1
|
Wen A, Zhao M, Jin S, Lu YQ, Feng Y. Structural basis of AlpA-dependent transcription antitermination. Nucleic Acids Res 2022; 50:8321-8330. [PMID: 35871295 PMCID: PMC9371919 DOI: 10.1093/nar/gkac608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
AlpA positively regulates a programmed cell death pathway linked to the virulence of Pseudomonas aeruginosa by recognizing an AlpA binding element within the promoter, then binding RNA polymerase directly and allowing it to bypass an intrinsic terminator positioned downstream. Here, we report the single-particle cryo-electron microscopy structures of both an AlpA-loading complex and an AlpA-loaded complex. These structures indicate that the C-terminal helix-turn-helix motif of AlpA binds to the AlpA binding element and that the N-terminal segment of AlpA forms a narrow ring inside the RNA exit channel. AlpA was also revealed to render RNAP resistant to termination signals by prohibiting RNA hairpin formation in the RNA exit channel. Structural analysis predicted that AlpA, 21Q, λQ and 82Q share the same mechanism of transcription antitermination.
Collapse
Affiliation(s)
- Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Sha Jin
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases , Hangzhou 310058, China
| |
Collapse
|
2
|
Miropolskaya N, Petushkov I, Esyunina D, Kulbachinskiy A. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro. J Biol Chem 2022; 298:102099. [PMID: 35667439 PMCID: PMC9254596 DOI: 10.1016/j.jbc.2022.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo*) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of E. coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
3
|
Putzeys L, Boon M, Lammens EM, Kuznedelov K, Severinov K, Lavigne R. Development of ONT-cappable-seq to unravel the transcriptional landscape of Pseudomonas phages. Comput Struct Biotechnol J 2022; 20:2624-2638. [PMID: 35685363 PMCID: PMC9163698 DOI: 10.1016/j.csbj.2022.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
RNA sequencing has become the method of choice to study the transcriptional landscape of phage-infected bacteria. However, short-read RNA sequencing approaches generally fail to capture the primary 5' and 3' boundaries of transcripts, confounding the discovery of key transcription initiation and termination events as well as operon architectures. Yet, the elucidation of these elements is crucial for the understanding of the strategy of transcription regulation during the infection process, which is currently lacking beyond a handful of model phages. We developed ONT-cappable-seq, a specialized long-read RNA sequencing technique that allows end-to-end sequencing of primary prokaryotic transcripts using the Nanopore sequencing platform. We applied ONT-cappable-seq to study transcription of Pseudomonas aeruginosa phage LUZ7, obtaining a comprehensive genome-wide map of viral transcription start sites, terminators, and complex operon structures that fine-regulate gene expression. Our work provides new insights in the RNA biology of a non-model phage, unveiling distinct promoter architectures, putative small non-coding viral RNAs, and the prominent regulatory role of terminators during infection. The robust workflow presented here offers a framework to obtain a global, yet fine-grained view of phage transcription and paves the way for standardized, in-depth transcription studies for microbial viruses or bacteria in general.
Collapse
Affiliation(s)
- Leena Putzeys
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | | | | | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
4
|
Peña JM, Prezioso SM, McFarland KA, Kambara TK, Ramsey KM, Deighan P, Dove SL. Control of a programmed cell death pathway in Pseudomonas aeruginosa by an antiterminator. Nat Commun 2021; 12:1702. [PMID: 33731715 PMCID: PMC7969949 DOI: 10.1038/s41467-021-21941-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/19/2021] [Indexed: 01/29/2023] Open
Abstract
In Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.
