1
|
Kim DK, Lee K, Kang BS. Assembly of the Human Multi-tRNA Synthetase Complex Through Leucine Zipper Motifs. J Mol Biol 2024; 436:168865. [PMID: 39542129 DOI: 10.1016/j.jmb.2024.168865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are responsible for the ligation of amino acids to their cognate tRNAs. In human, nine ARSs form a multi-tRNA synthetase complex (MSC) with three ARS-interacting multifunctional proteins (AIMPs). Among the components of MSC, arginyl-tRNA synthetase 1 (RARS1) and two AIMPs (AIMP1 and AIMP2) have leucine zipper (LZ) motifs, which they utilize for their assembly in an MSC. RARS1 and AIMP1 have two LZ motifs (LZ1 and LZ2) in their N-terminus, respectively, while AIMP2 has one LZ motif between its lysyl-tRNA synthetase 1 (KARS1)-binding motif and glutathione transferase-homology domain, which links aspartyl-tRNA synthetase 1 (DARS1). Although the interaction mode between AIMP1 and RARS1, which also binds glutaminyl-tRNA synthetase 1 (QARS1), has been revealed, the mode in the presence of AIMP2 is still ambiguous since AIMP2 is known to not only bind to AIMP1 but also form a homodimer through its LZ. Here, we determined a crystal structure of the LZ complex of AIMP1 and AIMP2 and revealed the interaction mode of a heterotrimeric complex of RARS1, AIMP1, and AIMP2. The complex is established by a three-stranded coiled-coil structure with RARS1 LZ1, AIMP1 LZ1, and AIMP2 LZ and is completed with a two-stranded coiled-coil structure of RARS1 LZ2 and AIMP1 LZ2. In the human MSC, this heterotrimeric complex of RARS1, AIMP1, and AIMP2 allows for a subcomplex of fourteen protein molecules, in which two QARS1-RARS1-AIMP1-AIMP2-2 × KARS1 complexes are linked separately to a dimeric DARS1.
Collapse
Affiliation(s)
- Dong Kyu Kim
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kayoung Lee
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Beom Sik Kang
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Kim Y, Kim SB, Lee H, Kim D, Bak SS, Yoon I, Cho S, Jeong SJ, Jeon Y, Kim J, Kim JH, Oh S, Battogtokh KE, Park MC, Sung YK, Kim S. AIMP1-Derived Peptide Secreted from Hair Follicle Stem Cells Promotes Hair Growth by Activating Dermal Papilla Cells. Int J Biol Sci 2024; 20:5764-5778. [PMID: 39494335 PMCID: PMC11528461 DOI: 10.7150/ijbs.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs) are crucial in the biogenesis and maintenance of hair follicles (HFs). This study demonstrated that a fragment derived from aminoacyl-tRNA synthetase-interacting multifunctional protein1 (AIMP1) secreted from HFSCs activated DPCs and maintained HF homeostasis. A histological analysis revealed that AIMP1 levels in HF decreased with hair loss. Hair regrowth in AIMP1-induced mice was faster than in non-induced mice. Deletion mapping revealed 41 amino acids (TN41, aa 6-46) as the active region of AIMP1. The N-terminal peptide fragment of AIMP1 generated by MMP1 was secreted from Wnt-treated HFSCs to activate DPCs. TN41 activated Akt and ERK, increased β-catenin, and enhanced DPC activation. TN41 promoted hair shaft elongation in cultured human HFs and improved the hair-inducing activity of cultured DPC spheroids. Our findings suggest that the AIMP1 fragment secreted from HFSCs stimulates active hair regrowth through activating DPCs.
Collapse
Affiliation(s)
- YounHa Kim
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
- CureBio Therapeutics Co., Ltd, 12fl, 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi 10408, South Korea
| | - Doyeun Kim
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Ina Yoon
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Seongmin Cho
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Seung Jae Jeong
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi 10408, South Korea
| | - Jina Kim
- CureBio Therapeutics Co., Ltd, 12fl, 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Ji-hee Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Soohwan Oh
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, South Korea
| | | | - Min Chul Park
- College of Pharmacy and Inje institute of pharmaceutical sciences and research, Inje university, Gimhae, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Sunghoon Kim
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| |
Collapse
|
3
|
Pilling D, Consalvo KM, Kirolos SA, Gomer RH. Differences between human male and female neutrophils in mRNA, translation efficiency, protein, and phosphoprotein profiles. RESEARCH SQUARE 2024:rs.3.rs-4284171. [PMID: 38746380 PMCID: PMC11092807 DOI: 10.21203/rs.3.rs-4284171/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Human males and females show differences in the incidence of neutrophil-associated diseases such as systemic lupus erythematosus, rheumatoid arthritis, and reactive arthritis, and differences in neutrophil physiological responses such as a faster response to the chemorepellent SLIGKV. Little is known about the basis of sex-based differences in human neutrophils. Methods Starting with human neutrophils from healthy donors, we used RNA-seq to examine total mRNA profiles, mRNAs not associated with ribosomes and thus not being translated, mRNAs in monosomes, and mRNAs in polysomes and thus heavily translated. We used mass spectrometry systems to identify proteins and phosphoproteins. Results There were sex-based differences in the translation of 24 mRNAs. There were 132 proteins with higher levels in male neutrophils; these tended to be associated with RNA regulation, ribosome, and phosphoinositide signaling pathways, whereas 30 proteins with higher levels in female neutrophils were associated with metabolic processes, proteosomes, and phosphatase regulatory proteins. Male neutrophils had increased phosphorylation of 32 proteins. After exposure to SLIGKV, male neutrophils showed a faster response in terms of protein phosphorylation compared to female neutrophils. Conclusions Male neutrophils have higher levels of proteins and higher phosphorylation of proteins associated with RNA processing and signaling pathways, while female neutrophils have higher levels of proteins associated with metabolism and proteolytic pathways. This suggests that male neutrophils might be more ready to adapt to a new environment, and female neutrophils might be more effective at responding to pathogens. This may contribute to the observed sex-based differences in neutrophil behavior and neutrophil-associated disease incidence and severity.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| |
Collapse
|
4
|
Hutin S, Tully MD, Brennich M. Small-Angle X-Ray Scattering for Macromolecular Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:163-172. [PMID: 38507206 DOI: 10.1007/978-3-031-52193-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Small angle X-ray scattering (SAXS) is a versatile technique that can provide unique insights in the solution structure of macromolecules and their complexes, covering the size range from small peptides to complete viral assemblies. Technological and conceptual advances in the last two decades have tremendously improved the accessibility of the technique and transformed it into an indispensable tool for structural biology. In this chapter we introduce and discuss several approaches to collecting SAXS data on macromolecular complexes, including several approaches to online chromatography. We include practical advice on experimental design and point out common pitfalls of the technique.
Collapse
Affiliation(s)
- Stephanie Hutin
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, Grenoble, France
| | - Mark D Tully
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, Grenoble, France
| | - Martha Brennich
- European Molecular Biology Laboratory, Grenoble, Grenoble, France.
| |
Collapse
|
5
|
Lee EY, Hwang J, Kim MH. Phosphocode-dependent glutamyl-prolyl-tRNA synthetase 1 signaling in immunity, metabolism, and disease. Exp Mol Med 2023; 55:2116-2126. [PMID: 37779151 PMCID: PMC10618286 DOI: 10.1038/s12276-023-01094-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 10/03/2023] Open
Abstract
Ubiquitously expressed aminoacyl-tRNA synthetases play essential roles in decoding genetic information required for protein synthesis in every living species. Growing evidence suggests that they also function as crossover mediators of multiple biological processes required for homeostasis. In humans, eight cytoplasmic tRNA synthetases form a central machinery called the multi-tRNA synthetase complex (MSC). The formation of MSCs appears to be essential for life, although the role of MSCs remains unclear. Glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is the most evolutionarily derived component within the MSC that plays a critical role in immunity and metabolism (beyond its catalytic role in translation) via stimulus-dependent phosphorylation events. This review focuses on the role of EPRS1 signaling in inflammation resolution and metabolic modulation. The involvement of EPRS1 in diseases such as cancer is also discussed.
