1
|
Ehrhardt E, Whitehead SC, Namiki S, Minegishi R, Siwanowicz I, Feng K, Otsuna H, Meissner GW, Stern D, Truman J, Shepherd D, Dickinson MH, Ito K, Dickson BJ, Cohen I, Card GM, Korff W. Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542897. [PMID: 37398009 PMCID: PMC10312520 DOI: 10.1101/2023.05.31.542897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their function. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse driver lines targeting 198 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neural circuits and connectivity of premotor circuits while linking them to behavioral outputs.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Samuel C Whitehead
- Physics Department, Cornell University, 271 Clark Hall, Ithaca, New York 14853, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Kai Feng
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - FlyLight Project Team
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - David Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Jim Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - David Shepherd
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ
| | - Michael H. Dickinson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Itai Cohen
- Physics Department, Cornell University, 271 Clark Hall, Ithaca, New York 14853, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| |
Collapse
|
2
|
Hürkey S, Niemeyer N, Schleimer JH, Ryglewski S, Schreiber S, Duch C. Gap junctions desynchronize a neural circuit to stabilize insect flight. Nature 2023:10.1038/s41586-023-06099-0. [PMID: 37225999 DOI: 10.1038/s41586-023-06099-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Insect asynchronous flight is one of the most prevalent forms of animal locomotion used by more than 600,000 species. Despite profound insights into the motor patterns1, biomechanics2,3 and aerodynamics underlying asynchronous flight4,5, the architecture and function of the central-pattern-generating (CPG) neural network remain unclear. Here, on the basis of an experiment-theory approach including electrophysiology, optophysiology, Drosophila genetics and mathematical modelling, we identify a miniaturized circuit solution with unexpected properties. The CPG network consists of motoneurons interconnected by electrical synapses that, in contrast to doctrine, produce network activity splayed out in time instead of synchronized across neurons. Experimental and mathematical evidence support a generic mechanism for network desynchronization that relies on weak electrical synapses and specific excitability dynamics of the coupled neurons. In small networks, electrical synapses can synchronize or desynchronize network activity, depending on the neuron-intrinsic dynamics and ion channel composition. In the asynchronous flight CPG, this mechanism translates unpatterned premotor input into stereotyped neuronal firing with fixed sequences of cell activation that ensure stable wingbeat power and, as we show, is conserved across multiple species. Our findings prove a wider functional versatility of electrical synapses in the dynamic control of neural circuits and highlight the relevance of detecting electrical synapses in connectomics.
Collapse
Affiliation(s)
- Silvan Hürkey
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nelson Niemeyer
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Remy NQ, Guevarra JA, Vonhoff FJ. Food supplementation with wheat gluten leads to climbing performance decline in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000642. [PMID: 36217442 PMCID: PMC9547276 DOI: 10.17912/micropub.biology.000642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022]
Abstract
Gluten sensitivity is associated with digestive and neurological disorders, correlating with abnormal amino acid levels, innate immune responses, gut dysbiosis and movement incoordination. However, the molecular mechanisms linking dietary gluten and brain function remain incompletely understood. We used Drosophila melanogaster to test the effects of gluten ingestion in locomotion performance. Whereas flies on control food showed decreased climbing performance after five weeks, flies exposed to food supplemented with different gluten concentrations showed a significant locomotion decline after three weeks of treatment. Future studies will determine the mechanisms underlying the observed gluten-dependent phenotypes to establish Drosophila models for gluten sensitivity.
Collapse
Affiliation(s)
| | | | - Fernando J Vonhoff
- University of Maryland Baltimore County, Baltimore, MD, United States
,
Correspondence to: Fernando J Vonhoff (
)
| |
Collapse
|
4
|
Kishore S, Cadoff EB, Agha MA, McLean DL. Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord. Science 2020; 370:431-436. [PMID: 33093104 DOI: 10.1126/science.abb4608] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
In vertebrates, faster movements involve the orderly recruitment of different types of spinal motor neurons. However, it is not known how premotor inhibitory circuits are organized to ensure alternating motor output at different movement speeds. We found that different types of commissural inhibitory interneurons in zebrafish form compartmental microcircuits during development that align inhibitory strength and recruitment order. Axonal microcircuits develop first and provide the most potent premotor inhibition during the fastest movements, followed by perisomatic microcircuits, and then dendritic microcircuits that provide the weakest inhibition during the slowest movements. The conversion of a temporal sequence of neuronal development into a spatial pattern of inhibitory connections provides an "ontogenotopic" solution to the problem of shaping spinal motor output at different speeds of movement.
