additionally investigate a recently described algorithm for natural product retrobiosynthesis and alignment, and find that when rule-based retrobiosynthesis can be applied, this approach outperforms conventional two-dimensional fingerprints, suggesting it may represent a valuable approach for the targeted exploration of natural product chemical space and microbial genome mining. Our open-source algorithm is an extensible method of enumerating hypothetical natural product structures with diverse potential applications in bioinformatics.
Collapse
Affiliation(s)
- Michael A Skinnider
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Chris A Dejong
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Brian C Franczak
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada.,Department of Mathematics and Statistics, MacEwan University, Edmonton, AB, Canada
| | - Paul D McNicholas
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada
| | - Nathan A Magarvey
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada. .,Department of Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
35
|
Aksenov AA, da Silva R, Knight R, Lopes NP, Dorrestein PC. Global chemical analysis of biology by mass spectrometry. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0054] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Abstract
Lanthipeptides are ribosomally derived peptide secondary metabolites that undergo extensive posttranslational modification. Prochlorosins are a group of lanthipeptides produced by certain strains of the ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus Unlike other lanthipeptide-producing bacteria, picocyanobacteria use an unprecedented mechanism of substrate promiscuity for the production of numerous and diverse lanthipeptides using a single lanthionine synthetase. Through a cross-scale analysis of prochlorosin biosynthesis genes-from genomes to oceanic populations-we show that marine picocyanobacteria have the collective capacity to encode thousands of different cyclic peptides, few of which would display similar ring topologies. To understand how this extensive structural diversity arises, we used deep sequencing of wild populations to reveal genetic variation patterns in prochlorosin genes. We present evidence that structural variability among prochlorosins is the result of a diversifying selection process that favors large, rather than small, sequence changes in the precursor peptide genes. This mode of molecular evolution disregards any conservation of the ancestral structure and enables the emergence of extensively different cyclic peptides through short mutational paths based on indels. Contrary to its fast-evolving peptide substrates, the prochlorosin lanthionine synthetase evolves under a strong purifying selection, indicating that the diversification of prochlorosins is not constrained by commensurate changes in the biosynthetic enzyme. This evolutionary interplay between the prochlorosin peptide substrates and the lanthionine synthetase suggests that structure diversification, rather than structure refinement, is the driving force behind the creation of new prochlorosin structures and represents an intriguing mechanism by which natural product diversity arises.
Collapse
|
37
|
Mo T, Liu WQ, Ji W, Zhao J, Chen T, Ding W, Yu S, Zhang Q. Biosynthetic Insights into Linaridin Natural Products from Genome Mining and Precursor Peptide Mutagenesis. ACS Chem Biol 2017; 12:1484-1488. [PMID: 28452467 DOI: 10.1021/acschembio.7b00262] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Linaridin is a small class of peptide natural products belonging to the ribosomally synthesized and post-translationally modified peptides (RiPPs) superfamily. By an extensive genome-wide survey of linaridin biosynthetic genes, we show that this class of natural products is widespread in nature and possesses vast structural diversity. The linaridin precursor peptides are relatively conserved in the N-termini but have diverse sequences in the core region, which appear to have coevolved with the biosynthetic enzymes. Using the prototypic linaridin cypemycin as a model, we have explored the structure-activity relationships involved in precursor peptide maturation and generated a diverse set of novel cypemycin variants, among which the T2S variant exhibits enhanced activity against Micrococcus luteus. Our results reveal valuable insights into linaridin biosynthesis and highlight the potential to explore this class of natural products by genome mining and by biosynthetic engineering studies.
Collapse
Affiliation(s)
- Tianlu Mo
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Wan-Qiu Liu
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Wenjuan Ji
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Junfeng Zhao
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Tuo Chen
- Key
Laboratory of Extreme Environmental Microbial Resources and Engineering,
Northwest Institute of Eco-environment and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wei Ding
- Department
of Chemistry, Fudan University, Shanghai 200433, China
- Key
Laboratory of Extreme Environmental Microbial Resources and Engineering,
Northwest Institute of Eco-environment and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Shaoning Yu
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Zhang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
38
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Moutiez M, Belin P, Gondry M. Aminoacyl-tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev 2017; 117:5578-5618. [DOI: 10.1021/acs.chemrev.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mireille Moutiez
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Belin
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
40
|
Ortega MA, van der Donk WA. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products. Cell Chem Biol 2016; 23:31-44. [PMID: 26933734 DOI: 10.1016/j.chembiol.2015.11.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 10/24/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large group of structurally diverse natural products. Their biological activities and unique biosynthetic pathways have sparked a growing interest in RiPPs. Furthermore, the relatively low genetic complexity associated with RiPP biosynthesis makes them excellent candidates for synthetic biology applications. This Review highlights recent developments in the understanding of the biosynthesis of several bacterial RiPP family members, the use of the RiPP biosynthetic machinery for generating novel macrocyclic peptides, and the implementation of tools designed to guide the discovery and characterization of novel RiPPs.
