1
|
Li H, Liu Y, Zhang S, Ma L, Zeng Z, Zhou Z, Gandon V, Xu H, Yi W, Wang S. Access to N-α-deuterated amino acids and DNA conjugates via Ca(II)-HFIP-mediated reductive deutero-amination of α-oxo-carbonyl compounds. Nat Commun 2025; 16:1816. [PMID: 39979333 DOI: 10.1038/s41467-025-57098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
The development of practical and selective strategies for deuterium incorporation to construct deuterated molecules, particularly deuterium-labeled amino acids, has become as a growing focus of basic research, yet it remains a formidable challenge. Herein, we present a bioinspired calcium-HFIP-mediated site-selective reductive deutero-amination of α-oxo-carbonyl compounds with amines. Utilizing d2-Hantzsch ester as the deuterium source, this reaction attains remarkable deuteration efficiency (> 99% deuteration). It enables the synthesis of N-α-deuterated amino acid motifs with a wide range of functionality, as evidenced by over 130 examples. The method exhibits compatibility with diverse substrates, such as amino acids, peptides, drug molecules, and natural products bearing different substituents. Moreover, the application of this strategy in the synthesis of DNA-tagged N-α-deuterated amino acids/peptides has been demonstrated. This work offers an efficient and innovative solution for deuterated amino acid chemistry and holds substantial application potential in organic synthesis, medicinal chemistry, and chemical biology.
Collapse
Affiliation(s)
- Haoran Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuwei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Silin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Ma
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongyi Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment Henri Moissan, Orsay, France
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Chen J, Zhu YY, Huang L, Zhang SS, Gu SX. Application of deuterium in research and development of drugs. Eur J Med Chem 2025; 287:117371. [PMID: 39952095 DOI: 10.1016/j.ejmech.2025.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Deuterium is gaining increased attention and utilization due to its unique physical and chemical properties. Deuteration has the unique benefit of positively impacting metabolic fate of pharmacologically active compounds without altering their chemical structures, physical properties, or biological activity and selectivity. In these favorable cases, deuterium substitution can in principle improve the pharmacokinetic properties and safety of therapeutic agents. The use of deuterium to create a new chemical entity not only starts with an existing drug, but can be achieved from iterative optimization in the de novo design of new compounds. Furthermore, deuterium has become a powerful tool in pharmaceutical analysis, including deuterium-labeled compounds as internal standards for extensive analysis, metabolomics, ADME, clinical pharmacology studies. This review highlights the application of deuterium in enhancing the pharmacological effects of active molecules during drug discovery and development. Additionally, deuterium-enabled pharmaceutical analysis is also covered. This review is aimed to provide references for the discovery of new deuterium-containing chemical entities with improved pharmacological properties and for the research of fate of drugs.
Collapse
Affiliation(s)
- Jiong Chen
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China
| | - Lu Huang
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China; Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China.
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China; Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China.
| |
Collapse
|
3
|
Chen Y, Du Y. The Application of Deuteration Strategy in Drug Design. ChemMedChem 2024:e202400836. [PMID: 39715028 DOI: 10.1002/cmdc.202400836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Deuterated drugs, which are derived from the subtle exchange of a protium atom with a deuterium atom in drug molecules, exhibit significant differences in pharmaceutical characteristics compared to their parent drugs. With the advantages of improving pharmacokinetic properties, reducing toxicity, inhibiting the interconversion between chiral drugs and restricting drug interactions, deuterated drugs have attracted widespread attention from medicinal chemists. This review highlights the application of deuteration strategies in drug design, summarizing the progress of all deuterated drugs available in the market or still under investigation to provide a reference for all researchers engaged deuterated drug development.
Collapse
Affiliation(s)
- Yuzhu Chen
- Department: School of Pharmaceutical Science and Technology, Faculty of Medicine, Institution: Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China
| | - Yunfei Du
- Department: School of Pharmaceutical Science and Technology, Faculty of Medicine, Institution: Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China
| |
Collapse
|
4
|
Hu Y, Yan Y, Wang J, Hou J, Lin Q. Molecular glue degrader for tumor treatment. Front Oncol 2024; 14:1512666. [PMID: 39759140 PMCID: PMC11697593 DOI: 10.3389/fonc.2024.1512666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025] Open
Abstract
Targeted Protein Degradation (TPD) represented by Proteolysis-Targeting Chimeras (PROTAC) is the frontier field in the research and development of antitumor therapy, in which oral drug HP518 Receives FDA Proceed Authorization for its IND Application for Prostate Cancer Treatment. Recently, molecular glue, functioning via degradation of the target protein is emerging as a promising modality for the development of therapeutic agents, while exhibits greater advantages over PROTAC, including improved efficiency, resistance-free properties, and the capacity to selectively target "undruggable" proteins. This marks a revolutionary advancement in the landscape of small molecule drugs. Given that molecular glue research is still in its early stage, we summarized the mechanisms of molecular glue, the promising drugs in clinical trials and diverse feasible design strategies for molecular glue therapeutics.