Collapse
Affiliation(s)
- Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| |
Collapse
|
6
|
Torii T, Yamauchi J. Molecular Pathogenic Mechanisms of Hypomyelinating Leukodystrophies (HLDs). Neurol Int 2023; 15:1155-1173. [PMID: 37755363 PMCID: PMC10538087 DOI: 10.3390/neurolint15030072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) represent a group of congenital rare diseases for which the responsible genes have been identified in recent studies. In this review, we briefly describe the genetic/molecular mechanisms underlying the pathogenesis of HLD and the normal cellular functions of the related genes and proteins. An increasing number of studies have reported genetic mutations that cause protein misfolding, protein dysfunction, and/or mislocalization associated with HLD. Insight into the mechanisms of these pathways can provide new findings for the clinical treatments of HLD.
Collapse
Affiliation(s)
- Tomohiro Torii
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi 610-0394, Japan
- Center for Research in Neurodegenerative Disease, Doshisha University, Kyotanabe-shi 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku 157-8535, Japan
| |
Collapse
|
7
|
Tijaro-Bulla S, Nyandwi SP, Cui H. Physiological and engineered tRNA aminoacylation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1789. [PMID: 37042417 DOI: 10.1002/wrna.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Aminoacyl-tRNA synthetases form the protein family that controls the interpretation of the genetic code, with tRNA aminoacylation being the key chemical step during which an amino acid is assigned to a corresponding sequence of nucleic acids. In consequence, aminoacyl-tRNA synthetases have been studied in their physiological context, in disease states, and as tools for synthetic biology to enable the expansion of the genetic code. Here, we review the fundamentals of aminoacyl-tRNA synthetase biology and classification, with a focus on mammalian cytoplasmic enzymes. We compile evidence that the localization of aminoacyl-tRNA synthetases can be critical in health and disease. In addition, we discuss evidence from synthetic biology which made use of the importance of subcellular localization for efficient manipulation of the protein synthesis machinery. This article is categorized under: RNA Processing Translation > Translation Regulation RNA Processing > tRNA Processing RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
| | | | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Zeng QY, Zhang F, Zhang JH, Hei Z, Li ZH, Huang MH, Fang P, Wang ED, Sun XJ, Zhou XL. Loss of threonyl-tRNA synthetase-like protein Tarsl2 has little impact on protein synthesis but affects mouse development. J Biol Chem 2023; 299:104704. [PMID: 37059185 DOI: 10.1016/j.jbc.2023.104704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential components for mRNA translation. Two sets of aaRSs are required for cytoplasmic and mitochondrial translation in vertebrates. Interestingly, TARSL2 is a recently evolved duplicated gene of TARS1 (encoding cytoplasmic threonyl-tRNA synthetase) and represents the only duplicated aaRS gene in vertebrates. Although TARSL2 retains the canonical aminoacylation and editing activities in vitro, whether it is a true tRNA synthetase for mRNA translation in vivo is unclear. In this study, we showed that Tars1 is an essential gene since homozygous Tars1 knockout mice were lethal. In contrast, when Tarsl2 was deleted in mice and zebrafish, neither the abundance nor the charging levels of tRNAThrs were changed, indicating that cells relied on Tars1 but not on Tarsl2 for mRNA translation. Furthermore, Tarsl2 deletion did not influence the integrity of the multiple tRNA synthetase complex (MSC), suggesting that Tarsl2 is a peripheral member of the MSC. Finally, we observed that Tarsl2-deleted mice exhibited severe developmental retardation, elevated metabolic capacity, and abnormal bone and muscle development after 3 weeks. Collectively, these data suggest that, despite its intrinsic activity, loss of Tarsl2 has little influence on protein synthesis but does affect mouse development.
Collapse
Affiliation(s)
- Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031
| | - Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200010
| | - Jian-Hui Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zi-Han Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031
| | - Meng-Han Huang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031.
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200010.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024.
| |
Collapse
|
9
|
Peng GX, Mao XL, Cao Y, Yao SY, Li QR, Chen X, Wang ED, Zhou XL. RNA granule-clustered mitochondrial aminoacyl-tRNA synthetases form multiple complexes with the potential to fine-tune tRNA aminoacylation. Nucleic Acids Res 2022; 50:12951-12968. [PMID: 36503967 PMCID: PMC9825176 DOI: 10.1093/nar/gkac1141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial RNA metabolism is suggested to occur in identified compartmentalized foci, i.e. mitochondrial RNA granules (MRGs). Mitochondrial aminoacyl-tRNA synthetases (mito aaRSs) catalyze tRNA charging and are key components in mitochondrial gene expression. Mutations of mito aaRSs are associated with various human disorders. However, the suborganelle distribution, interaction network and regulatory mechanism of mito aaRSs remain largely unknown. Here, we found that all mito aaRSs partly colocalize with MRG, and this colocalization is likely facilitated by tRNA-binding capacity. A fraction of human mitochondrial AlaRS (hmtAlaRS) and hmtSerRS formed a direct complex via interaction between catalytic domains in vivo. Aminoacylation activities of both hmtAlaRS and hmtSerRS were fine-tuned upon complex formation in vitro. We further established a full spectrum of interaction networks via immunoprecipitation and mass spectrometry for all mito aaRSs and discovered interactions between hmtSerRS and hmtAsnRS, between hmtSerRS and hmtTyrRS and between hmtThrRS and hmtArgRS. The activity of hmtTyrRS was also influenced by the presence of hmtSerRS. Notably, hmtSerRS utilized the same catalytic domain in mediating several interactions. Altogether, our results systematically analyzed the suborganelle localization and interaction network of mito aaRSs and discovered several mito aaRS-containing complexes, deepening our understanding of the functional and regulatory mechanisms of mito aaRSs.
Collapse
Affiliation(s)
| | | | - Yating Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shi-Ying Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - En-Duo Wang
- Correspondence may also be addressed to En-Duo Wang. Tel: +86 21 5492 1241; Fax: +86 21 5492 1011;
| | - Xiao-Long Zhou
- To whom correspondence should be addressed. Tel: +86 21 5492 1247; Fax: +86 21 5492 1011;
| |
Collapse
|
10
|
Regulation of BRCA1 stability through the tandem UBX domains of isoleucyl-tRNA synthetase 1. Nat Commun 2022; 13:6732. [PMID: 36347866 PMCID: PMC9643514 DOI: 10.1038/s41467-022-34612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) have evolved to acquire various additional domains. These domains allow ARSs to communicate with other cellular proteins in order to promote non-translational functions. Vertebrate cytoplasmic isoleucyl-tRNA synthetases (IARS1s) have an uncharacterized unique domain, UNE-I. Here, we present the crystal structure of the chicken IARS1 UNE-I complexed with glutamyl-tRNA synthetase 1 (EARS1). UNE-I consists of tandem ubiquitin regulatory X (UBX) domains that interact with a distinct hairpin loop on EARS1 and protect its neighboring proteins in the multi-synthetase complex from degradation. Phosphomimetic mutation of the two serine residues in the hairpin loop releases IARS1 from the complex. IARS1 interacts with BRCA1 in the nucleus, regulates its stability by inhibiting ubiquitylation via the UBX domains, and controls DNA repair function.