Collapse
Affiliation(s)
- Manuel A Ortega
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
41
|
Martinez OF, Agbale CM, Nomiyama F, Franco OL. Deciphering bioactive peptides and their action mechanisms through proteomics. Expert Rev Proteomics 2016; 13:1007-1016. [PMID: 27650042 DOI: 10.1080/14789450.2016.1238305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bioactive peptides such as antimicrobial peptides (AMPs), ribosomally synthesized and post translationally modified peptides (RiPPs) and the non-ribosomal peptides (NRPs) have emerged with promising applications in medicine, agriculture and industry. However, their development has been limited by several difficulties making it necessary to search for novel discovery methods. In this context, proteomics has been considered a reliable tool. Areas covered: This review highlights recent developments in proteomic tools that facilitate the discovery of AMPs, RiPPs and NRPs as well as the elucidation of action mechanisms of AMPs and resistance mechanisms of pathogens to them. Expert commentary: Proteomic approaches have emerged as useful tools for the study of bioactive peptides, especially mass spectrometry-based peptidomics profiling, a promising strategy for AMP discovery. Furthermore, the rapidly expanding fields of genome mining and genome sequencing techniques, as well as mass spectrometry, have revolutionized the discovery of novel RiPPs and NRPs from complex biological samples.
Collapse
Affiliation(s)
- Osmel Fleitas Martinez
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Caleb Mawuli Agbale
- c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil.,d Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Fernanda Nomiyama
- b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Octávio Luiz Franco
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil.,c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil
| |
Collapse
|
42
|
Abstract
The diversity and natural modularity of their biosynthetic pathways has turned natural products into attractive, but challenging, targets for synthetic biology approaches. Here, we discuss the current state of the field, highlighting recent advances and remaining bottlenecks. Global genomic assessments of natural product biosynthetic capacities across large parts of microbial diversity provide a first survey of the available natural parts libraries and identify evolutionary design rules for further engineering. Methods for compound and pathway detection and characterization are developed increasingly on the basis of synthetic biology tools, contributing to an accelerated translation of genomic information into usable building blocks for pathway assembly. A wide range of methods is also becoming available for accessing ever larger parts of chemical space by rational diversification of natural products, guided by rapid progress in our understanding of the underlying biochemistry and enzymatic mechanisms. Enhanced genome assembly and editing tools, adapted to the needs of natural products research, facilitate the realization of ambitious engineering strategies, ranging from combinatorial library generation to high-throughput optimization of product titers. Together, these tools and concepts contribute to the emergence of a new generation of revitalized natural product research.
Collapse
Affiliation(s)
- Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
43
|
Thibodeaux CJ, Wagoner J, Yu Y, van der Donk WA. Leader Peptide Establishes Dehydration Order, Promotes Efficiency, and Ensures Fidelity During Lacticin 481 Biosynthesis. J Am Chem Soc 2016; 138:6436-44. [PMID: 27123925 PMCID: PMC4880487 DOI: 10.1021/jacs.6b00163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms by which lanthipeptide synthetases control the order in which they catalyze multiple chemical processes are poorly understood. The lacticin 481 synthetase (LctM) cleaves eight chemical bonds and forms six new chemical bonds in a controlled and ordered process. Two general mechanisms have been suggested for the temporal and spatial control of these transformations. In the spatial positioning model, leader peptide binding promotes certain reactions by establishing the spatial orientation of the substrate peptide relative to the synthetase active sites. In the intermediate structure model, the LctM-catalyzed dehydration and cyclization reactions that occur in two distinct active sites orchestrate the overall process by imparting a specific structure into the maturing peptide that facilitates the ensuing reaction. Using isotopically labeled LctA analogues with engineered lacticin 481 biosynthetic machinery and mass spectrometry analysis, we show here that the LctA leader peptide plays critical roles in establishing the modification order and enhancing the catalytic efficiency and fidelity of the synthetase. The data are most consistent with a mechanistic model for LctM where both spatial positioning and intermediate structure contribute to efficient biosynthesis.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
| | - Joshua Wagoner
