1
|
Wang Y, Wang J, Zhao A, Huang X, Zhang X. HPV16 E6E7 up-regulates KIF2A expression by activating JNK/c-Jun signal, is beneficial to migration and invasion of cervical cancer cells. Open Med (Wars) 2022; 17:1780-1787. [PMID: 36447525 PMCID: PMC9663933 DOI: 10.1515/med-2022-0578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2023] Open
Abstract
Cervical cancer is the fourth most common cancer and the fourth leading cause of cancer death in women. Human papillomavirus (HPV16) E6/E7 heterogenous expression in C33A cells increased the mRNA and protein levels of KIF2A, while siRNA deletion of endogenous E6/E7 reduced the mRNA and protein levels of KIF2A in SiHa cells. KIF2A promoted cell migration and invasion, and regulated the expression of epithelial-mesenchymal transition-related proteins in C33A and SiHa cells. The exogenous expression of E6/E7 in C33A cells increased the phosphorylation of Akt, ERK, and JNK. However, Akt (API-2) and ERK (PD98059) inhibitors had no effect on the increase in KIF2A expression induced by E6/E7, while JNK inhibitors (JNK-IN-8 and SP600125) blocked the increase in KIF2A expression induced by E6/E7. The exogenous expression of E6/E7 increased the levels of transcription factor c-Jun, which is the classic substrate of JNK. Knockdown of c-Jun reduced the increase in KIF2A expression induced by E6/E7. In summary, KIF2A plays a key role in the motility and metastasis of cervical cancer. HPV16 E6/E7 can increase the levels of transcription factor c-Jun by activating the JNK signal, thereby up-regulating the transcriptional expression of KIF2A.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Jinfeng Wang
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Anqi Zhao
- Department of Obstetrics and Gynecology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xin Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xin Zhang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| |
Collapse
|
2
|
Wang Z, Wu J, Jiang J, Ma Q, Song M, Xu T, Liu Y, Chen Z, Bao Y, Huang M, Zhang M, Ji N. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:55. [PMID: 35718777 PMCID: PMC9208156 DOI: 10.1186/s13223-022-00697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022]
Abstract
Background The microtubule-dependent molecular motor protein Kinesin Family Member 2A (KIF2A) is down-regulated in asthmatic human airway epithelium. However, little is known about the roles of KIF2A as well as the possible underlying mechanisms in asthma. Methods House dust mite (HDM) extract was administered to establish a murine model of asthma. The expression of KIF2A, IL-33 and the autophagy pathways were detected. The plasmid pCMV-KIF2A was used to overexpress KIF2A in the airway epithelial cells in vitro and in vivo. IL-4, IL-5, IL-33 and other cytokines in bronchoalveolar lavage fluid (BALF) and lung tissues homogenates were measured. Results In response to the challenge of house dust mite (HDM) in vitro and in vivo, airway epithelial cells displayed decreased production of KIF2A. Meanwhile, autophagy and IL-33 were increased in HMD-treated epithelial cells. Mechanistically, KIF2A decreased autophagy via suppressing mTORC1 pathway in HDM-treated epithelial cells, which contributed to the reduced production of IL-33. Moreover, in vivo KIF2A transfection reduced IL-33 and autophagy in the lung, leading to the attenuation of allergic asthma. Conclusion KIF2A suppressed mTORC1-mediated autophagy and decreased the production of epithelial-derived cytokine IL-33 in allergic airway inflammation. These data indicate that KIF2A may be a novel target in allergic asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00697-9.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meijuan Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanmin Bao
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Zhu Y, Ma C, Lv A, Kou C. Circular RNA circ_0010235 sponges miR-338-3p to play oncogenic role in proliferation, migration and invasion of non-small-cell lung cancer cells through modulating KIF2A. Ann Med 2021; 53:693-706. [PMID: 34024242 PMCID: PMC8158223 DOI: 10.1080/07853890.2021.1925736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Circular RNA microarray analysis showed hsa_circ_0010235 (circ_0010235) was highly upregulated in non-small-cell lung cancer (NSCLC) patients; however, its role in carcinogenesis and development of NSCLC cells was unrevealed. Here, we intended to investigate role and mechanism of circ_0010235 in NSCLC proliferation, migration and invasion. METHODS AND RESULTS Expression of circ_0010235, microRNA (miR)-338-3p and kinesin family member 2A (KIF2A) was detected by quantitative real-time PCR, western blotting and immunohistochemistry (IHC). Cell progression was measured by cell-counting kit-8 assay, 5-ethynyl-2-deoxyuridine (EdU) assay, flow cytometry, transwell assay, western blotting, IHC and xenograft experiment. The relationship among circ_0010235, miR-338-3p and KIF2A was determined by dual-luciferase reporter assay, RNA immunoprecipitation and Pearson's correlation analysis. Expression of circ_0010235 was increased in human NSCLC tissues and cells, accompanied with miR-338-3p downregulation and KIF2A upregulation. Essentially, circ_0010235 could sponge miR-338-3p via target binding, and miR-338-3p downstream targeted KIF2A. Functionally, exhaustion of circ_0010235 induced apoptosis rate of NSCLC cells and curbed cell viability, EdU incorporation, migration rate and invasion rate, accompanied with higher E-cadherin and lower N-cadherin expression. Additionally, re-expression of miR-338-3p prompted above similar effects in NSCLC cells in vitro. Contrarily, miR-338-3p blockage partially counteract the effects of circ_0010235 exhaustion; plus, restoration of KIF2A could attenuate miR-338-3p role, as well. Notably, interfering circ_0010235 delayed tumour growth of NSCLC cells by promoting miR-338-3p and E-cadherin expression, and depressing KIF2A, ki-67 and N-cadherin expression. CONCLUSIONS circ_0010235 could be a novel identified oncogenic circRNA in NSCLC, and targeting miR-338-3p/KIF2A axis was one regulatory mechanism underlying circ_0010235.KEY MESSAGECirc_0010235 was an upregulated circRNA in NSCLC patients and cells.Interfering circ_0010235 restrained NSCLC cell proliferation and metastasis in vitro and in vivo.miR-338-3p per se suppressed NSCLC in vitro and its downregulation diminished the tumour-suppressive role of circ_0010235 blockage in NSCLC cells.miR-338-3p could downstream target KIF2A and be sponged by circ_0010235.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Internal Medicine (1), Shandong Provincial Chest Hospital, Jinan, China
| | - Chunling Ma
- Department of Ophthalmology, Shandong Feicheng Mining Center Hospital, Feicheng, China
| | - Aiai Lv
- Department of Internal Medicine (5), Shandong Provincial Chest Hospital, Jinan, China
| | - Changwei Kou
- Department of Internal Medicine (1), Shandong Provincial Chest Hospital, Jinan, China
| |
Collapse
|
4
|
Jiang CF, Xie YX, Qian YC, Wang M, Liu LZ, Shu YQ, Bai XM, Jiang BH. TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int 2021; 21:542. [PMID: 34663310 PMCID: PMC8522147 DOI: 10.1186/s12935-021-02235-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 02/14/2023] Open
Abstract
Background Chemoresistance is a critical risk problem for breast cancer treatment. However, mechanisms by which chemoresistance arises remains to be elucidated. The expression of T-box transcription factor 15 (TBX-15) was found downregulated in some cancer tissues. However, role and mechanism of TBX15 in breast cancer chemoresistance is unknown. Here we aimed to identify the effects and mechanisms of TBX15 in doxorubicin resistance in breast cancer. Methods As measures of Drug sensitivity analysis, MTT and IC50 assays were used in DOX-resistant breast cancer cells. ECAR and OCR assays were used to analyze the glycolysis level, while Immunoblotting and Immunofluorescence assays were used to analyze the autophagy levels in vitro. By using online prediction software, luciferase reporter assays, co-Immunoprecipitation, Western blotting analysis and experimental animals models, we further elucidated the mechanisms. Results We found TBX15 expression levels were decreased in Doxorubicin (DOX)-resistant breast cancer cells. Overexpression of TBX15 reversed the DOX resistance by inducing microRNA-152 (miR-152) expression. We found that KIF2C levels were highly expressed in DOX-resistant breast cancer tissues and cells, and KIF2C was a potential target of miR-152. TBX15 and miR-152 overexpression suppressed autophagy and glycolysis in breast cancer cells, while KIF2C overexpression reversed the process. Overexpression of KIF2C increased DOX resistance in cancer cells. Furthermore, KIF2C directly binds with PKM2 for inducing the DOX resistance. KIF2C can prevent the ubiquitination of PKM2 and increase its protein stability. In addition, we further identified that Domain-2 of KIF2C played a major role in the binding with PKM2 and preventing PKM2 ubiquitination, which enhanced DOX resistance by promoting autophagy and glycolysis. Conclusions Our data identify a new mechanism by which TBX15 abolishes DOX chemoresistance in breast cancer, and suggest that TBX15/miR-152/KIF2C axis is a novel signaling pathway for mediating DOX resistance in breast cancer through regulating PKM2 ubiquitination and decreasing PKM2 stability. This finding suggests new therapeutic target and/or novel strategy development for cancer treatment to overcome drug resistance in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02235-w.