Collapse
Affiliation(s)
- Yuhan Hu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yan Yan
- Department of Infectious Diseases, Zhoukou Central Hospital, Zhoukou, China
| | - Jiehao Wang
- Department of Gastroenterology, Zhengzhou First People's Hospital, Zhengzhou, China
| | - Jiangxue Hou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Zhang L, Zhang S, Zhang Y, Liu B, Li X, Han B. Navigating The Deuteration Landscape: Innovations, Challenges, and Clinical Potential of Deuterioindoles. Chembiochem 2024:e202400837. [PMID: 39658812 DOI: 10.1002/cbic.202400837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Indoles, pivotal to the realm of drug discovery, underpin numerous FDA-approved therapeutics. Despite their clinical benefits, pharmacokinetic and toxicity concerns have occasionally hampered their broader application. A notable advancement in this domain is the substitution of hydrogen atoms with deuterium, known as deuterium modification, which significantly enhances the pharmacological properties of these compounds. This review elucidates the progression of deuterium chemistry, culminating in approval of Deutetrabenazine in 2017. This milestone has catalyzed additional research into deuterated indoles, such as Dosimertinib, which have demonstrated enhancements in stability, toxicity profiles, and therapeutic efficacy. Moreover, the review addresses challenges and patent issues in the synthesis of deuterated indoles and highlights their potential applications in precision medicine. In the future, deuterated indoles may positively impact therapy and contribute to advances in precision medicine through molecular engineering.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shujingwei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
6
|
Hwu JR, Panja A, Tsay SC, Huang WC, Lin SY, Yeh CS, Su WC, Yang LX, Shieh DB. β-d-Ribofuranose as a Core with a Phosphodiester Moiety as the Enzyme Recognition Site for Codrug Development. Org Lett 2024; 26:9865-9870. [PMID: 39540692 PMCID: PMC11590094 DOI: 10.1021/acs.orglett.4c03662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
An ideal codrug design should be able to control drug release, offer selectivity during drug delivery, and break down into non-toxic fragments after biodegradation. Our design incorporates d-ribofuranose as the core, with carbamate and carbonate groups as linking joints, a phosphodiester moiety as an enzyme recognition site, and lenalidomide and paclitaxel as the constituent drugs. The codrug synthesis involves seven steps with a 33% overall yield. The target codrug increases its water solubility 685 times versus paclitaxel.
Collapse
Affiliation(s)
- Jih Ru Hwu
- Department
of Chemistry & Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua
University, Hsinchu 300, Taiwan
| | - Avijit Panja
- Department
of Chemistry & Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua
University, Hsinchu 300, Taiwan
| | - Shwu-Chen Tsay
- Department
of Chemistry & Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua
University, Hsinchu 300, Taiwan
| | - Wen-Chieh Huang
- Department
of Chemistry & Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua
University, Hsinchu 300, Taiwan
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County 350401, Taiwan
| | - Shu-Yu Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County 350401, Taiwan
| | - Chen-Sheng Yeh
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Wu-Chou Su
- Department
of Internal Medicine, National Cheng Kung
University, Tainan 701, Taiwan
| | - Li-Xing Yang
- Department
of Dentistry and Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Dar-Bin Shieh
- Department
of Dentistry and Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
7
|
Yang M, Chen T, Xu ZF, Yu M, Li CY. Copper-catalyzed deborodeuteration of arylboronic acids/borates using D 2O as the deuterium source. Org Biomol Chem 2024; 22:7596-7600. [PMID: 39221612 DOI: 10.1039/d4ob01251h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A straightforward copper-catalyzed deborodeuteration of arylboronic acids and borates was achieved, employing the cost-effective deuterium source D2O. This protocol demonstrates wide substrate applicability, exceptional deuterium incorporation efficiency, and favorable tolerance for various functional groups. Therefore, this approach offers a mild option for further applications in valuable deuterium molecule synthesis.
