1
|
Sieriebriennikov B, Reinberg D, Desplan C. A molecular toolkit for superorganisms. Trends Genet 2021; 37:846-859. [PMID: 34116864 PMCID: PMC8355152 DOI: 10.1016/j.tig.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Social insects, such as ants, bees, wasps, and termites, draw biologists' attention due to their distinctive lifestyles. As experimental systems, they provide unique opportunities to study organismal differentiation, division of labor, longevity, and the evolution of development. Ants are particularly attractive because several ant species can be propagated in the laboratory. However, the same lifestyle that makes social insects interesting also hampers the use of molecular genetic techniques. Here, we summarize the efforts of the ant research community to surmount these hurdles and obtain novel mechanistic insight into the biology of social insects. We review current approaches and propose novel ones involving genomics, transcriptomics, chromatin and DNA methylation profiling, RNA interference (RNAi), and genome editing in ants and discuss future experimental strategies.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Lucas C, Ben-Shahar Y. The foraging gene as a modulator of division of labour in social insects. J Neurogenet 2021; 35:168-178. [PMID: 34151702 DOI: 10.1080/01677063.2021.1940173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The social ants, bees, wasps, and termites include some of the most ecologically-successful groups of animal species. Their dominance in most terrestrial environments is attributed to their social lifestyle, which enable their colonies to exploit environmental resources with remarkable efficiency. One key attribute of social insect colonies is the division of labour that emerges among the sterile workers, which represent the majority of colony members. Studies of the mechanisms that drive division of labour systems across diverse social species have provided fundamental insights into the developmental, physiological, molecular, and genomic processes that regulate sociality, and the possible genetic routes that may have led to its evolution from a solitary ancestor. Here we specifically discuss the conserved role of the foraging gene, which encodes a cGMP-dependent protein kinase (PKG). Originally identified as a behaviourally polymorphic gene that drives alternative foraging strategies in the fruit fly Drosophila melanogaster, changes in foraging expression and kinase activity were later shown to play a key role in the division of labour in diverse social insect species as well. In particular, foraging appears to regulate worker transitions between behavioural tasks and specific behavioural traits associated with morphological castes. Although the specific neuroethological role of foraging in the insect brain remains mostly unknown, studies in genetically tractable insect species indicate that PKG signalling plays a conserved role in the neuronal plasticity of sensory, cognitive and motor functions, which underlie behaviours relevant to division of labour, including appetitive learning, aggression, stress response, phototaxis, and the response to pheromones.
Collapse
Affiliation(s)
- Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Adames TR, Rondeau NC, Kabir MT, Johnston BA, Truong H, Snow JW. The IRE1 pathway regulates honey bee Unfolded Protein Response gene expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103368. [PMID: 32229172 DOI: 10.1016/j.ibmb.2020.103368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 06/10/2023]
Abstract
Our molecular understanding of honey bee cellular stress responses is incomplete. Previously, we sought to identify and began functional characterization of the components of the Unfolded Protein Response (UPR) in honey bees. We observed that UPR stimulation resulted in induction of target genes upon IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA. However, we were not able to determine the relative role of the various UPR pathways in gene activation. Our understanding of honey bee signal transduction and transcriptional regulation has been hampered by a lack of tools. After using RNA-seq to expand the known UPR targets in the honey bee, we used the Drosophila melanogaster S2 cell line and honey bee trans and cis elements to investigate the role of the IRE1 pathway in the transcriptional activation of one of these targets, the honey bee Hsc70-3 gene. Using a luciferase reporter, we show that honey bee Hsc70 promoter activity is inducible by UPR activation. In addition, we show that this activation is IRE1-dependent and relies on specific cis regulatory elements. Experiments using exogenous honey bee or fruit fly XBP1S proteins demonstrate that both factors can activate the Hsc70-3 promoter and further support a role for the IRE1 pathway in control of Hsc70-3 expression in the honey bee. By providing foundational knowledge about the UPR in the honey bee and demonstrating the usefulness of a heterologous cell line for molecular characterization of honey bee pathways, this work stands to improve our understanding of this critical species.