Collapse
Affiliation(s)
- Sandeep Kishore
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Eli B Cadoff
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Moneeza A Agha
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
5
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
6
|
Werner J, Arian J, Bernhardt I, Ryglewski S, Duch C. Differential localization of voltage-gated potassium channels during Drosophila metamorphosis. J Neurogenet 2020; 34:133-150. [PMID: 31997675 DOI: 10.1080/01677063.2020.1715972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neuronal excitability is determined by the combination of different ion channels and their sub-neuronal localization. This study utilizes protein trap fly strains with endogenously tagged channels to analyze the spatial expression patterns of the four Shaker-related voltage-gated potassium channels, Kv1-4, in the larval, pupal, and adult Drosophila ventral nerve cord. We find that all four channels (Shaker, Kv1; Shab, Kv2; Shaw, Kv3; and Shal, Kv4) each show different spatial expression patterns in the Drosophila ventral nerve cord and are predominantly targeted to different sub-neuronal compartments. Shaker is abundantly expressed in axons, Shab also localizes to axons but mostly in commissures, Shaw expression is restricted to distinct parts of neuropils, and Shal is found somatodendritically, but also in axons of identified motoneurons. During early pupal life expression of all four Shaker-related channels is markedly decreased with an almost complete shutdown of expression at early pupal stage 5 (∼30% through metamorphosis). Re-expression of Kv1-4 channels at pupal stage 6 starts with abundant channel localization in neuronal somata, followed by channel targeting to the respective sub-neuronal compartments until late pupal life. The developmental time course of tagged Kv1-4 channel expression corresponds with previously published data on developmental changes in single neuron physiology, thus indicating that protein trap fly strains are a useful tool to analyze developmental regulation of potassium channel expression. Finally, we take advantage of the large diameter of the giant fiber (GF) interneuron to map channel expression onto the axon and axon terminals of an identified interneuron. Shaker, Shaw, and Shal but not Shab channels localize to the non-myelinated GF axonal membrane and axon terminals. This study constitutes a first step toward systematically analyzing sub-neuronal potassium channel localization in Drosophila. Functional implications as well as similarities and differences to Kv1-4 channel localization in mammalian neurons are discussed.
Collapse
Affiliation(s)
- Jan Werner
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jashar Arian
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ida Bernhardt
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
7
|
Kadas D, Papanikolopoulou K, Xirou S, Consoulas C, Skoulakis EMC. Human Tau isoform-specific presynaptic deficits in a Drosophila Central Nervous System circuit. Neurobiol Dis 2018; 124:311-321. [PMID: 30529489 DOI: 10.1016/j.nbd.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023] Open
Abstract
Accumulation of normal or mutant human Tau isoforms in Central Nervous System (CNS) neurons of vertebrate and invertebrate models underlies pathologies ranging from behavioral deficits to neurodegeneration that broadly recapitulate human Tauopathies. Although some functional differences have begun to emerge, it is still largely unclear whether normal and mutant Tau isoforms induce differential effects on the synaptic physiology of CNS neurons. We use the oligosynaptic Giant Fiber System in the adult Drosophila CNS to address this question and reveal that 3R and 4R isoforms affect distinct synaptic parameters. Whereas 0N3R increased failure rate upon high frequency stimulation, 0N4R compromised stimulus conduction and response speed at a specific cholinergic synapse in an age-dependent manner. In contrast, accumulation of the R406W mutant of 0N4R induced mild, age-dependent conduction velocity defects. Because 0N4R and its mutant isoform are expressed equivalently, this demonstrates that the defects are not merely consequent of exogenous human Tau accumulation and suggests distinct functional properties of 3R and 4R isoforms in cholinergic presynapses.
Collapse
Affiliation(s)
- Dimitrios Kadas
- Laboratory of Experimental Physiology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Katerina Papanikolopoulou
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming str, Vari 16672, Greece
| | - Sofia Xirou
- Laboratory of Experimental Physiology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Consoulas
- Laboratory of Experimental Physiology, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming str, Vari 16672, Greece.
| |
Collapse
|
8
|
Luo J, Liu Y, Nässel DR. Transcriptional Reorganization of Drosophila Motor Neurons and Their Muscular Junctions toward a Neuroendocrine Phenotype by the bHLH Protein Dimmed. Front Mol Neurosci 2017; 10:260. [PMID: 28855860 PMCID: PMC5557793 DOI: 10.3389/fnmol.2017.00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023] Open
Abstract
Neuroendocrine cells store and secrete bulk amounts of neuropeptides, and display morphological and molecular characteristics distinct from neurons signaling with classical neurotransmitters. In Drosophila the transcription factor Dimmed (Dimm), is a prime organizer of neuroendocrine capacity in a majority of the peptidergic neurons. These neurons display large cell bodies and extensive axon terminations that commonly do not form regular synapses. We ask which molecular compartments of a neuron are affected by Dimm to generate these morphological features. Thus, we ectopically expressed Dimm in glutamatergic, Dimm-negative, motor neurons and analyzed their characteristics in the central nervous system and the neuromuscular junction. Ectopic Dimm results in motor neurons with enlarged cell bodies, diminished dendrites, larger axon terminations and boutons, as well as reduced expression of synaptic proteins both pre and post-synaptically. Furthermore, the neurons display diminished vesicular glutamate transporter, and signaling components known to sustain interactions between the developing axon termination and muscle, such as wingless and frizzled are down regulated. Ectopic co-expression of Dimm and the insulin receptor augments most of the above effects on the motor neurons. In summary, ectopic Dimm expression alters the glutamatergic motor neuron phenotype toward a neuroendocrine one, both pre- and post-synaptically. Thus, Dimm is a key organizer of both secretory capacity and morphological features characteristic of neuroendocrine cells, and this transcription factor affects also post-synaptic proteins.