Collapse
Affiliation(s)
- Mingqi Yang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Tao Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Ze-Feng Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou, 312400, China
| | - Mingming Yu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Chuan-Ying Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou, 312400, China
| |
Collapse
|
8
|
Xiao G, Sun H, Jiang G, Liu Y, Song G, Kong D. Binary Catalytic Hydrogen/Deuterium Exchange of Free α-Amino Acids and Derivatives. Chemistry 2024; 30:e202402045. [PMID: 39042826 DOI: 10.1002/chem.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The increasing demand for deuterium-labeled amino acids and derivatives has heightened interest in direct hydrogen/deuterium exchange reactions of free amino acids. Existing methods, including biocatalysis and metal catalysis, typically require expensive deuterium sources or excessive use of deuterium reagents and often struggle with site selectivity. In contrast, this binary catalysis system, employing benzaldehyde and Cs2CO3 in the presence of inexpensive D2O with minimal stoichiometric quantities, facilitates efficient hydrogen/deuterium exchange at the α-position of amino acids without the need for protecting groups in the polar aprotic solvent DMSO. The process is highly compatible with most natural and non-natural α-amino acids and derivatives, even those with potentially reactive functionalities. This advancement not only addresses the cost and efficiency concerns of existing methods but also significantly broadens the applicability and precision of deuterium labeling in biochemical research.
Collapse
Affiliation(s)
- Guorong Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gege Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaohan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Zheng J, Tang J, Jin S, Hu H, Jiang ZJ, Chen J, Bai JF, Gao Z. Site-Selective Deuteration of α-Amino Esters with 2-Hydroxynicotinaldehyde as a Catalyst. ACS OMEGA 2024; 9:26963-26972. [PMID: 38947810 PMCID: PMC11209932 DOI: 10.1021/acsomega.3c09974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
An efficient method has been developed for the synthesis of α-deuterated α-amino esters via hydrogen isotope exchange of α-amino esters in D2O with 2-hydroxynicotinaldehyde as a catalyst under mild conditions. This methodology exhibits a wide range of substrate scopes, remarkable functional group tolerance, and affording the desired products in good yields with excellent deuterium incorporation. Notably, the ortho-hydroxyl group and the pyridine ring of the catalyst play a crucial role in the catalytic activity, which not only stabilizes the carbon-anion intermediates but also enhances the acidity of the amino esters' α-C-H bond.
Collapse
Affiliation(s)
- Jinfeng Zheng
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- School
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s
Republic of China
| | - Jianbo Tang
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shenhao Jin
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Hao Hu
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Jia Chen
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- Ningbo
Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People’s Republic of China
| |
Collapse
|
10
|
Yang X, Zhou X, Qin X, Liang D, Dong X, Ji H, Wen S, Du L, Li M. Deuteration-Driven Photopharmacology: Deuterium-Labeled AzoCholine for Controlling Alpha 7 Nicotinic Acetylcholine Receptors. ACS Pharmacol Transl Sci 2024; 7:1839-1846. [PMID: 38898952 PMCID: PMC11184602 DOI: 10.1021/acsptsci.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Photopharmacology is a powerful approach to investigate biological processes and overcomes the common therapeutic challenges in drug development. Enhancing the photopharmacology properties of photoswitches contributes to extend their applications. Deuteration, a tiny structural modification, makes it possible to improve the photopharmacology and photophysical properties of prototype compounds, avoiding extra complex chemical changes or constructing multicomponent systems. In this work, we developed a series of D-labeled azobenzenes to expand the azobenzene photoswitchable library and introduced the D-labeled azobenzene unit into the photoagonist of α7 nicotinic acetylcholine receptors (α7 nAChRs) to investigate the effects of deuteration in photopharmacology. Spectral data indicated that deuteration maintained most of the photophysical properties of azobenzenes. The D-labeled photoagonist exhibited good control of the activity of α7 nAChRs than the prototype photoagonist. These results confirmed that deuteration is a promising strategy to improve the photopharmacological properties.