Collapse
|
11
|
Multimodal cotranslational interactions direct assembly of the human multi-tRNA synthetase complex. Proc Natl Acad Sci U S A 2022; 119:e2205669119. [PMID: 36037331 PMCID: PMC9457175 DOI: 10.1073/pnas.2205669119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amino acid ligation to cognate transfer RNAs (tRNAs) is catalyzed by aminoacyl-tRNA synthetases (aaRSs)-essential interpreters of the genetic code during translation. Mammalian cells harbor 20 cytoplasmic aaRSs, out of which 9 (in 8 proteins), with 3 non-aaRS proteins, AIMPs 1 to 3, form the ∼1.25-MDa multi-tRNA synthetase complex (MSC). The function of MSC remains uncertain, as does its mechanism of assembly. Constituents of multiprotein complexes encounter obstacles during assembly, including inappropriate interactions, topological constraints, premature degradation of unassembled subunits, and suboptimal stoichiometry. To facilitate orderly and efficient complex formation, some complexes are assembled cotranslationally by a mechanism in which a fully formed, mature protein binds a nascent partner as it emerges from the translating ribosome. Here, we show out of the 121 possible interaction events between the 11 MSC constituents, 15 are cotranslational. AIMPs are involved in the majority of these cotranslational interactions, suggesting they are not only critical for MSC structure but also for assembly. Unexpectedly, several cotranslational events involve more than the usual dyad of interacting proteins. We show two modes of cotranslational interaction, namely a "multisite" mechanism in which two or more mature proteins bind the same nascent peptide at distinct sites and a second "piggy-back" mechanism in which a mature protein carries a second fully formed protein and binds to a single site on an emerging peptide. Multimodal mechanisms of cotranslational interaction offer a diversity of pathways for ordered, piecewise assembly of small subcomplexes into larger heteromultimeric complexes such as the mammalian MSC.
Collapse
|
12
|
Functional Interplay between Arginyl-tRNA Synthetases and Arginyltransferase. Int J Mol Sci 2022; 23:ijms231710160. [PMID: 36077558 PMCID: PMC9456563 DOI: 10.3390/ijms231710160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Protein arginylation, mediated by arginyltransferase ATE1, is a post-translational modification of emerging biological importance that consists of transfer of the amino acid Arg to protein and peptide substrates. ATE1 utilizes charged tRNAArg as the donor of the arginyl group, which depends on the activity of Arg-tRNA synthetases (RARS) and is also utilized in translation. The mechanisms that regulate the functional balance among ATE1, RARS and translation are unknown. Here, we addressed the question of how these two enzymes can partition Arg-tRNAArg to functionally distinct pathways using an intracellular arginylation sensor in cell lines with overexpression or deletion of ATE1 and RARS isoforms. We found that arginylation levels depend on the physiological state of the cells but are not directly affected by translation activity or the availability of RARS isoforms. However, displacement of RARS from the multi-synthetase complex leads to an increase in intracellular arginylation independently of RARS enzymatic activity. This effect is accompanied by ATE1′s redistribution into the cytosol. Our results provide the first comprehensive analysis of the interdependence among translation, arginyl-tRNA synthesis and arginylation.
Collapse
|
13
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
14
|
Kim MH, Kang BS. Structure and Dynamics of the Human Multi-tRNA Synthetase Complex. Subcell Biochem 2022; 99:199-233. [PMID: 36151377 DOI: 10.1007/978-3-031-00793-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to their cognate tRNAs during protein synthesis. A growing body of scientific evidence acknowledges that ubiquitously expressed ARSs act as crossover mediators of biological processes, such as immunity and metabolism, beyond translation. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC), which consists of eight ARSs and three ARS-interacting multifunctional proteins in humans, is recognized to be a central player that controls the complexity of biological systems. Although the role of the MSC in biological processes including protein synthesis is still unclear, maintaining the structural integrity of MSC is essential for life. This chapter deals with current knowledge on the structural aspects of the human MSC and its protein components. The main focus is on the regulatory functions of MSC beyond its catalytic activity.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Beom Sik Kang
- School of Life Sciences, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
15
|
Nayak P, Kejriwal A, Ratnaparkhi GS. SUMOylation of Arginyl tRNA Synthetase Modulates the Drosophila Innate Immune Response. Front Cell Dev Biol 2021; 9:695630. [PMID: 34660574 PMCID: PMC8514731 DOI: 10.3389/fcell.2021.695630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
SUMO conjugation of a substrate protein can modify its activity, localization, interaction or function. A large number of SUMO targets in cells have been identified by Proteomics, but biological roles for SUMO conjugation for most targets remains elusive. The multi-aminoacyl tRNA synthetase complex (MARS) is a sensor and regulator of immune signaling. The proteins of this 1.2 MDa complex are targets of SUMO conjugation, in response to infection. Arginyl tRNA Synthetase (RRS), a member of the sub-complex II of MARS, is one such SUMO conjugation target. The sites for SUMO conjugation are Lys 147 and 383. Replacement of these residues by Arg (RRS K147R,K383R ), creates a SUMO conjugation resistant variant (RRS SCR ). Transgenic Drosophila lines for RRS WT and RRS SCR were generated by expressing these variants in a RRS loss of function (lof) animal, using the UAS-Gal4 system. The RRS-lof line was itself generated using CRISPR/Cas9 genome editing. Expression of both RRS WT and RRS SCR rescue the RRS-lof lethality. Adult animals expressing RRS WT and RRS SCR are compared and contrasted for their response to bacterial infection by gram positive M. luteus and gram negative Ecc15. We find that RRS SCR , when compared to RRS WT , shows modulation of the transcriptional response, as measured by quantitative 3' mRNA sequencing. Our study uncovers a possible non-canonical role for SUMOylation of RRS, a member of the MARS complex, in host-defense.
Collapse
Affiliation(s)
- Prajna Nayak
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Aarti Kejriwal
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | |
Collapse
|
16
|
Cui H, Kapur M, Diedrich JK, Yates JR, Ackerman SL, Schimmel P. Regulation of ex-translational activities is the primary function of the multi-tRNA synthetase complex. Nucleic Acids Res 2021; 49:3603-3616. [PMID: 33341895 PMCID: PMC8053116 DOI: 10.1093/nar/gkaa1183] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation. To explore this, we generated mammalian cells in which arginyl-tRNA synthetase and/or glutaminyl-tRNA synthetase were absent from the MSC. Protein synthesis, under a variety of stress conditions, was unchanged. Most strikingly, levels of charged tRNAArg and tRNAGln remained unchanged and no ribosome pausing was observed at codons for arginine and glutamine. Thus, increasing or regulating protein synthesis efficiency is not dependent on arginyl-tRNA synthetase and glutaminyl-tRNA synthetase in the MSC. Alternatively, and consistent with previously reported ex-translational roles requiring changes in synthetase cellular localizations, our manipulations of the MSC visibly changed localization.