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
| | - Yi Yu
- Department of Biochemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
- Department of Biochemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
- Howard Hughes Medical Institute, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
| |
Collapse
|
44
|
Serra A, Hemu X, Nguyen GKT, Nguyen NTK, Sze SK, Tam JP. A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides. Sci Rep 2016; 6:23005. [PMID: 26965458 PMCID: PMC4786859 DOI: 10.1038/srep23005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/25/2016] [Indexed: 01/03/2023] Open
Abstract
Cyclotides are plant cyclic cysteine-rich peptides (CRPs). The cyclic nature is reported to be gene-determined with a precursor containing a cyclization-competent domain which contains an essential C-terminal Asn/Asp (Asx) processing signal recognized by a cyclase. Linear forms of cyclotides are rare and are likely uncyclizable because they lack this essential C-terminal Asx signal (uncyclotide). Here we show that in the cyclotide-producing plant Clitoria ternatea, both cyclic and acyclic products, collectively named cliotides, can be bioprocessed from the same cyclization-competent precursor. Using an improved peptidomic strategy coupled with the novel Asx-specific endopeptidase butelase 2 to linearize cliotides at a biosynthetic ligation site for transcriptomic analysis, we characterized 272 cliotides derived from 38 genes. Several types of post-translational modifications of the processed cyclotides were observed, including deamidation, oxidation, hydroxylation, dehydration, glycosylation, methylation, and truncation. Taken together, our results suggest that cyclotide biosynthesis involves 'fuzzy' processing of precursors into both cyclic and linear forms as well as post-translational modifications to achieve molecular diversity, which is a commonly found trait of natural product biosynthesis.
Collapse
Affiliation(s)
- Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Giang K. T. Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ngan T. K. Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
45
|
Structure and tRNA Specificity of MibB, a Lantibiotic Dehydratase from Actinobacteria Involved in NAI-107 Biosynthesis. Cell Chem Biol 2016; 23:370-380. [PMID: 26877024 DOI: 10.1016/j.chembiol.2015.11.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/22/2022]
Abstract
Class I lantibiotic dehydratases dehydrate selected Ser/Thr residues of a precursor peptide. Recent studies demonstrated the requirement of glutamyl-tRNA(Glu) for Ser/Thr activation by one of these enzymes (NisB) from the Firmicute Lactococcus lactis. However, the generality of glutamyl-tRNA(Glu) usage and the tRNA specificity of lantibiotic dehydratases have not been established. Here we report the 2.7-Å resolution crystal structure, along with the glutamyl-tRNA(Glu) utilization of MibB, a lantibiotic dehydratase from the Actinobacterium Microbispora sp. 107891 involved in the biosynthesis of the clinical candidate NAI-107. Biochemical assays revealed nucleotides A73 and U72 within the tRNA(Glu) acceptor stem to be important for MibB glutamyl-tRNA(Glu) usage. Using this knowledge, an expression system for the production of NAI-107 analogs in Escherichia coli was developed, overcoming the inability of MibB to utilize E. coli tRNA(Glu). Our work provides evidence for a common tRNA(Glu)-dependent dehydration mechanism, paving the way for the characterization of lantibiotics from various phyla.
Collapse
|
46
|
Mohimani H, Pevzner PA. Dereplication, sequencing and identification of peptidic natural products: from genome mining to peptidogenomics to spectral networks. Nat Prod Rep 2016; 33:73-86. [PMID: 26497201 PMCID: PMC5590107 DOI: 10.1039/c5np00050e] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Covering: 2000 to 2015. While recent breakthroughs in the discovery of peptide antibiotics and other Peptidic Natural Products (PNPs) raise a challenge for developing new algorithms for their analyses, the computational technologies for high-throughput PNP discovery are still lacking. We discuss the computational bottlenecks in analyzing PNPs and review recent advances in genome mining, peptidogenomics, and spectral networks that are now enabling the discovery of new PNPs via mass spectrometry. We further describe the connections between these advances and the new generation of software tools for PNP dereplication, de novo sequencing, and identification.
Collapse
Affiliation(s)
- Hosein Mohimani
- Department of Computer Science and Engineering, University of California, San Diego, USA.
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California, San Diego, USA.
| |
Collapse
|
47
|
Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster ALH, Wyatt MA, Magarvey NA. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res 2015; 43:9645-62. [PMID: 26442528 PMCID: PMC4787774 DOI: 10.1093/nar/gkv1012] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/24/2015] [Indexed: 12/05/2022] Open
Abstract
Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/.