Collapse
Affiliation(s)
- Cheng-Fei Jiang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yun-Xia Xie
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ying-Chen Qian
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Min Wang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xiao-Ming Bai
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China. .,Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
5
|
Li D, Sun H, Meng L, Li D. The Overexpression of Kinesin Superfamily Protein 2A (KIF2A) was Associated with the Proliferation and Prognosis of Esophageal Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:3731-3739. [PMID: 32547209 PMCID: PMC7246320 DOI: 10.2147/cmar.s248008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Aim Kinesin family member 2A (KIF2A) is a member of the kinesin-13 superfamily protein. KIF2A played a role in the development of many tumors. However, the role of KIF2A in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we aimed to investigate the role of KIF2A in ESCC. Methods We used bioinformatics analysis to study the expression levels and prognosis of KIF2A in ESCC and normal tissues. We also used our own samples to verify the results by immunohistochemistry. Then, the biological functions of KIF2A in ESCC was studied by cell experiments and animal experiments. Results Both the TCGA database and our samples showed that KIF2A was relatively highly expressed in ESCC tissues and was significantly associated with disease-free survival (P =0.037) in TCGA database. Colony formation assay, CCK8 and Western blotting results showed that knockdown of KIF2A can significantly reduce colony forming ability and proliferation ability. The results of animal experiments showed that knocking down KIF2A can significantly reduce the tumor volume of mice. Conclusion KIF2A might be used as a prognostic factor for ESCC, and knockdown of KIF2A could inhibit ESCC proliferation in vitro and in vivo, respectively. KIF2A could serve as a potential prognostic biomarker and therapeutic target for future ESCC.
Collapse
Affiliation(s)
- Demao Li
- Department of Thoracic Surgery, Xingtai People's Hospital, Xingtai City, Hebei 054000, People's Republic of China
| | - Huijie Sun
- Department of Pharmacy, Xingtai Medical College, Xingtai City, Hebei 054000, People's Republic of China
| | - Linglei Meng
- Department of CT/MR, Xingtai People's Hospital, Xingtai City, Hebei 054000, People's Republic of China
| | - Deshang Li
- Department of Laboratory, Xingtai People's Hospital, Xingtai City, Hebei 054000, People's Republic of China
| |
Collapse
|
6
|
Pan S, Zhan Y, Chen X, Wu B, Liu B. Identification of Biomarkers for Controlling Cancer Stem Cell Characteristics in Bladder Cancer by Network Analysis of Transcriptome Data Stemness Indices. Front Oncol 2019; 9:613. [PMID: 31334127 PMCID: PMC6620567 DOI: 10.3389/fonc.2019.00613] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/21/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Stem cells characterized by self-renewal and therapeutic resistance play crucial roles in bladder cancer (BLCA). However, the genes modulating the maintenance and proliferation of BLCA stem cells are still unclear. In this study, we aimed to characterize the expression of stem cell-related genes in BLCA. Methods: The mRNA expression-based stemness index (mRNAsi) of The Cancer Genome Atlas (TCGA) was evaluated and corrected by tumor purity. Corrected mRNAsi were further analyzed with regard to muscle-invasive bladder cancer molecular subtypes, survival analysis, pathological staging characteristics, and outcomes after primary treatment. Next, weighted gene co-expression network analysis was used to find modules of interest and key genes. Functional enrichment analysis was performed to functionally annotate the modules and key genes. The expression levels of key genes in all cancers