Collapse
Affiliation(s)
- Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
17
|
Li G, Eriani G, Wang ED, Zhou XL. Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1645-1660. [PMID: 33515434 DOI: 10.1007/s11427-020-1838-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Mutations of the genes encoding aminoacyl-tRNA synthetases are highly associated with various central nervous system disorders. Recurrent mutations, including c.5A>G, p.D2G; c.1367C>T, p.S456L; c.1535G>A, p.R512Q and c.1846_1847del, p. Y616Lfs*6 of RARS1 gene, which encodes two forms of human cytoplasmic arginyl-tRNA synthetase (hArgRS), are linked to Pelizaeus-Merzbacher-like disease (PMLD) with unclear pathogenesis. Among these mutations, c.5A>G is the most extensively reported mutation, leading to a p.D2G mutation in the N-terminal extension of the long-form hArgRS. Here, we showed the detrimental effects of R512Q substitution and ΔC mutations on the structure and function of hArgRS, while the most frequent mutation c.5A>G, p.D2G acted in a different manner without impairing hArgRS activity. The nucleotide substitution c.5A>G reduced translation of hArgRS mRNA, and an upstream open reading frame contributed to the suppressed translation of the downstream main ORF. Taken together, our results elucidated distinct pathogenic mechanisms of various RARS1 mutations in PMLD.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67084, Strasbourg, France
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
18
|
Contribution of miRNAs, tRNAs and tRFs to Aberrant Signaling and Translation Deregulation in Lung Cancer. Cancers (Basel) 2020; 12:cancers12103056. [PMID: 33092114 PMCID: PMC7593945 DOI: 10.3390/cancers12103056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The profiles of miRNAs, tRNA-derived fragments and tRNAs from lung cancer biopsy specimens indicate involvement of gene networks that modulate signaling and translation initiation. The current study highlights the important role of several regulatory small non-coding RNAs in aberrant signaling and translation deregulation in lung cancer. Abstract Transcriptomics profiles of miRNAs, tRNAs or tRFs are used as biomarkers, after separate examination of several cancer cell lines, blood samples or biopsies. However, the possible contribution of all three profiles on oncogenic signaling and translation as a net regulatory effect, is under investigation. The present analysis of miRNAs and tRFs from lung cancer biopsies indicated putative targets, which belong to gene networks involved in cell proliferation, transcription and translation regulation. In addition, we observed differential expression of specific tRNAs along with several tRNA-related genes with possible involvement in carcinogenesis. Transfection of lung adenocarcinoma cells with two identified tRFs and subsequent NGS analysis indicated gene targets that mediate signaling and translation regulation. Broader analysis of all major signaling and translation factors in several biopsy specimens revealed a crosstalk between the PI3K/AKT and MAPK pathways and downstream activation of eIF4E and eEF2. Subsequent polysome profile analysis and 48S pre-initiation reconstitution experiments showed increased global translation rates and indicated that aberrant expression patterns of translation initiation factors could contribute to elevated protein synthesis. Overall, our results outline the modulatory effects that possibly correlate the expression of important regulatory non-coding RNAs with aberrant signaling and translation deregulation in lung cancer.
Collapse
|
19
|
Khan K, Baleanu-Gogonea C, Willard B, Gogonea V, Fox PL. 3-Dimensional architecture of the human multi-tRNA synthetase complex. Nucleic Acids Res 2020; 48:8740-8754. [PMID: 32644155 PMCID: PMC7470956 DOI: 10.1093/nar/gkaa569] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
In mammalian cells, eight cytoplasmic aminoacyl-tRNA synthetases (AARS), and three non-synthetase proteins, reside in a large multi-tRNA synthetase complex (MSC). AARSs have critical roles in interpretation of the genetic code during protein synthesis, and in non-canonical functions unrelated to translation. Nonetheless, the structure and function of the MSC remain unclear. Partial or complete crystal structures of all MSC constituents have been reported; however, the structure of the holo-MSC has not been resolved. We have taken advantage of cross-linking mass spectrometry (XL-MS) and molecular docking to interrogate the three-dimensional architecture of the MSC in human HEK293T cells. The XL-MS approach uniquely provides structural information on flexibly appended domains, characteristic of nearly all MSC constituents. Using the MS-cleavable cross-linker, disuccinimidyl sulfoxide, inter-protein cross-links spanning all MSC constituents were observed, including cross-links between eight protein pairs not previously known to interact. Intra-protein cross-links defined new structural relationships between domains in several constituents. Unexpectedly, an asymmetric AARS distribution was observed featuring a clustering of tRNA anti-codon binding domains on one MSC face. Possibly, the non-uniform localization improves efficiency of delivery of charged tRNA’s to an interacting ribosome during translation. In summary, we show a highly compact, 3D structural model of the human holo-MSC.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Liu RJ, Long T, Li H, Zhao J, Li J, Wang M, Palencia A, Lin J, Cusack S, Wang ED. Molecular basis of the multifaceted functions of human leucyl-tRNA synthetase in protein synthesis and beyond. Nucleic Acids Res 2020; 48:4946-4959. [PMID: 32232361 PMCID: PMC7229842 DOI: 10.1093/nar/gkaa189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
Human cytosolic leucyl-tRNA synthetase (hcLRS) is an essential and multifunctional enzyme. Its canonical function is to catalyze the covalent ligation of leucine to tRNALeu, and it may also hydrolyze mischarged tRNAs through an editing mechanism. Together with eight other aminoacyl-tRNA synthetases (AaRSs) and three auxiliary proteins, it forms a large multi-synthetase complex (MSC). Beyond its role in translation, hcLRS has an important moonlight function as a leucine sensor in the rapamycin complex 1 (mTORC1) pathway. Since this pathway is active in cancer development, hcLRS is a potential target for anti-tumor drug development. Moreover, LRS from pathogenic microbes are proven drug targets for developing antibiotics, which however should not inhibit hcLRS. Here we present the crystal structure of hcLRS at a 2.5 Å resolution, the first complete structure of a eukaryotic LRS, and analyze the binding of various compounds that target different sites of hcLRS. We also deduce the assembly mechanism of hcLRS into the MSC through reconstitution of the entire mega complex in vitro. Overall, our study provides the molecular basis for understanding both the multifaceted functions of hcLRS and for drug development targeting these functions.
Collapse
Affiliation(s)
- Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P.R. China
| | - Tao Long
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China
| | - Hao Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China
| | - JingHua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Jing Li
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P.R. China
| | - MingZhu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
| | - JinZhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex 9, France
| | - En-Duo Wang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P.R. China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China
| |
Collapse
|
21
|
Preger C, Wigren E, Ossipova E, Marks C, Lengqvist J, Hofström C, Andersson O, Jakobsson PJ, Gräslund S, Persson H. Generation and validation of recombinant antibodies to study human aminoacyl-tRNA synthetases. J Biol Chem 2020; 295:13981-13993. [PMID: 32817337 DOI: 10.1074/jbc.ra120.012893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/10/2020] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) have long been viewed as mere housekeeping proteins and have therefore often been overlooked in drug discovery. However, recent findings have revealed that many aaRSs have noncanonical functions, and several of the aaRSs have been linked to autoimmune diseases, cancer, and neurological disorders. Deciphering these roles has been challenging because of a lack of tools to enable their study. To help solve this problem, we have generated recombinant high-affinity antibodies for a collection of thirteen cytoplasmic and one mitochondrial aaRSs. Selected domains of these proteins were produced recombinantly in Escherichia coli and used as antigens in phage display selections using a synthetic human single-chain fragment variable library. All targets yielded large sets of antibody candidates that were validated through a panel of binding assays against the purified antigen. Furthermore, the top-performing binders were tested in immunoprecipitation followed by MS for their ability to capture the endogenous protein from mammalian cell lysates. For antibodies targeting individual members of the multi-tRNA synthetase complex, we were able to detect all members of the complex, co-immunoprecipitating with the target, in several cell types. The functionality of a subset of binders for each target was also confirmed using immunofluorescence. The sequences of these proteins have been deposited in publicly available databases and repositories. We anticipate that this open source resource, in the form of high-quality recombinant proteins and antibodies, will accelerate and empower future research of the role of aaRSs in health and disease.
Collapse
Affiliation(s)
- Charlotta Preger
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Edvard Wigren
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Ossipova
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carolyn Marks
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Camilla Hofström
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Oskar Andersson
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden .,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
22
|
Roles of aminoacyl-tRNA synthetase-interacting multi-functional proteins in physiology and cancer. Cell Death Dis 2020; 11:579. [PMID: 32709848 PMCID: PMC7382500 DOI: 10.1038/s41419-020-02794-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are an important class of enzymes with an evolutionarily conserved mechanism for protein synthesis. In higher eukaryotic systems, eight ARSs and three ARS-interacting multi-functional proteins (AIMPs) form a multi-tRNA synthetase complex (MSC), which seems to contribute to cellular homeostasis. Of these, AIMPs are generally considered as non-enzyme factors, playing a scaffolding role during MSC assembly. Although the functions of AIMPs are not fully understood, increasing evidence indicates that these scaffold proteins usually exert tumor-suppressive activities. In addition, endothelial monocyte-activating polypeptide II (EMAP II), as a cleavage product of AIMP1, and AIMP2-DX2, as a splice variant of AIMP2 lacking exon 2, also have a pivotal role in regulating tumorigenesis. In this review, we summarize the biological functions of AIMP1, EMAP II, AIMP2, AIMP2-DX2, and AIMP3. Also, we systematically introduce their emerging roles in cancer, aiming to provide new ideas for the treatment of cancer.