Collapse
Affiliation(s)
- Michael A Skinnider
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chris A Dejong
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Philip N Rees
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chad W Johnston
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Haoxin Li
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew L H Webster
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Morgan A Wyatt
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nathan A Magarvey
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
48
|
Johnston CW, Skinnider MA, Wyatt MA, Li X, Ranieri MRM, Yang L, Zechel DL, Ma B, Magarvey NA. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products. Nat Commun 2015; 6:8421. [PMID: 26412281 PMCID: PMC4598715 DOI: 10.1038/ncomms9421] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 08/19/2015] [Indexed: 12/04/2022] Open
Abstract
Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC–MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products. Microbial natural products represent a large reservoir of potential pharmaceutical agents. Here, Johnston et al. describe a computer-automated programme for connecting genome sequences with identified and isolated natural products.
Collapse
Affiliation(s)
- Chad W Johnston
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Michael A Skinnider
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Morgan A Wyatt
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Xiang Li
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Michael R M Ranieri
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Lian Yang
- The David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - David L Zechel
- Department of Chemistry; Queens University, Kingston, Ontario, Canada K7L 3N6
| | - Bin Ma
- The David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Nathan A Magarvey
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| |
Collapse
|
49
|
Tang W, Dong SH, Repka LM, He C, Nair SK, van der Donk WA. Applications of the class II lanthipeptide protease LicP for sequence-specific, traceless peptide bond cleavage. Chem Sci 2015; 6:6270-6279. [PMID: 30090246 PMCID: PMC6054071 DOI: 10.1039/c5sc02329g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/30/2015] [Indexed: 12/21/2022] Open
Abstract
The class II lanthipeptide protease LicP maturates through self-cleavage and enables sequence-specific, traceless peptide bond cleavage.
The final step of lanthipeptide biosynthesis involves the removal of leader peptides by dedicated proteases. In vitro characterization of LicP, a class II LanP protease involved in the biosynthesis of the lantibiotic lichenicidin, revealed a self-cleavage step that removes 100 amino acids from the N-terminus. The 2.35 Å resolution crystal structure provides insights into the active site geometry and substrate specificity, and unveiled an unusual calcium-independent maturation mechanism of a subtilisin family member. LicP processes LicA2 peptides with or without post-translational modifications, but dehydrated and cyclized LicA2 is favored. Investigation of its substrate specificity demonstrated that LicP can serve as an efficient sequence-specific traceless protease and may have great utility in basic research and biotechnology. Encouraged by these findings for LicP, we identified 13 other class II LanPs, ten of which were previously unknown, and suggest that these proteins may serve as a pool of proteases with diverse recognition sequences for general traceless tag removal applications, expanding the current toolbox of proteases.
Collapse
Affiliation(s)
- Weixin Tang
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave. , Urbana , IL 61801 , USA . ; ; Tel: +1 217 244 5360
| | - Shi-Hui Dong
- Department of Biochemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave. , Urbana , IL 61801 , USA
| | - Lindsay M Repka
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave. , Urbana , IL 61801 , USA . ; ; Tel: +1 217 244 5360
| | - Chang He
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave. , Urbana , IL 61801 , USA . ; ; Tel: +1 217 244 5360
| | - Satish K Nair
- Department of Biochemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave. , Urbana , IL 61801 , USA.,Center for Biophysics and Computational Biology , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave. , Urbana , IL 61801 , USA . ; ; Tel: +1 217 333 0641
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave. , Urbana , IL 61801 , USA . ; ; Tel: +1 217 244 5360.,Department of Biochemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave. , Urbana , IL 61801 , USA
| |
Collapse
|
50
|
Luzzatto-Knaan T, Melnik AV, Dorrestein PC. Mass spectrometry tools and workflows for revealing microbial chemistry. Analyst 2015; 140:4949-66. [PMID: 25996313 PMCID: PMC5444374 DOI: 10.1039/c5an00171d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the time Van Leeuwenhoek was able to observe microbes through a microscope, an innovation that led to the birth of the field of microbiology, we have aimed to understand how microorganisms function, interact and communicate. The exciting progress in the development of analytical technologies and workflows has demonstrated that mass spectrometry is a very powerful technique for the interrogation of microbiology at the molecular level. In this review, we aim to highlight the available and emerging tools in mass spectrometry for microbial analysis by overviewing the methods and workflow advances for taxonomic identification, microbial interaction, dereplication and drug discovery. We emphasize their potential for future development and point out unsolved problems and future directions that would aid in the analysis of the chemistry produced by microbes.
Collapse
Affiliation(s)
- Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|