were validated using Oncomine and Gene Expression Omnibus (GEO) database containing molecular subtypes in BLCA. Protein interaction networks were used to identify upstream genes, and the relationships between genes were analyzed at the protein and transcription levels. Findings: mRNAsi was significantly upregulated in cancer tissues. Corrected mRNAsi in BLCA increased as tumor stage increased, with T3 having the highest stem cell characteristics. Lower corrected mRNAsi scores had better overall survival and treatment outcome. The modules of interest and key genes were determined based on topological overlap measurement clustering results and the inclusion criteria. For 13 key genes (AURKA, BUB1B, CDCA5, CDCA8, KIF11, KIF18B, KIF2C, KIFC1, KPNA2, NCAPG, NEK2, NUSAP1, and RACGAP1), enriched gene ontology terms related to cell proliferation (e.g., mitotic nuclear division, spindle, and microtubule binding) were determined. Their expression did not differ according to the pathological stages of BLCA, and these genes were clearly overexpressed in many types of cancers. In GEO database, the expression levels of 13 key genes were higher in basal subtype with the highest stem cell characteristics than in luminal and its subtypes. AURKB and PLK1 may be regulated upstream of other key genes, and the key genes were found to be strongly correlated with each other and with upstream genes. Interpretation: The 13 key genes identified in this study were found to play important roles in the maintenance of BLCA stem cells. Controlling the upstream genes AURKB and PLK1 may have applications in the treatment of BLCA. These genes may act as therapeutic targets for inhibiting the stemness characteristics of BLCA.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Lu H, Wang C, Xue L, Zhang Q, Luh F, Wang J, Lin TG, Yen Y, Liu X. Human Mitotic Centromere-Associated Kinesin Is Targeted by MicroRNA 485-5p/181c and Prognosticates Poor Survivability of Breast Cancer. JOURNAL OF ONCOLOGY 2019; 2019:2316237. [PMID: 31073307 PMCID: PMC6470426 DOI: 10.1155/2019/2316237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE This study aims to evaluate the prognostic value of human Mitotic Centromere-Associated Kinesin (MCAK), a microtubule-dependent molecular motor, in breast cancers. The posttranscriptional regulation of MCAK by microRNAs will also be explored. METHODS The large-scale gene expression datasets of breast cancer (total n=4,677) were obtained from GEO, NKI, and TCGA database. Kaplan-Meier and Cox analyses were used for survival analysis. MicroRNAs targeting MCAK were predicted by bioinformatic analysis and validated by a dual-luciferase reporter assay. RESULTS The expression of MCAK was significantly associated with aggressive features of breast cancer, including tumor stage, Elston grade, and molecular subtypes, for global gene expression datasets of breast cancer (p<0.05). Overexpression of MCAK was significantly associated with poor outcome in a dose-dependent manner for either ER-positive or ER-negative breast cancer. Evidence from bioinformatic prediction, coexpression assays, and gene set enrichment analyses suggested that miR-485-5p and miR-181c might target MCAK and suppress its expression. A 3'UTR dual-luciferase target reporter assay demonstrated that miR-485-5p and miR-181c mimics specifically inhibited relative Firefly/Renilla luciferase activity by about 50% in corresponding reporter plasmids. Further survival analysis also revealed that miR-485-5p (HR=0.59, 95% CI 0.37-0.92) and miR-181c (HR=0.54, 95% CI 0.34-0.84) played opposite roles of MCAK (HR=2.80, 95% CI 1.77-4.57) and were significantly associated with better outcome in breast cancers. CONCLUSION MCAK could serve as a prognostic biomarker for breast cancers. miR-485-5p and miR-181c could specifically target and suppress the MCAK gene expression in breast cancer cells.