Collapse
|
23
|
Kong J, Kim S. Cell-based analysis of pairwise interactions between the components of the multi-tRNA synthetase complex. FASEB J 2020; 34:10476-10488. [PMID: 32539228 DOI: 10.1096/fj.202000418r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/10/2020] [Accepted: 05/25/2020] [Indexed: 11/11/2022]
Abstract
Cytoplasmic aminoacyl-tRNA synthetases (ARSs) are organized into multi-tRNA synthetase complexes (MSCs), from Archaea to mammals. An evolutionary conserved role of the MSCs is enhancement of aminoacylation by forming stable associations of the ARSs and tRNAs. In mammals, a single macromolecular MSC exists, which is composed of eight cytoplasmic ARSs, for nine amino acids, and three scaffold proteins. Consequently, nearly half of aminoacyl-tRNA efflux becomes concentrated at the MSC. Stable supply of aminoacyl-tRNA to the ribosome is, therefore, considered to be a major role of the mammalian MSC. Furthermore, the mammalian MSC also serves as a reservoir for releasable components with noncanonical functions. In this study, a split-luciferase complementation system was applied to investigate the configuration of the MSC in live mammalian cells. Multiplex interconnections between the components were simplified into binary protein-protein interactions, and pairwise comparison of the interactions reconstituted a framework consistent with previous in vitro studies. Reversibility of the split-luciferase reporter binding demonstrated convertible organization of the mammalian MSC, including interferon gamma (IFNγ)-stimulated glutamyl-prolyl-tRNA synthetase 1 (EPRS1) release, as well as the cooperation with the ribosome bridged by the tRNAs. The cell-based analysis provided an improved understanding of the flexible framework of the mammalian MSC in physiological conditions.
Collapse
Affiliation(s)
- Jiwon Kong
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
24
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for protein synthesis with evolutionarily conserved enzymatic mechanisms. Despite their similarity across organisms, scientists have been able to generate effective anti-infective agents based on the structural differences in the catalytic clefts of ARSs from pathogens and humans. However, recent genomic, proteomic and functionomic advances have unveiled unexpected disease-associated mutations and altered expression, secretion and interactions in human ARSs, revealing hidden biological functions beyond their catalytic roles in protein synthesis. These studies have also brought to light their potential as a rich and unexplored source for new therapeutic targets and agents through multiple avenues, including direct targeting of the catalytic sites, controlling disease-associated protein-protein interactions and developing novel biologics from the secreted ARS proteins or their parts. This Review addresses the emerging biology and therapeutic applications of human ARSs in diseases including autoimmune and rare diseases, and cancer.
Collapse
|
25
|
Abstract
Human body is a finely-tuned machine that requires homeostatic balance based on systemically controlled biological processes involving DNA replication, transcription, translation, and energy metabolism. Ubiquitously expressed aminoacyl-tRNA synthetases have been investigated for many decades, and they act as cross-over mediators of important biological processes. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC) appears to be a central machinery controlling the complexity of biological systems. The structural integrity of MSC determined by the associated components is correlated with increasing biological complexity that links to system development in higher organisms. Although the role of the MSCs is still unclear, this chapter describes the current knowledge on MSC components that are associated with and regulate functions beyond their catalytic activities with focus on human MSC.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy & School of Medicine, Yonsei University, Incheon, South Korea.
| |
Collapse
|
26
|
Zhou XL, Chen Y, Zeng QY, Ruan ZR, Fang P, Wang ED. Newly acquired N-terminal extension targets threonyl-tRNA synthetase-like protein into the multiple tRNA synthetase complex. Nucleic Acids Res 2019; 47:8662-8674. [PMID: 31287872 PMCID: PMC6794377 DOI: 10.1093/nar/gkz588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022] Open
Abstract
A typical feature of eukaryotic aminoacyl-tRNA synthetases (aaRSs) is the evolutionary gain of domains at either the N- or C-terminus, which frequently mediating protein–protein interaction. TARSL2 (mouse Tarsl2), encoding a threonyl-tRNA synthetase-like protein (ThrRS-L), is a recently identified aaRS-duplicated gene in higher eukaryotes, with canonical functions in vitro, which exhibits a different N-terminal extension (N-extension) from TARS (encoding ThrRS). We found the first half of the N-extension of human ThrRS-L (hThrRS-L) is homologous to that of human arginyl-tRNA synthetase. Using the N-extension as a probe in a yeast two-hybrid screening, AIMP1/p43 was identified as an interactor with hThrRS-L. We showed that ThrRS-L is a novel component of the mammalian multiple tRNA synthetase complex (MSC), and is reliant on two leucine zippers in the N-extension for MSC-incorporation in humans, and mouse cell lines and muscle tissue. The N-extension was sufficient to target a foreign protein into the MSC. The results from a Tarsl2-deleted cell line showed that it does not mediate MSC integrity. The effect of phosphorylation at various sites of hThrRS-L on its MSC-targeting is also explored. In summary, we revealed that ThrRS-L is a bona fide component of the MSC, which is mediated by a newly evolved N-extension domain.
Collapse
Affiliation(s)
- Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yun Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Zhi-Rong Ruan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
27
|
Hahn H, Park SH, Kim HJ, Kim S, Han BW. The DRS-AIMP2-EPRS subcomplex acts as a pivot in the multi-tRNA synthetase complex. IUCRJ 2019; 6:958-967. [PMID: 31576228 PMCID: PMC6760448 DOI: 10.1107/s2052252519010790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/01/2019] [Indexed: 05/16/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) play essential roles in protein biosynthesis as well as in other cellular processes, often using evolutionarily acquired domains. For possible cooperativity and synergistic effects, nine ARSs assemble into the multi-tRNA synthetase complex (MSC) with three scaffold proteins: aminoacyl-tRNA synthetase complex-interacting multifunctional proteins 1, 2 and 3 (AIMP1, AIMP2 and AIMP3). X-ray crystallographic methods were implemented in order to determine the structure of a ternary subcomplex of the MSC comprising aspartyl-tRNA synthetase (DRS) and two glutathione S-transferase (GST) domains from AIMP2 and glutamyl-prolyl-tRNA synthetase (AIMP2GST and EPRSGST, respectively). While AIMP2GST and EPRSGST interact via conventional GST heterodimerization, DRS strongly interacts with AIMP2GST via hydrogen bonds between the α7-β9 loop of DRS and the β2-α2 loop of AIMP2GST, where Ser156 of AIMP2GST is essential for the assembly. Structural analyses of DRS-AIMP2GST-EPRSGST reveal its pivotal architecture in the MSC and provide valuable insights into the overall assembly and conditionally required disassembly of the MSC.