Collapse
Affiliation(s)
- Xingye Yang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Pharmaceutical
College, Guangxi Key Laboratory of Pharmaceutical Precision Detection
and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug
Screening of Guangxi Education Department, Guangxi Key Laboratory
of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xin Zhou
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaojun Qin
- Pharmaceutical
College, Guangxi Key Laboratory of Pharmaceutical Precision Detection
and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug
Screening of Guangxi Education Department, Guangxi Key Laboratory
of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dong Liang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuhui Dong
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huimin Ji
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siman Wen
- Pharmaceutical
College, Guangxi Key Laboratory of Pharmaceutical Precision Detection
and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug
Screening of Guangxi Education Department, Guangxi Key Laboratory
of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lupei Du
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Helmholtz
International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
11
|
Nutt MJ, Stewart SG. Strengthening Molecular Glues: Design Strategies for Improving Thalidomide Analogs as Cereblon Effectors and Anticancer Agents. Drug Discov Today 2024; 29:104010. [PMID: 38704021 DOI: 10.1016/j.drudis.2024.104010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
In the two decades since a novel thalidomide analog was last approved, many promising drug candidates have emerged with remarkable potency as targeted protein degraders. Likewise, the advent of PROTACs for suppressing 'undruggable' protein targets reinforces the need for new analogs with improved cereblon affinity, target selectivity and drug-like properties. However, thalidomide and its approved derivatives remain plagued by several shortcomings, such as structural instability and poor solubility. Herein, we present a review of strategies for mitigating these shortcomings and highlight contemporary drug discovery approaches that have generated novel thalidomide analogs with enhanced efficacy as cereblon effectors and/or anticancer agents.
Collapse
Affiliation(s)
- Michael J Nutt
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia.
| | - Scott G Stewart
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia.
| |
Collapse
|
12
|
Giardina SF, Valdambrini E, Singh PK, Bacolod MD, Babu-Karunakaran G, Peel M, Warren JD, Barany F. Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs): A Modular Platform for Generating Reversible, Self-Assembling Bifunctional Targeted Degraders. J Med Chem 2024; 67:5473-5501. [PMID: 38554135 DOI: 10.1021/acs.jmedchem.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Proteolysis-Targeting Chimeras (PROTACs) are bifunctional molecules that bring a target protein and an E3 ubiquitin ligase into proximity to append ubiquitin, thus directing target degradation. Although numerous PROTACs have entered clinical trials, their development remains challenging, and their large size can produce poor drug-like properties. To overcome these limitations, we have modified our Coferon platform to generate Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs). CURE-PROs are small molecule degraders designed to self-assemble through reversible bio-orthogonal linkers to form covalent heterodimers. By modifying known ligands for Cereblon, MDM2, VHL, and BRD with complementary phenylboronic acid and diol/catechol linkers, we have successfully created CURE-PROs that direct degradation of BRD4 both in vitro and in vivo. The combinatorial nature of our platform significantly reduces synthesis time and effort to identify the optimal linker length and E3 ligase partner to each target and is readily amenable to screening for new targets.
Collapse
Affiliation(s)
- Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Elena Valdambrini
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Pradeep K Singh
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| | - Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | | | - Michael Peel
- MRP Pharma LLC, Chapel Hill, North Carolina 27514, United States
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
13
|
McVicker R, O’Boyle NM. Chirality of New Drug Approvals (2013-2022): Trends and Perspectives. J Med Chem 2024; 67:2305-2320. [PMID: 38344815 PMCID: PMC10895675 DOI: 10.1021/acs.jmedchem.3c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Many drugs are chiral with their chirality determining their biological interactions, safety, and efficacy. Since the 1980s, there has been a regulatory preference to bring single enantiomer to market. This perspective discusses trends related to chirality that have developed in the past decade (2013-2022) of new drug approvals. The EMA has not approved a racemate since 2016, while the average for the FDA is one per year from 2013 to 2022. These 10 include drugs which have been previously marketed elsewhere for several decades, analogues of pre-existing drugs, or drugs where the undefined stereocenter does not play a role in therapeutic activity. Two chiral switches were identified which were both combined with drug repurposing. This combination strategy has the potential to produce therapeutically valuable drugs in a faster time frame. Two class III atropisomers displaying axial chirality were approved between 2013 and 2022, one as a racemate and one as a single enantiomer.