Collapse
Affiliation(s)
- Jennifer M Peña
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha M Prezioso
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kirsty A McFarland
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracy K Kambara
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Cell and Molecular Biology and Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Antitermination protein P7 of bacteriophage Xp10 distinguishes different types of transcriptional pausing by bacterial RNA polymerase. Biochimie 2020; 170:57-64. [DOI: 10.1016/j.biochi.2019.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022]
|
6
|
Structural basis for transcription antitermination at bacterial intrinsic terminator. Nat Commun 2019; 10:3048. [PMID: 31296855 PMCID: PMC6624301 DOI: 10.1038/s41467-019-10955-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/29/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteriophages typically hijack the host bacterial transcriptional machinery to regulate their own gene expression and that of the host bacteria. The structural basis for bacteriophage protein-mediated transcription regulation—in particular transcription antitermination—is largely unknown. Here we report the 3.4 Å and 4.0 Å cryo-EM structures of two bacterial transcription elongation complexes (P7-NusA-TEC and P7-TEC) comprising the bacteriophage protein P7, a master host-transcription regulator encoded by bacteriophage Xp10 of the rice pathogen Xanthomonas oryzae pv. Oryzae (Xoo) and discuss the mechanisms by which P7 modulates the host bacterial RNAP. The structures together with biochemical evidence demonstrate that P7 prevents transcription termination by plugging up the RNAP RNA-exit channel and impeding RNA-hairpin formation at the intrinsic terminator. Moreover, P7 inhibits transcription initiation by restraining RNAP-clamp motions. Our study reveals the structural basis for transcription antitermination by phage proteins and provides insights into bacterial transcription regulation. Bacteriophages reprogram the host transcriptional machinery. Here the authors provide insights into the mechanism of how bacteriophages regulate host transcription by determining the cryo-EM structures of two bacterial transcription elongation complexes bound with the bacteriophage master host-transcription regulator protein P7.
Collapse
|
7
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Yamamoto K, Yamanaka Y, Shimada T, Sarkar P, Yoshida M, Bhardwaj N, Watanabe H, Taira Y, Chatterji D, Ishihama A. Altered Distribution of RNA Polymerase Lacking the Omega Subunit within the Prophages along the Escherichia coli K-12 Genome. mSystems 2018; 3:e00172-17. [PMID: 29468196 PMCID: PMC5811629 DOI: 10.1128/msystems.00172-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/25/2018] [Indexed: 11/20/2022] Open
Abstract
The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α2ββ'ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rpoZ gene product), participates in subunit assembly by supporting the folding of the largest subunit, β', but its functional role remains unsolved except for its involvement in ppGpp binding and stringent response. As an initial approach for elucidation of its functional role, we performed in this study ChIP-chip (chromatin immunoprecipitation with microarray technology) analysis of wild-type and rpoZ-defective mutant strains. The altered distribution of RpoZ-defective RNAP was identified mostly within open reading frames, in particular, of the genes inside prophages. For the genes that exhibited increased or decreased distribution of RpoZ-defective RNAP, the level of transcripts increased or decreased, respectively, as detected by reverse transcription-quantitative PCR (qRT-PCR). In parallel, we analyzed, using genomic SELEX (systemic evolution of ligands by exponential enrichment), the distribution of constitutive promoters that are recognized by RNAP RpoD holoenzyme alone and of general silencer H-NS within prophages. Since all 10 prophages in E. coli K-12 carry only a small number of promoters, the altered occupancy of RpoZ-defective RNAP and of transcripts might represent transcription initiated from as-yet-unidentified host promoters. The genes that exhibited transcription enhanced by RpoZ-defective RNAP are located in the regions of low-level H-NS binding. By using phenotype microarray (PM) assay, alterations of some phenotypes were detected for the rpoZ-deleted mutant, indicating the involvement of RpoZ in regulation of some genes. Possible mechanisms of altered distribution of RNAP inside prophages are discussed. IMPORTANCE The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA polymerase plays a structural role in the formation of RNA polymerase (RNAP) as a chaperone in folding the largest subunit (β', of 1,407 residues in length), but except for binding of the stringent signal ppGpp, little is known of its role in the control of RNAP function. After analysis of genomewide distribution of wild-type and RpoZ-defective RNAP by the ChIP-chip method, we found alteration of the RpoZ-defective RNAP inside open reading frames, in particular, of the genes within prophages. For a set of the genes that exhibited altered occupancy of the RpoZ-defective RNAP, transcription was found to be altered as observed by qRT-PCR assay. All the observations here described indicate the involvement of RpoZ in recognition of some of the prophage genes. This study advances understanding of not only the regulatory role of omega subunit in the functions of RNAP but also the regulatory interplay between prophages and the host E. coli for adjustment of cellular physiology to a variety of environments in nature.