Collapse
Affiliation(s)
| | | | | | - Brittany A Johnston
- Biology Department, The City College of New York - CUNY, New York, NY, 10031, USA
| | - Henry Truong
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
4
|
Cridge AG, Lovegrove MR, Skelly JG, Taylor SE, Petersen GEL, Cameron RC, Dearden PK. The honeybee as a model insect for developmental genetics. Genesis 2017; 55. [PMID: 28432809 DOI: 10.1002/dvg.23019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/08/2017] [Accepted: 01/15/2017] [Indexed: 11/11/2022]
Abstract
Honeybees are an important component of modern agricultural systems, and a fascinating and scientifically engrossing insect. Honeybees are not commonly used as model systems for understanding development in insects despite their importance in agriculture. Honeybee embryogenesis, while being superficially similar to Drosophila, is molecularly very different, especially in axis formation and sex determination. In later development, much of honeybee biology is modified by caste development, an as yet poorly understood, but excellent, system to study developmental plasticity. In adult stages, developmental plasticity of the ovaries, related to reproductive constraint exhibits another aspect of plasticity. Here they review the tools, current knowledge and opportunities in honeybee developmental biology, and provide an updated embryonic staging scheme to support future studies.
Collapse
Affiliation(s)
- A G Cridge
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| | - M R Lovegrove
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| | - J G Skelly
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| | - S E Taylor
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| | - G E L Petersen
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand.,AbacusBio Ltd, Public Trust Building, 442 Moray Place, Dunedin 9016, Aotearoa-New Zealand
| | - R C Cameron
- Department of Developmental and Molecular Biology and Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - P K Dearden
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| |
Collapse
|
5
|
Camiletti AL, Percival-Smith A, Croft JR, Thompson GJ. A novel screen for genes associated with pheromone-induced sterility. Sci Rep 2016; 6:36041. [PMID: 27786267 PMCID: PMC5081541 DOI: 10.1038/srep36041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/10/2016] [Indexed: 12/03/2022] Open
Abstract
For honey bee and other social insect colonies the ‘queen substance’ regulates colony reproduction rendering workers functionally sterile. The evolution of worker reproductive altruism is explained by inclusive fitness theory, but little is known of the genes involved or how they regulate the phenotypic expression of altruism. We previously showed that application of honeybee queen pheromone to virgin fruit flies suppresses fecundity. Here we exploit this finding to identify genes associated with the perception of an ovary-inhibiting social pheromone. Mutational and RNAi approaches in Drosophila reveal that the olfactory co-factor Orco together with receptors Or49b, Or56a and Or98a are potentially involved in the perception of queen pheromone and the suppression of fecundity. One of these, Or98a, is known to mediate female fly mating behaviour, and its predicted ligand is structurally similar to a methyl component of the queen pheromone. Our novel approach to finding genes associated with pheromone-induced sterility implies conserved reproductive regulation between social and pre-social orders, and further helps to identify candidate orthologues from the pheromone-responsive pathway that may regulate honeybee worker sterility.
Collapse
Affiliation(s)
- Alison L Camiletti
- Biology Department, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7 Canada
| | - Anthony Percival-Smith
- Biology Department, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7 Canada
| | - Justin R Croft
- Biology Department, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7 Canada
| | - Graham J Thompson
- Biology Department, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7 Canada.,Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Camiletti AL, Thompson GJ. Drosophila As a Genetically Tractable Model for Social Insect Behavior. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Søvik E, Bloch G, Ben-Shahar Y. Function and evolution of microRNAs in eusocial Hymenoptera. Front Genet 2015; 6:193. [PMID: 26074950 PMCID: PMC4444961 DOI: 10.3389/fgene.2015.00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/14/2015] [Indexed: 01/09/2023] Open
Abstract
The emergence of eusociality (“true sociality”) in several insect lineages represents one of the most successful evolutionary adaptations in the animal kingdom in terms of species richness and global biomass. In contrast to solitary insects, eusocial insects evolved a set of unique behavioral and physiological traits such as reproductive division of labor and cooperative brood care, which likely played a major role in their ecological success. The molecular mechanisms that support the social regulation of behavior in eusocial insects, and their evolution, are mostly unknown. The recent whole-genome sequencing of several eusocial insect species set the stage for deciphering the molecular and genetic bases of eusociality, and the possible evolutionary modifications that led to it. Studies of mRNA expression patterns in the brains of diverse eusocial insect species have indicated that specific social behavioral states of individual workers and queens are often associated with particular tissue-specific transcriptional profiles. Here, we discuss recent findings that highlight the role of non-coding microRNAs (miRNAs) in modulating traits associated with reproductive and behavioral divisions of labor in eusocial insects. We provide bioinformatic and phylogenetic data, which suggest that some Hymenoptera-specific miRNA may have contributed to the evolution of traits important for the evolution of eusociality in this group.
Collapse
Affiliation(s)
- Eirik Søvik
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|