Collapse
Affiliation(s)
- Rebecca
U. McVicker
- School
of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, D02 R590, Ireland
- Gamlen
Tableting Ltd, 3 Stanton
Way, London SE26 5FU, United Kingdom
| | - Niamh M. O’Boyle
- School
of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, D02 R590, Ireland
| |
Collapse
|
14
|
Robbins DW, Noviski MA, Tan YS, Konst ZA, Kelly A, Auger P, Brathaban N, Cass R, Chan ML, Cherala G, Clifton MC, Gajewski S, Ingallinera TG, Karr D, Kato D, Ma J, McKinnell J, McIntosh J, Mihalic J, Murphy B, Panga JR, Peng G, Powers J, Perez L, Rountree R, Tenn-McClellan A, Sands AT, Weiss DR, Wu J, Ye J, Guiducci C, Hansen G, Cohen F. Discovery and Preclinical Pharmacology of NX-2127, an Orally Bioavailable Degrader of Bruton's Tyrosine Kinase with Immunomodulatory Activity for the Treatment of Patients with B Cell Malignancies. J Med Chem 2024; 67:2321-2336. [PMID: 38300987 DOI: 10.1021/acs.jmedchem.3c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, is an essential effector of B-cell receptor (BCR) signaling. Chronic activation of BTK-mediated BCR signaling is a hallmark of many hematological malignancies, which makes it an attractive therapeutic target. Pharmacological inhibition of BTK enzymatic function is now a well-proven strategy for the treatment of patients with these malignancies. We report the discovery and characterization of NX-2127, a BTK degrader with concomitant immunomodulatory activity. By design, NX-2127 mediates the degradation of transcription factors IKZF1 and IKZF3 through molecular glue interactions with the cereblon E3 ubiquitin ligase complex. NX-2127 degrades common BTK resistance mutants, including BTKC481S. NX-2127 is orally bioavailable, exhibits in vivo degradation across species, and demonstrates efficacy in preclinical oncology models. NX-2127 has advanced into first-in-human clinical trials and achieves deep and sustained degradation of BTK following daily oral dosing at 100 mg.
Collapse
Affiliation(s)
- Daniel W Robbins
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Mark A Noviski
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ying Siow Tan
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Zef A Konst
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Aileen Kelly
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Paul Auger
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Nivetha Brathaban
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Robert Cass
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ming Liang Chan
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ganesh Cherala
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Matthew C Clifton
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Stefan Gajewski
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Timothy G Ingallinera
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Dane Karr
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Daisuke Kato
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jun Ma
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jenny McKinnell
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Joel McIntosh
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jeff Mihalic
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Brent Murphy
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jaipal Reddy Panga
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ge Peng
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Janine Powers
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Luz Perez
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ryan Rountree
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Austin Tenn-McClellan
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Arthur T Sands
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Dahlia R Weiss
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jeffrey Wu
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jordan Ye
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Cristiana Guiducci
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Gwenn Hansen
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Frederick Cohen
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| |
Collapse
|
15
|
Afzal O, Ahsan MJ. An Efficient Synthesis of 1-(1,3-Dioxoisoindolin-2-yl)-3-aryl Urea Analogs as Anticancer and Antioxidant Agents: An Insight into Experimental and In Silico Studies. Molecules 2023; 29:67. [PMID: 38202650 PMCID: PMC10779787 DOI: 10.3390/molecules29010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The present investigation reports the efficient multistep synthesis of 1-(1,3-dioxoisoindolin-2-yl)-3-aryl urea analogs (7a-f) in good yields. All the 1-(1,3-dioxoisoindolin-2-yl)-3-aryl urea analogs (7a-f) were characterized by spectroscopic techniques. Five among the six compounds were tested against 56 cancer cell lines at 10 µM as per the standard protocol. 