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Yuki Yamanaka
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Tomohiro Shimada
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Paramita Sarkar
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Myu Yoshida
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Neerupma Bhardwaj
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yuki Taira
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Dipankar Chatterji
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| |
Collapse
|
9
|
Agapov A, Olina A, Esyunina D, Kulbachinskiy A. Gfh factors and NusA cooperate to stimulate transcriptional pausing and termination. FEBS Lett 2017; 591:946-953. [PMID: 28236657 DOI: 10.1002/1873-3468.12609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/12/2017] [Accepted: 02/21/2017] [Indexed: 11/09/2022]
Abstract
Lineage-specific Gfh factors from the radioresistant bacterium Deinococcus radiodurans, which bind within the secondary channel of RNA polymerase, stimulate transcriptional pausing at a wide range of pause signals (elemental, hairpin-dependent, post-translocated, backtracking-dependent, and consensus pauses) and increase intrinsic termination. Universal bacterial factor NusA, which binds near the RNA exit channel, enhances the effects of Gfh factors on termination and hairpin-dependent pausing but do not act on other pause sites. It is proposed that NusA and Gfh target different steps in the pausing pathway and may act together to regulate transcription under stress conditions. Thus, transcription factors that interact with nascent RNA in the RNA exit channel can communicate with secondary channel regulators to modulate RNA polymerase activities.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Biology, Biological Faculty, Moscow State University, Russia
| | - Anna Olina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Plant Physiology, Biological Faculty, Moscow State University, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Biology, Biological Faculty, Moscow State University, Russia
| |
Collapse
|
10
|
Brown DR, Sheppard CM, Burchell L, Matthews S, Wigneshweraraj S. The Xp10 Bacteriophage Protein P7 Inhibits Transcription by the Major and Major Variant Forms of the Host RNA Polymerase via a Common Mechanism. J Mol Biol 2016; 428:3911-3919. [PMID: 27515396 PMCID: PMC5053324 DOI: 10.1016/j.jmb.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/24/2023]
Abstract
The σ factor is a functionally obligatory subunit of the bacterial transcription machinery, the RNA polymerase. Bacteriophage-encoded small proteins that either modulate or inhibit the bacterial RNAP to allow the temporal regulation of bacteriophage gene expression often target the activity of the major bacterial σ factor, σ70. Previously, we showed that during Xanthomonas oryzae phage Xp10 infection, the phage protein P7 inhibits the host RNAP by preventing the productive engagement with the promoter and simultaneously displaces the σ70 factor from the RNAP. In this study, we demonstrate that P7 also inhibits the productive engagement of the bacterial RNAP containing the major variant bacterial σ factor, σ54, with its cognate promoter. The results suggest for the first time that the major variant form of the host RNAP can also be targeted by bacteriophage-encoded transcription regulatory proteins. Since the major and major variant σ factor interacting surfaces in the RNAP substantially overlap, but different regions of σ70 and σ54 are used for binding to the RNAP, our results further underscore the importance of the σ–RNAP interface in bacterial RNAP function and regulation and potentially for intervention by antibacterials. Xp10 phage transcription regulator P7 inhibits transcription by RNAP containing σ54. P7 prevents the productive engagement of the σ54–RNAP with the promoter DNA. • P7 disrupts preformed σ54–RNAP-promoter complexes.