Collapse
Affiliation(s)
- Hyunggu Hahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ho Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Cho HY, Lee HJ, Choi YS, Kim DK, Jin KS, Kim S, Kang BS. Symmetric Assembly of a Decameric Subcomplex in Human Multi-tRNA Synthetase Complex Via Interactions between Glutathione Transferase-Homology Domains and Aspartyl-tRNA Synthetase. J Mol Biol 2019; 431:4475-4496. [PMID: 31473157 DOI: 10.1016/j.jmb.2019.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) ligate amino acids to their cognate tRNAs during protein synthesis. In humans, eight AARSs and three non-enzymatic AARS-interacting multifunctional proteins (AIMP1-3), which are involved in various biological processes, form a multi-tRNA synthetase complex (MSC). Elucidation of the structures and multiple functions of individual AARSs and AIMPs has aided current understanding of the structural arrangement of MSC components and their assembly processes. Here, we report the crystal structure of a complex comprising a motif from aspartyl-tRNA synthetase (DRS) and the glutathione transferase (GST)-homology domains of methionyl-tRNA synthetase (MRS), glutamyl-prolyl-tRNA synthetase (EPRS), AIMP2, and AIMP3. In the crystal structure, the four GST domains are assembled in the order of MRS-AIMP3-EPRS-AIMP2, and the GST domain of AIMP2 binds DRS through the β-sheet in the GST domain. The C-terminus of AIMP3 enhances the binding of DRS to the tetrameric GST complex. A DRS dimer and two GST tetramers binding to the dimer with 2-fold symmetry complete a decameric complex. The formation of this complex enhances the stability of DRS and enables it to retain its reaction intermediate, aspartyl adenylate. Since the catalytic domains of MRS and EPRS are connected to the decameric complex through their flexible linker peptides, and lysyl-tRNA synthetase and AIMP1 are also linked to the complex via the N-terminal region of AIMP2, the DRS-GST tetramer complex functions as a frame in the MSC.
Collapse
Affiliation(s)
- Ha Yeon Cho
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun Joo Lee
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon Seo Choi
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Kyu Kim
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-Gu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Beom Sik Kang
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
29
|
Hyeon DY, Kim JH, Ahn TJ, Cho Y, Hwang D, Kim S. Evolution of the multi-tRNA synthetase complex and its role in cancer. J Biol Chem 2019; 294:5340-5351. [PMID: 30782841 PMCID: PMC6462501 DOI: 10.1074/jbc.rev118.002958] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are enzymes that ligate their cognate amino acids to tRNAs for protein synthesis. However, recent studies have shown that their functions are expanded beyond protein synthesis through the interactions with diverse cellular factors. In this review, we discuss how ARSs have evolved to expand and control their functions by forming protein assemblies. We particularly focus on a macromolecular ARS complex in eukaryotes, named multi-tRNA synthetase complex (MSC), which is proposed to provide a channel through which tRNAs reach bound ARSs to receive their cognate amino acid and transit further to the translation machinery. Approximately half of the ARSs assemble into the MSC through cis-acting noncatalytic domains attached to their catalytic domains and trans-acting factors. Evolution of the MSC included its functional expansion, during which the MSC interaction network was augmented by additional cellular pathways present in higher eukaryotes. We also discuss MSC components that could be functionally involved in the pathophysiology of tumorigenesis. For example, the activities of some trans-acting factors have tumor-suppressing effects or maintain DNA integrity and are functionally compromised in cancer. On the basis of Gene Ontology analyses, we propose that the regulatory activities of the MSC-associated ARSs mainly converge on five biological processes, including mammalian target of rapamycin (mTOR) and DNA repair pathways. Future studies are needed to investigate how the MSC-associated and free-ARSs interact with each other and other factors in the control of multiple cellular pathways, and how aberrant or disrupted interactions in the MSC can cause disease.
Collapse
Affiliation(s)
- Do Young Hyeon
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873
| | - Jong Hyun Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| | - Tae Jin Ahn
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Yeshin Cho
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Daehee Hwang
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873,
- the Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea
| | - Sunghoon Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| |
Collapse
|
30
|
Khan A, Bennett J, Scantlebury MH, Wei XC, Kerr M. AIMP1 Mutation Long-Term Follow-Up, With Decreased Brain N-Acetylaspartic Acid and Secondary Mitochondrial Abnormalities. Child Neurol Open 2019; 6:2329048X19829520. [PMID: 30828585 PMCID: PMC6388456 DOI: 10.1177/2329048x19829520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/13/2019] [Indexed: 01/14/2023] Open
Abstract
Aminoacyl transfer RNA (tRNA) synthetase complex-interacting multifunctional protein I is a noncatalytic component of tRNA multi-synthetase complexes. Although important in joining tRNAs to their cognate amino acids, AIMP1 has several other functions including axonal growth, cytokine activity, and interactions with N-acetylaspartic acid in ribosomal tRNA synthetase complexes. Further, N-acetylaspartic acid donates an aspartate during myelination and is therefore important to axonal integrity. Mutations in AIMP1 can disrupt these functions, as demonstrated in this clinical case study of 2 monozygotic twins, who display congenital opisthotonus, microcephaly, severe developmental delay, and seizures. Whole exome sequencing was used to identify a premature stop codon in the AIMP1 gene (g. 107248613_c.115C>T; p.(Gln39). In the absence of whole exome sequencing, we propose that decreased N-acetylaspartic acid peaks on magnetic resonance spectroscopy could act as a biomarker for AIMP1 mutations.
Collapse
Affiliation(s)
- Aneal Khan
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Bennett
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Departments of Pediatrics Clinical Neuroscience, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Xing-Chang Wei
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marina Kerr
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Hei Z, Wu S, Liu Z, Wang J, Fang P. Retractile lysyl-tRNA synthetase-AIMP2 assembly in the human multi-aminoacyl-tRNA synthetase complex. J Biol Chem 2019; 294:4775-4783. [PMID: 30733335 DOI: 10.1074/jbc.ra118.006356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/05/2019] [Indexed: 11/06/2022] Open
Abstract
Multi-aminoacyl-tRNA synthetase complex (MSC) is the second largest machinery for protein synthesis in human cells and also regulates multiple nontranslational functions through its components. Previous studies have shown that the MSC can respond to external signals by releasing its components to function outside it. The internal assembly is fundamental to MSC regulation. Here, using crystal structural analyses (at 1.88 Å resolution) along with molecular modeling, gel-filtration chromatography, and co-immunoprecipitation, we report that human lysyl-tRNA synthetase (LysRS) forms a tighter assembly with the scaffold protein aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2) than previously observed. We found that two AIMP2 N-terminal peptides form an antiparallel scaffold and hold two LysRS dimers through four binding motifs and additional interactions. Of note, the four catalytic subunits of LysRS in the tightly assembled complex were all accessible for tRNA recognition. We further noted that two recently reported human disease-associated mutations conflict with this tighter assembly, cause LysRS release from the MSC, and inactivate the enzyme. These findings reveal a previously unknown dimension of MSC subcomplex assembly and suggest that the retractility of this complex may be critical for its physiological functions.
Collapse
Affiliation(s)
- Zhoufei Hei
- From the State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Siqi Wu
- From the State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zaizhou Liu
- From the State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Wang
- From the State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pengfei Fang
- From the State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
32
|
Lee EY, Kim S, Kim MH. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol 2018; 154:424-434. [PMID: 29890143 PMCID: PMC7092877 DOI: 10.1016/j.bcp.2018.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
33
|
Stephen P, Ye S, Zhou M, Song J, Zhang R, Wang ED, Giegé R, Lin SX. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNA Arg: Pivotal Role of the D-loop. J Mol Biol 2018; 430:1590-1606. [PMID: 29678554 DOI: 10.1016/j.jmb.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Aminoacyl-tRNA synthetases are essential components in protein biosynthesis. Arginyl-tRNA synthetase (ArgRS) belongs to the small group of aminoacyl-tRNA synthetases requiring cognate tRNA for amino acid activation. The crystal structure of Escherichia coli (Eco) ArgRS has been solved in complex with tRNAArg at 3.0-Å resolution. With this first bacterial tRNA complex, we are attempting to bridge the gap existing in structure-function understanding in prokaryotic tRNAArg recognition. The structure shows a tight binding of tRNA on the synthetase through the identity determinant A20 from the D-loop, a tRNA recognition snapshot never elucidated structurally. This interaction of A20 involves 5 amino acids from the synthetase. Additional contacts via U20a and U16 from the D-loop reinforce the interaction. The importance of D-loop recognition in EcoArgRS functioning is supported by a mutagenesis analysis of critical amino acids that anchor tRNAArg on the synthetase; in particular, mutations at amino acids interacting with A20 affect binding affinity to the tRNA and specificity of arginylation. Altogether the structural and functional data indicate that the unprecedented ArgRS crystal structure represents a snapshot during functioning and suggest that the recognition of the D-loop by ArgRS is an important trigger that anchors tRNAArg on the synthetase. In this process, A20 plays a major role, together with prominent conformational changes in several ArgRS domains that may eventually lead to the mature ArgRS:tRNA complex and the arginine activation. Functional implications that could be idiosyncratic to the arginine identity of bacterial ArgRSs are discussed.