1-(4-Bromophenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7c) exhibited moderate but significant anticancer activity against EKVX, CAKI-1, UACC-62, MCF7, LOX IMVI, and ACHN with percentage growth inhibitions (PGIs) of 75.46, 78.52, 80.81, 83.48, 84.52, and 89.61, respectively. Compound 7c was found to exhibit better anticancer activity than thalidomide against non-small cell lung, CNS, melanoma, renal, prostate, and breast cancer cell lines. It was also found to exhibit superior anticancer activity against melanoma cancer compared to imatinib. Among the tested compounds, the 4-bromosubstitution (7c) on the phenyl ring demonstrated good anticancer activity. Docking scores ranging from -6.363 to -7.565 kcal/mol were observed in the docking studies against the molecular target EGFR. The ligand 7c displayed an efficient binding against the EGFR with a docking score of -7.558 kcal/mol and displayed an H-bond interaction with Lys745 and the carbonyl functional group. Compound 7c demonstrated a moderate inhibition of EGFR with an IC50 of 42.91 ± 0.80 nM, in comparison to erlotinib (IC50 = 26.85 ± 0.72 nM), the standard drug. The antioxidant potential was also calculated for the compounds (7a-f), which exhibited good to low activity. 1-(2-Methoxyphenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7f) and 1-(4-Methoxyphenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7d) demonstrated significant antioxidant activity with IC50 values of 15.99 ± 0.10 and 16.05 ± 0.15 µM, respectively. The 2- and 4-methoxysubstitutions on the N-phenyl ring showed good antioxidant activity among the series of compounds (7a-f). An in silico ADMET prediction studies showed the compounds' adherence to Lipinski's rule of five: they were free from toxicities, including mutagenicity, cytotoxicity, and immunotoxicity, but not for hepatotoxicity. The toxicity prediction demonstrated LD50 values between 1000 and 5000 mg/Kg, putting the compounds either in class IV or class V toxicity classes. Our findings might create opportunities for more advancements in cancer therapeutics.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jahangirabad Institute of Technology (JIT), Jahangirabad Fort, Jahangirabad 225203, Uttar Pradesh, India;
| |
Collapse
|
16
|
Zhang Y, Yang J, Ruan YL, Liao L, Ma C, Xue XS, Yu JS. Nickel-catalysed asymmetric hydromonofluoromethylation of 1,3-enynes for enantioselective construction of monofluoromethyl-tethered chiral allenes. Chem Sci 2023; 14:12676-12683. [PMID: 38020394 PMCID: PMC10646904 DOI: 10.1039/d3sc04474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
An unprecedented nickel-catalysed enantioselective hydromonofluoromethylation of 1,3-enynes is developed, allowing the diverse access to monofluoromethyl-tethered axially chiral allenes, including the challenging deuterated monofluoromethyl (CD2F)-tethered ones that are otherwise inaccessible. It represents the first asymmetric 1,4-hydrofunctionalization of 1,3-enynes using low-cost asymmetric nickel catalysis, thus opening a new avenue for the activation of 1,3-enynes in reaction development. The utility is further verified by its broad substrate scope, good functionality tolerance, mild conditions, and diversified product elaborations toward other valuable fluorinated structures. Mechanistic experiments and DFT calculations provide insights into the reaction mechanism and the origin of the enantioselectivity.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Jimin Yang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yu-Long Ruan
- State Key Laboratory of Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Ling Liao
- State Key Laboratory of Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Chuang Ma
- State Key Laboratory of Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Jin-Sheng Yu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University Xiaogan 432000 China
| |
Collapse
|
17
|
Di Martino RMC, Maxwell BD, Pirali T. Deuterium in drug discovery: progress, opportunities and challenges. Nat Rev Drug Discov 2023; 22:562-584. [PMID: 37277503 PMCID: PMC10241557 DOI: 10.1038/s41573-023-00703-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/07/2023]
Abstract
Substitution of a hydrogen atom with its heavy isotope deuterium entails the addition of one neutron to a molecule. Despite being a subtle change, this structural modification, known as deuteration, may improve the pharmacokinetic and/or toxicity profile of drugs, potentially translating into improvements in efficacy and safety compared with the non-deuterated counterparts. Initially, efforts to exploit this potential primarily led to the development of deuterated analogues of marketed drugs through a 'deuterium switch' approach, such as deutetrabenazine, which became the first deuterated drug to receive FDA approval in 2017. In the past few years, the focus has shifted to applying deuteration in novel drug discovery, and the FDA approved the pioneering de novo deuterated drug deucravacitinib in 2022. In this Review, we highlight key milestones in the field of deuteration in drug discovery and development, emphasizing recent and instructive medicinal chemistry programmes and discussing the opportunities and hurdles for drug developers, as well as the questions that remain to be addressed.
Collapse
Affiliation(s)
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
18
|
Dong Y, Meng X, Gnawali G, Chang M, Wang W. Photoredox Catalytic Installation of an Alkyl/Aryl Side Chain and Deuterium into ( S)-Methyleneoxazolidinone: Synthesis of Enantioenriched α-Deuterated α-Amino Acid Derivatives. Org Lett 2023. [PMID: 37326373 DOI: 10.1021/acs.orglett.3c01760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A photoredox catalytic asymmetric method has been established for the installation of both aliphatic and aromatic side chains and the introduction of deuterium into the chiral methyleneoxazolidinone simultaneously. Efficient coupling of readily available boronic acids with the chiral auxiliary delivers structurally diverse α-deuterated α-amino acid derivatives with a high level of diastereoselectivity and deuteration.