Collapse
Affiliation(s)
- D R Brown
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, SW7 2AZ, UK.
| | - C M Sheppard
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, SW7 2AZ, UK
| | - L Burchell
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, SW7 2AZ, UK
| | - S Matthews
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, SW7 2AZ, UK
| | - S Wigneshweraraj
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Regulation of transcriptional pausing through the secondary channel of RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:8699-704. [PMID: 27432968 DOI: 10.1073/pnas.1603531113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptional pausing has emerged as an essential mechanism of genetic regulation in both bacteria and eukaryotes, where it serves to coordinate transcription with other cellular processes and to activate or halt gene expression rapidly in response to external stimuli. Deinococcus radiodurans, a highly radioresistant and stress-resistant bacterium, encodes three members of the Gre family of transcription factors: GreA and two Gre factor homologs, Gfh1 and Gfh2. Whereas GreA is a universal bacterial factor that stimulates RNA cleavage by RNA polymerase (RNAP), the functions of lineage-specific Gfh proteins remain unknown. Here, we demonstrate that these proteins, which bind within the RNAP secondary channel, strongly enhance site-specific transcriptional pausing and intrinsic termination. Uniquely, the pause-stimulatory activity of Gfh proteins depends on the nature of divalent ions (Mg(2+) or Mn(2+)) present in the reaction and is also modulated by the nascent RNA structure and the trigger loop in the RNAP active site. Our data reveal remarkable plasticity of the RNAP active site in response to various regulatory stimuli and highlight functional diversity of transcription factors that bind inside the secondary channel of RNAP.
Collapse
|
12
|
Esyunina D, Turtola M, Pupov D, Bass I, Klimašauskas S, Belogurov G, Kulbachinskiy A. Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases. Nucleic Acids Res 2016; 44:1298-308. [PMID: 26733581 PMCID: PMC4756841 DOI: 10.1093/nar/gkv1521] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/20/2015] [Indexed: 02/01/2023] Open
Abstract
RNA cleavage by bacterial RNA polymerase (RNAP) has been implicated in transcriptional proofreading and reactivation of arrested transcription elongation complexes but its molecular mechanism is less understood than the mechanism of nucleotide addition, despite both reactions taking place in the same active site. RNAP from the radioresistant bacterium Deinococcus radiodurans is characterized by highly efficient intrinsic RNA cleavage in comparison with Escherichia coli RNAP. We find that the enhanced RNA cleavage activity largely derives from amino acid substitutions in the trigger loop (TL), a mobile element of the active site involved in various RNAP activities. The differences in RNA cleavage between these RNAPs disappear when the TL is deleted, or in the presence of GreA cleavage factors, which replace the TL in the active site. We propose that the TL substitutions modulate the RNA cleavage activity by altering the TL folding and its contacts with substrate RNA and that the resulting differences in transcriptional proofreading may play a role in bacterial stress adaptation.
Collapse
Affiliation(s)
- Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | - Irina Bass
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | | | - Georgiy Belogurov
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| |
Collapse
|
13
|
Suplatov D, Švedas V. Study of Functional and Allosteric Sites in Protein Superfamilies. Acta Naturae 2015; 7:34-45. [PMID: 26798490 PMCID: PMC4717248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interaction of proteins (enzymes) with a variety of low-molecular-weight compounds, as well as protein-protein interactions, is the most important factor in the regulation of their functional properties. To date, research effort has routinely focused on studying ligand binding to the functional sites of proteins (active sites of enzymes), whereas the molecular mechanisms of allosteric regulation, as well as binding to other pockets and cavities in protein structures, remained poorly understood. Recent studies have shown that allostery may be an intrinsic property of virtually all proteins. Novel approaches are needed to systematically analyze the architecture and role of various binding sites and establish the relationship between structure, function, and regulation. Computational biology, bioinformatics, and molecular modeling can be used to search for new regulatory centers, characterize their structural peculiarities, as well as compare different pockets in homologous proteins, study the molecular mechanisms of allostery, and understand the communication between topologically independent binding sites in protein structures. The establishment of an evolutionary relationship between different binding centers within protein superfamilies and the discovery of new functional and allosteric (regulatory) sites using computational approaches can improve our understanding of the structure-function relationship in proteins and provide new opportunities for drug design and enzyme engineering.