Collapse
Affiliation(s)
- Preyesh Stephen
- Laboratory of Molecular Endocrinology, CHU Research Center and Laval University, Québec, Canada
| | - Sheng Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ming Zhou
- Laboratory of Molecular Endocrinology, CHU Research Center and Laval University, Québec, Canada
| | - Jian Song
- Laboratory of Molecular Endocrinology, CHU Research Center and Laval University, Québec, Canada
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Shanghai Institutes of Biochemistry and Cell Biology, SIBS, Shanghai, China.
| | - En-Duo Wang
- Shanghai Institutes of Biochemistry and Cell Biology, SIBS, Shanghai, China.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, Strasbourg Cedex, France
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology, CHU Research Center and Laval University, Québec, Canada; Shanghai Institutes of Biochemistry and Cell Biology, SIBS, Shanghai, China.
| |
Collapse
|
34
|
Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Int J Biol Macromol 2018; 111:400-414. [PMID: 29305884 DOI: 10.1016/j.ijbiomac.2017.12.157] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are the enzymes that catalyze the aminoacylation reaction by covalently linking an amino acid to its cognate tRNA in the first step of protein translation. Beyond this classical function, these enzymes are also known to have a role in several metabolic and signaling pathways that are important for cell viability. Study of these enzymes is of great interest to the researchers due to its pivotal role in the growth and survival of an organism. Further, unfolding the interesting structural and functional aspects of these enzymes in the last few years has qualified them as a potential drug target against various diseases. Here we review the classification, function, and the conserved as well the appended structural architecture of these enzymes in detail, including its association with multi-synthetase complexes. We also considered their role in human diseases in terms of mutations and autoantibodies against AARSs. Finally, we have discussed the available inhibitors against AARSs. This review offers comprehensive information on AARSs under a single canopy that would be a good inventory for researchers working in this area.
Collapse
|
35
|
Crnković A, Čavužić M, Godinić-Mikulčić V, Anderluh G, Weygand-Đurašević I, Gruić-Sovulj I. An archaeal aminoacyl-tRNA synthetase complex for improved substrate quality control. Biochimie 2017; 147:36-45. [PMID: 29273296 DOI: 10.1016/j.biochi.2017.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) decode genetic information by coupling tRNAs with cognate amino acids. In the archaeon Methanothermobacter thermautotrophicus arginyl- and seryl-tRNA synthetase (ArgRS and SerRS, respectively) form a complex which enhances serylation and facilitates tRNASer recycling through its association with the ribosome. Yet, the way by which complex formation participates in Arg-tRNAArg synthesis is still unresolved. Here we utilized pull down and surface plasmon resonance experiments with truncated ArgRS variants to demonstrate that ArgRS uses its N-terminal domain to establish analogous interactions with both SerRS and cognate tRNAArg, providing a rationale for the lack of detectable SerRS•[ArgRS•tRNAArg] complex. In contrast, stable ternary ArgRS•[SerRS•tRNASer] complex was easily detected supporting the model wherein ArgRS operates in serylation by modulating SerRS affinity toward tRNASer. We also found that the interaction with SerRS suppresses arginylation of unmodified tRNAArg by ArgRS, which, by itself, does not discriminate against tRNAArg substrates lacking posttranscriptional modifications. Hence, there is a fundamentally different participation of the protein partners in Arg-tRNA and Ser-tRNA synthesis. Propensity of the ArgRS•SerRS complex to exclude unmodified tRNAs from translation leads to an attractive hypothesis that SerRS•ArgRS complex might act in vivo as a safeguarding switch that improves translation accuracy.
Collapse
Affiliation(s)
- Ana Crnković
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia.
| | - Mirela Čavužić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia
| | - Vlatka Godinić-Mikulčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ivana Weygand-Đurašević
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia
| | - Ita Gruić-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia.
| |
Collapse
|
36
|
Abstract
Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.
Collapse
Affiliation(s)
- Marc Mirande
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, Paris, France.
| |
Collapse
|
37
|
Young HJ, Lee JW, Kim S. Function of membranous lysyl-tRNA synthetase and its implication for tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1707-1713. [PMID: 27663887 DOI: 10.1016/j.bbapap.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/28/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that conjugate specific amino acids to their cognate tRNAs for protein synthesis. Besides their catalytic activity, recent studies have uncovered many additional functions of these enzymes through their interactions with diverse cellular factors. Among human ARSs, cytosolic lysyl-tRNA synthetase (KRS) is often highly expressed in cancer cells and tissues, and facilitates cancer cell migration and invasion through the interaction with the 67kDa laminin receptor on the plasma membrane. Specific modulation of this interaction by small molecule inhibitors has revealed a new way to control metastasis. Here, we summarize the pro-metastatic functions of KRS and their patho-physiological implications.
Collapse
Affiliation(s)
- Ho Jeon Young
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea; Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Weon Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Oncogenic Mutation of AIMP2/p38 Inhibits Its Tumor-Suppressive Interaction with Smurf2. Cancer Res 2016; 76:3422-36. [DOI: 10.1158/0008-5472.can-15-3255] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
|
39
|
Park SJ, Ahn HS, Kim JS, Lee C. Evaluation of Multi-tRNA Synthetase Complex by Multiple Reaction Monitoring Mass Spectrometry Coupled with Size Exclusion Chromatography. PLoS One 2015; 10:e0142253. [PMID: 26544075 PMCID: PMC4636271 DOI: 10.1371/journal.pone.0142253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins.
Collapse
Affiliation(s)
- Seong-Jun Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136–791, Republic of Korea
| | - Hee-Sung Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136–791, Republic of Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 305–333, Republic of Korea
| | - Jun Seok Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136–791, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136–791, Republic of Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 305–333, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Cho HY, Maeng SJ, Cho HJ, Choi YS, Chung JM, Lee S, Kim HK, Kim JH, Eom CY, Kim YG, Guo M, Jung HS, Kang BS, Kim S. Assembly of Multi-tRNA Synthetase Complex via Heterotetrameric Glutathione Transferase-homology Domains. J Biol Chem 2015; 290:29313-28. [PMID: 26472928 DOI: 10.1074/jbc.m115.690867] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 01/27/2023] Open
Abstract
Many multicomponent protein complexes mediating diverse cellular processes are assembled through scaffolds with specialized protein interaction modules. The multi-tRNA synthetase complex (MSC), consisting of nine different aminoacyl-tRNA synthetases and three non-enzymatic factors (AIMP1-3), serves as a hub for many signaling pathways in addition to its role in protein synthesis. However, the assembly process and structural arrangement of the MSC components are not well understood. Here we show the heterotetrameric complex structure of the glutathione transferase (GST) domains shared among the four MSC components, methionyl-tRNA synthetase (MRS), glutaminyl-prolyl-tRNA synthetase (EPRS), AIMP2 and AIMP3. The MRS-AIMP3 and EPRS-AIMP2 using interface 1 are bridged via interface 2 of AIMP3 and EPRS to generate a unique linear complex of MRS-AIMP3:EPRS-AIMP2 at the molar ratio of (1:1):(1:1). Interestingly, the affinity at interface 2 of AIMP3:EPRS can be varied depending on the occupancy of interface 1, suggesting the dynamic nature of the linear GST tetramer. The four components are optimally arranged for maximal accommodation of additional domains and proteins. These characteristics suggest the GST tetramer as a unique and dynamic structural platform from which the MSC components are assembled. Considering prevalence of the GST-like domains, this tetramer can also provide a tool for the communication of the MSC with other GST-containing cellular factors.