Collapse
Affiliation(s)
- Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Chandra Mouli HM, Vinod A, Kumari S, Tiwari AK, Kathiravan MK, Ravichandiran V, Peraman R. Deuterated driven new chemical entities: An optimistic way to improve therapeutic efficacy. Bioorg Chem 2023; 135:106490. [PMID: 37001472 DOI: 10.1016/j.bioorg.2023.106490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
In organic chemistry, the use of deuterium exchange as a tool to study the mechanism of chemical reaction has been well explored. Since two decades, the research focus on deuterated bioactive molecules has been gaining attention for investigating the therapeutic potential of deuterium replacement in a chemical structure. Recently, Food Drug Administration (FDA) approved the first deuterium-labeled drug "deutetrabenazine", and notified the deuterated drugs as new chemical entities (NCEs). Henceforth, the deuterium substitution driven structure activity relationship, preclinical pharmacokinetics, and toxicity studies were much initiated. Deuteration of a bioactive molecule often results in improved therapeutic efficacy due to the altered pharmacokinetic profile. This review provides a conceptual framework on the importance of deuterium atom in chemical structure of a drug, and its biological value in improved physiochemical properties, pharmacokinetics, biological target interaction, diagnosis, and toxicity. In addition, this review concisely updated the recent deuteration methods, chemical stability, challenges in drug development, deuterium-based imaging in diagnosis, and selected synthetic scheme of deuterated molecules.
Collapse
Affiliation(s)
- H M Chandra Mouli
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Adithya Vinod
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Shikha Kumari
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, OH 43614, United States
| | - Amit K Tiwari
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, OH 43614, United States
| | - M K Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Ramalingam Peraman
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India.
| |
Collapse
|
20
|
Xie H, Li C, Tang H, Tandon I, Liao J, Roberts BL, Zhao Y, Tang W. Development of Substituted Phenyl Dihydrouracil as the Novel Achiral Cereblon Ligands for Targeted Protein Degradation. J Med Chem 2023; 66:2904-2917. [PMID: 36749666 PMCID: PMC10398712 DOI: 10.1021/acs.jmedchem.2c01941] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutarimides such as thalidomide, pomalidomide, and lenalidomide are the most frequently used ligands to recruit E3 ubiquitin ligase cereblon (CRBN) for the development of proteolysis-targeting chimeras (PROTACs). Due to the rapid and spontaneous racemization of glutarimides, most CRBN-recruiting PROTACs are synthesized as a mixture of racemates or diastereomers. Since the (S)-enantiomer is primarily responsible for binding to CRBN, the existence of the largely inactive (R)-enantiomer complicates the drug development process. Herein, we report that substituted achiral phenyl dihydrouracil (PDHU) can be used as a novel class of CRBN ligands for the development of PROTACs. Although the parent PDHU has a minimal binding affinity to CRBN, we found that some substituted PDHUs had a comparable binding affinity to lenalidomide. Structural modeling provided a further understanding of the molecular interactions between PDHU ligands and CRBN. PDHUs also have greater stability than lenalidomide. Finally, potent BRD4 degraders were developed by employing trisubstituted PDHUs.
Collapse
Affiliation(s)
- Haibo Xie
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Chunrong Li
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Hua Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Ira Tandon
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Junzhuo Liao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Brett L. Roberts
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Yu Zhao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (USA)
| |
Collapse
|
21
|
D’Acquarica I, Agranat I. The Quest for Secondary Pharmaceuticals: Drug Repurposing/Chiral-Switches Combination Strategy. ACS Pharmacol Transl Sci 2023; 6:201-219. [PMID: 36798472 PMCID: PMC9926527 DOI: 10.1021/acsptsci.2c00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 01/19/2023]
Abstract
Drug repurposing toward new medical uses and chiral switches are elements of secondary pharmaceuticals. The drug repurposing and chiral-switches strategies have mostly been applied independently in drug discovery. Drug repurposing has peaked in the search for therapeutic treatments of the Coronavirus Disease 2019 pandemic, whereas chiral switches have been overlooked. The current Perspective introduces the drug repurposing/chiral-switches combination strategy, overviewing representative cases of chiral drugs that have undergone this combination: ketamine, flurbiprofen, fenfluramine, and milnacipran. The deuterium-enabled chiral switches of racemic thalidomide analogs, a variation of the repurposing/chiral-switch combination strategy, is also included. Patenting and regulatory-exclusivity considerations of the combination strategy in the discovery of new medical uses are considered. The proposed combination creates a new synergy of its two elements, overcoming arguments against chiral switches, with better prospects for validation of patents and regulatory exclusivities. The combination strategy may be applied to chiral switches to paired enantiomers. Repurposing/chiral-switch drugs may be 'obvious-to-try'; however, their inventions may be unexpected and their patents nonobvious. Patenting repurposing/chiral-switch combination drugs is not 'evergreening', 'product hopping', and 'me-too'. The expected benefits and opportunities of the combined repurposing/chiral-switch strategy vis-à-vis its two elements are superior pharmacological properties, overcoming arguments against patent validities, challenges of chiral-switch patents, reduced expenses, shortened approval procedures, and higher expectations of regulatory exclusivities.