Collapse
Affiliation(s)
- Jiangnan Luo
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Yiting Liu
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
9
|
Ryglewski S, Vonhoff F, Scheckel K, Duch C. Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material. Neuron 2017; 93:632-645.e6. [PMID: 28132832 DOI: 10.1016/j.neuron.2016.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/11/2016] [Accepted: 12/28/2016] [Indexed: 01/02/2023]
Abstract
Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- Institute of Neurobiology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Fernando Vonhoff
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Kathryn Scheckel
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Carsten Duch
- Institute of Neurobiology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany.
| |
Collapse
|
10
|
Gomez J, Barnett MA, Natu V, Mezer A, Palomero-Gallagher N, Weiner KS, Amunts K, Zilles K, Grill-Spector K. Microstructural proliferation in human cortex is coupled with the development of face processing. Science 2017. [PMID: 28059764 DOI: 10.1126/science.aag0311.microstructural] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
How does cortical tissue change as brain function and behavior improve from childhood to adulthood? By combining quantitative and functional magnetic resonance imaging in children and adults, we find differential development of high-level visual areas that are involved in face and place recognition. Development of face-selective regions, but not place-selective regions, is dominated by microstructural proliferation. This tissue development is correlated with specific increases in functional selectivity to faces, as well as improvements in face recognition, and ultimately leads to differentiated tissue properties between face- and place-selective regions in adulthood, which we validate with postmortem cytoarchitectonic measurements. These data suggest a new model by which emergent brain function and behavior result from cortical tissue proliferation rather than from pruning exclusively.
Collapse
Affiliation(s)
- Jesse Gomez
- Neurosciences Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Vaidehi Natu
- Psychology Department, Stanford University, Stanford, CA 94305, USA
| | - Aviv Mezer
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Kevin S Weiner
- Psychology Department, Stanford University, Stanford, CA 94305, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- JARA-BRAIN Research Division, Jülich Aachen Research Alliance (JARA), Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN Research Division, Jülich Aachen Research Alliance (JARA), Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Kalanit Grill-Spector
- Neurosciences Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Psychology Department, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Gomez J, Barnett MA, Natu V, Mezer A, Palomero-Gallagher N, Weiner KS, Amunts K, Zilles K, Grill-Spector K. Microstructural proliferation in human cortex is coupled with the development of face processing. Science 2017; 355:68-71. [PMID: 28059764 PMCID: PMC5373008 DOI: 10.1126/science.aag0311] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/23/2016] [Indexed: 11/03/2022]
Abstract
How does cortical tissue change as brain function and behavior improve from childhood to adulthood? By combining quantitative and functional magnetic resonance imaging in children and adults, we find differential development of high-level visual areas that are involved in face and place recognition. Development of face-selective regions, but not place-selective regions, is dominated by microstructural proliferation. This tissue development is correlated with specific increases in functional selectivity to faces, as well as improvements in face recognition, and ultimately leads to differentiated tissue properties between face- and place-selective regions in adulthood, which we validate with postmortem cytoarchitectonic measurements. These data suggest a new model by which emergent brain function and behavior result from cortical tissue proliferation rather than from pruning exclusively.
Collapse
Affiliation(s)
- Jesse Gomez
- Neurosciences Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Vaidehi Natu
- Psychology Department, Stanford University, Stanford, CA 94305, USA
| | - Aviv Mezer
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Kevin S Weiner
- Psychology Department, Stanford University, Stanford, CA 94305, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- JARA-BRAIN Research Division, Jülich Aachen Research Alliance (JARA), Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN Research Division, Jülich Aachen Research Alliance (JARA), Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Kalanit Grill-Spector
- Neurosciences Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Psychology Department, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease. Neural Plast 2015; 2016:3423267. [PMID: 26843990 PMCID: PMC4710938 DOI: 10.1155/2016/3423267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023] Open
Abstract
Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions.
Collapse
|