Collapse
Affiliation(s)
- Huajun Lu
- Department of Oncological Radiotherapy, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, China
| | - Chaoqun Wang
- Department of Pathology, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, China
| | - Lijun Xue
- Department of Pathology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Qi Zhang
- Department of Bioinformatics, Hangzhou Hepu Biotechnology Inc., Hangzhou, Zhejiang 310015, China
| | - Frank Luh
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
| | - Jianghai Wang
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
| | - Tiffany G. Lin
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
| | - Yun Yen
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
- Department of Tumor Biomarker Development, California Cancer Institute, Temple City, CA 91780, USA
| | - Xiyong Liu
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
- Department of Tumor Biomarker Development, California Cancer Institute, Temple City, CA 91780, USA
| |
Collapse
|
8
|
Yu Y, Xiong Y, Montani JP, Yang Z, Ming XF. Arginase-II activates mTORC1 through myosin-1b in vascular cell senescence and apoptosis. Cell Death Dis 2018; 9:313. [PMID: 29472548 PMCID: PMC5833809 DOI: 10.1038/s41419-018-0356-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/21/2022]
Abstract
Type-II L-arginine:ureahydrolase, arginase-II (Arg-II), is shown to activate mechanistic target of rapamycin complex 1 (mTORC1) pathway and contributes to cell senescence and apoptosis. In an attempt to elucidate the underlying mechanism, we identified myosin-1b (Myo1b) as a mediator. Overexpression of Arg-II induces re-distribution of lysosome and mTOR but not of tuberous sclerosis complex (TSC) from perinuclear area to cell periphery, dissociation of TSC from lysosome and activation of mTORC1-ribosomal protein S6 kinase 1 (S6K1) pathway. Silencing Myo1b prevents all these alterations induced by Arg-II. By overexpressing Myo1b or its mutant with point mutation in its pleckstrin homology (PH) domain we further demonstrate that this effect of Myo1b is dependent on its PH domain that is required for Myo1b-lysosome association. Notably, Arg-II promotes association of Myo1b with lysosomes. In addition, we show that in senescent vascular smooth muscle cells with elevated endogenous Arg-II, silencing Myo1b prevents Arg-II-mediated lysosomal positioning, dissociation of TSC from lysosome, mTORC1 activation and cell apoptosis. Taken together, our study demonstrates that Myo1b mediates the effect of Arg-II in activating mTORC1-S6K1 through promoting peripheral lysosomal positioning, that results in spatial separation and thus dissociation of TSC from lysosome, leading to hyperactive mTORC1-S6K1 signaling linking to cellular senescence/apoptosis.
Collapse
Affiliation(s)
- Yi Yu
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Yuyan Xiong
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland. .,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland.
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland. .,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland.
| |
Collapse
|
9
|
KIF2A Overexpression and Its Association with Clinicopathologic Characteristics and Poor Prognoses in Patients with Gastric Cancer. DISEASE MARKERS 2016; 2016:7484516. [PMID: 27773961 PMCID: PMC5059588 DOI: 10.1155/2016/7484516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/04/2016] [Indexed: 12/18/2022]
Abstract
Kinesin family protein 2A (KIF2A), an M-type nonmotile microtubule depolymerase, has attracted attention for its role in carcinogenesis and poor prognoses in various human cancers. In this study, we aimed to evaluate the expression of KIF2A and its robustness and potential to predict clinical outcomes in gastric cancer (GC) patients. The messenger RNA (mRNA) expression of KIF2A was determined in 24 pairs of cancerous and adjacent nontumor tissues by real-time polymerase chain reaction. Immunohistochemistry of KIF2A was performed on a tissue microarray composed of 461 GC and 65 matched adjacent nontumor tissues removed during surgeries and 18 chronic gastritis, 15 intestinal metaplasia, and 37 low-grade and 62 high-grade intraepithelial neoplasias acquired through gastric endoscopic biopsies. Univariate and multivariate Cox regression models were used to perform survival analyses. The high KIF2A expression was significantly correlated to histological type, TNM stage, and lymph node metastasis. A negative correlation was found between KIF2A expression and the 5-year survival rate of GC patients. In addition, multivariate analysis indicated that KIF2A is an independent prognostic factor in GC. This study demonstrated the high KIF2A expression might serve as an independent marker for poor prognoses in GC patients.
Collapse
|