Collapse
Affiliation(s)
- Ha Yeon Cho
- From the School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| | - Seo Jin Maeng
- From the School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| | - Hyo Je Cho
- From the School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| | - Yoon Seo Choi
- From the School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| | - Jeong Min Chung
- the Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Sangmin Lee
- the Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Hoi Kyoung Kim
- the Department of Molecular Medicine and Biopharmaceutical Sciences, Medicinal Bioconvergence Research Center, Graduate School of Convergence Technology, Seoul National University, Seoul 151-742, Korea
| | - Jong Hyun Kim
- the Department of Molecular Medicine and Biopharmaceutical Sciences, Medicinal Bioconvergence Research Center, Graduate School of Convergence Technology, Seoul National University, Seoul 151-742, Korea
| | - Chi-Yong Eom
- the NanoBio Convergence Research Team, Western Seoul Center, Korea Basic Science Institute, Seoul 120-750, Korea
| | - Yeon-Gil Kim
- the Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-834, Korea
| | - Min Guo
- the Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Hyun Suk Jung
- the Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Beom Sik Kang
- From the School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea,
| | - Sunghoon Kim
- the Department of Molecular Medicine and Biopharmaceutical Sciences, Medicinal Bioconvergence Research Center, Graduate School of Convergence Technology, Seoul National University, Seoul 151-742, Korea, the The National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai 201203, China
| |
Collapse
|
41
|
Lei HY, Zhou XL, Ruan ZR, Sun WC, Eriani G, Wang ED. Calpain Cleaves Most Components in the Multiple Aminoacyl-tRNA Synthetase Complex and Affects Their Functions. J Biol Chem 2015; 290:26314-27. [PMID: 26324710 PMCID: PMC4646279 DOI: 10.1074/jbc.m115.681999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Nine aminoacyl-tRNA synthetases (aaRSs) and three scaffold proteins form a super multiple aminoacyl-tRNA synthetase complex (MSC) in the human cytoplasm. Domains that have been added progressively to MSC components during evolution are linked by unstructured flexible peptides, producing an elongated and multiarmed MSC structure that is easily attacked by proteases in vivo. A yeast two-hybrid screen for proteins interacting with LeuRS, a representative MSC member, identified calpain 2, a calcium-activated neutral cysteine protease. Calpain 2 and calpain 1 could partially hydrolyze most MSC components to generate specific fragments that resembled those reported previously. The cleavage sites of calpain in ArgRS, GlnRS, and p43 were precisely mapped. After cleavage, their N-terminal regions were removed. Sixty-three amino acid residues were removed from the N terminus of ArgRS to form ArgRSΔN63; GlnRS formed GlnRSΔN198, and p43 formed p43ΔN106. GlnRSΔN198 had a much weaker affinity for its substrates, tRNA(Gln) and glutamine. p43ΔN106 was the same as the previously reported p43-derived apoptosis-released factor. The formation of p43ΔN106 by calpain depended on Ca(2+) and could be specifically inhibited by calpeptin and by RNAi of the regulatory subunit of calpain in vivo. These results showed, for the first time, that calpain plays an essential role in dissociating the MSC and might regulate the canonical and non-canonical functions of certain components of the MSC.
Collapse
Affiliation(s)
- Hui-Yan Lei
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiao-Long Zhou
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhi-Rong Ruan
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei-Cheng Sun
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China, The School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China, and
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Université de Strasbourg, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | - En-Duo Wang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China, The School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China, and
| |
Collapse
|
42
|
Lee JH, You S, Hyeon DY, Kang B, Kim H, Park KM, Han B, Hwang D, Kim S. Comprehensive data resources and analytical tools for pathological association of aminoacyl tRNA synthetases with cancer. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav022. [PMID: 25824651 PMCID: PMC4377328 DOI: 10.1093/database/bav022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian cells have cytoplasmic and mitochondrial aminoacyl-tRNA synthetases (ARSs) that catalyze aminoacylation of tRNAs during protein synthesis. Despite their housekeeping functions in protein synthesis, recently, ARSs and ARS-interacting multifunctional proteins (AIMPs) have been shown to play important roles in disease pathogenesis through their interactions with disease-related molecules. However, there are lacks of data resources and analytical tools that can be used to examine disease associations of ARS/AIMPs. Here, we developed an Integrated Database for ARSs (IDA), a resource database including cancer genomic/proteomic and interaction data of ARS/AIMPs. IDA includes mRNA expression, somatic mutation, copy number variation and phosphorylation data of ARS/AIMPs and their interacting proteins in various cancers. IDA further includes an array of analytical tools for exploration of disease association of ARS/AIMPs, identification of disease-associated ARS/AIMP interactors and reconstruction of ARS-dependent disease-perturbed network models. Therefore, IDA provides both comprehensive data resources and analytical tools for understanding potential roles of ARS/AIMPs in cancers. Database URL:http://ida.biocon.re.kr/, http://ars.biocon.re.kr/
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sungyong You
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Do Young Hyeon
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Byeongsoo Kang
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyerim Kim
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyoung Mii Park
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Byungwoo Han
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Daehee Hwang
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
43
|
Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 2015; 16:6571-94. [PMID: 25807264 PMCID: PMC4394549 DOI: 10.3390/ijms16036571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.
Collapse
|
44
|
Datt M, Sharma A. Evolutionary and structural annotation of disease-associated mutations in human aminoacyl-tRNA synthetases. BMC Genomics 2014; 15:1063. [PMID: 25476837 PMCID: PMC4298046 DOI: 10.1186/1471-2164-15-1063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Mutation(s) in proteins are a natural byproduct of evolution but can also cause serious diseases. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of all cellular protein translational machineries, and in humans they drive translation in both cytoplasm and mitochondria. Mutations in aaRSs have been implicated in a plethora of diseases including neurological conditions, metabolic disorders and cancer. Results We have developed an algorithmic approach for genome-wide analyses of sequence substitutions that combines evolutionary, structural and functional information. This pipeline enabled us to super-annotate human aaRS mutations and analyze their linkage to health disorders. Our data suggest that in some but not all cases, aaRS mutations occur in functional and structural sectors where they can manifest their pathological effects by altering enzyme activity or causing structural instability. Further, mutations appear in both solvent exposed and buried regions of aaRSs indicating that these alterations could lead to dysfunctional enzymes resulting in abnormal protein translation routines by affecting inter-molecular interactions or by disruption of non-bonded interactions. Overall, the prevalence of mutations is much higher in mitochondrial aaRSs, and the two most often mutated aaRSs are mitochondrial glutamyl-tRNA synthetase and dual localized glycyl-tRNA synthetase. Out of 63 mutations annotated in this work, only 12 (~20%) were observed in regions that could directly affect aminoacylation activity via either binding to ATP/amino-acid, tRNA or by involvement in dimerization. Mutations in structural cores or at potential biomolecular interfaces account for ~55% mutations while remaining mutations (~25%) remain structurally un-annotated. Conclusion This work provides a comprehensive structural framework within which most defective human aaRSs have been structurally analyzed. The methodology described here could be employed to annotate mutations in other protein families in a high-throughput manner. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1063) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Amit Sharma
- Structural and Computational Biology group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|