Collapse
Affiliation(s)
- D. Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Vorobjev hills 1-40, Moscow 119991, Russia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Vorobjev hills 1 -73, 119991, Moscow, Russia
| | - V. Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Vorobjev hills 1-40, Moscow 119991, Russia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Vorobjev hills 1 -73, 119991, Moscow, Russia
| |
Collapse
|
14
|
Zenkin N, Severinov K, Yuzenkova Y. Bacteriophage Xp10 anti-termination factor p7 induces forward translocation by host RNA polymerase. Nucleic Acids Res 2015; 43:6299-308. [PMID: 26038312 PMCID: PMC4513864 DOI: 10.1093/nar/gkv586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/05/2015] [Accepted: 05/22/2015] [Indexed: 11/12/2022] Open
Abstract
Regulation of transcription elongation is based on response of RNA polymerase (RNAP) to various pause signals and is modulated by various accessory factors. Here we report that a 7 kDa protein p7 encoded by bacteriophage Xp10 acts as an elongation processivity factor of RNAP of host bacterium Xanthomonas oryzae, a major rice pathogen. Our data suggest that p7 stabilizes the upstream DNA duplex of the elongation complex thus disfavouring backtracking and promoting forward translocated states of the elongation complex. The p7-induced 'pushing' of RNAP and modification of RNAP contacts with the upstream edge of the transcription bubble lead to read-through of various types of pauses and termination signals and generally increase transcription processivity and elongation rate, contributing for transcription of an extremely long late genes operon of Xp10. Forward translocation was observed earlier upon the binding of unrelated bacterial elongation factor NusG, suggesting that this may be a general pathway of regulation of transcription elongation.
Collapse
Affiliation(s)
- Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Konstantin Severinov
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854-8020, USA Skolkovo Institute of Science and Technology, Skolkovo,143025, Russia Institute of Molecular Genetics, Russian Academy of Sciences, Moscow,123182, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
15
|
Petushkov I, Pupov D, Bass I, Kulbachinskiy A. Mutations in the CRE pocket of bacterial RNA polymerase affect multiple steps of transcription. Nucleic Acids Res 2015; 43:5798-809. [PMID: 25990734 PMCID: PMC4499132 DOI: 10.1093/nar/gkv504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
Abstract
During transcription, the catalytic core of RNA polymerase (RNAP) must interact with the DNA template with low-sequence specificity to ensure efficient enzyme translocation and RNA extension. Unexpectedly, recent structural studies of bacterial promoter complexes revealed specific interactions between the nontemplate DNA strand at the downstream edge of the transcription bubble (CRE, core recognition element) and a protein pocket formed by core RNAP (CRE pocket). We investigated the roles of these interactions in transcription by analyzing point amino acid substitutions and deletions in Escherichia coli RNAP. The mutations affected multiple steps of transcription, including promoter recognition, RNA elongation and termination. In particular, we showed that interactions of the CRE pocket with a nontemplate guanine immediately downstream of the active center stimulate RNA-hairpin-dependent transcription pausing but not other types of pausing. Thus, conformational changes of the elongation complex induced by nascent RNA can modulate CRE effects on transcription. The results highlight the roles of specific core RNAP–DNA interactions at different steps of RNA synthesis and suggest their importance for transcription regulation in various organisms.
Collapse
Affiliation(s)
- Ivan Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia Molecular Biology Department, Biological Faculty, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Irina Bass
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia Molecular Biology Department, Biological Faculty, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|