Collapse
Affiliation(s)
- Ilaria D’Acquarica
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, 00185 Rome, Italy
| | - Israel Agranat
- Organic
Chemistry, Institute of Chemistry, The Hebrew
University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
22
|
Chirality: An inescapable concept for the pharmaceutical, bio‐pharmaceutical, food, and cosmetic industries. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
23
|
Duan H, Hu K, Zheng D, Cheng Y, Zhang Z, Wang Y, Liang L, Hu J, Luo T. Recognition and release of uridine and hCNT3: From multivariate interactions to molecular design. Int J Biol Macromol 2022; 223:1562-1577. [PMID: 36402394 DOI: 10.1016/j.ijbiomac.2022.11.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
As a vital target for the development of novel anti-cancer drugs, human concentrative nucleoside transporter 3 (hCNT3) has been widely concerned. Nevertheless, the lack of a comprehensive understanding of molecular interactions and motion mechanism has greatly hindered the development of novel inhibitors against hCNT3. In this paper, molecular recognition of hCNT3 with uridine was investigated with molecular docking, conventional molecular dynamics (CMD) simulations and adaptive steered molecular dynamics (ASMD) simulations; and then, the uridine derivatives with possibly highly inhibitory activity were designed. The result of CMD showed that more water-mediated H-bonds and lower binding free energy both explained higher recognition ability and transported efficiency of hCNT3. While during the ASMD simulation, nucleoside transport process involved the significant side-chain flip of residues F321 and Q142, a typical substrate-induced conformational change. By considering electronegativity, atomic radius, functional group and key H-bonds factors, 25 novel uridine derivatives were constructed. Subsequently, the receptor-ligand binding free energy was predicted by solvated interaction energy (SIE) method to determine the inhibitor c8 with the best potential performance. This work not only revealed molecular recognition and release mechanism of uridine with hCNT3, but also designed a series of uridine derivatives to obtain lead compounds with potential high activity.
Collapse
Affiliation(s)
- Huaichuan Duan
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixuan Hu
- School of Pharmaceutical Sciences, Jishou University, Jishou, China
| | - Dan Zheng
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Cheng
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Zelan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ting Luo
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Liao L, Zhang Y, Wu ZW, Ye ZT, Zhang XX, Chen G, Yu JS. Nickel-catalyzed regio- and enantio-selective Markovnikov hydromonofluoroalkylation of 1,3-dienes. Chem Sci 2022; 13:12519-12526. [PMID: 36382272 PMCID: PMC9629049 DOI: 10.1039/d2sc03958c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
A highly enantio- and regio-selective Markovnikov hydromonofluoro(methyl)alkylation of 1,3-dienes was developed using redox-neutral nickel catalysis. It provided a facile strategy to construct diverse monofluoromethyl- or monofluoroalkyl-containing chiral allylic molecules. Notably, this represents the first catalytic asymmetric Markovnikov hydrofluoroalkylation of olefins. The practicability of this methodology is further highlighted by its broad substrate scope, mild base-free conditions, excellent enantio- and regio-selectivity, and diversified product elaborations to access useful fluorinated building blocks.
Collapse
Affiliation(s)
- Ling Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| |
Collapse
|
25
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. Targeting Valuable Chemical Commodities: Hydrazine-mediated Diels-Alder Aromatization of Biobased Furfurals. CHEMSUSCHEM 2022; 15:e202201139. [PMID: 35833422 PMCID: PMC9804822 DOI: 10.1002/cssc.202201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
A hydrazine-mediated approach towards renewable aromatics production via Diels-Alder aromatization of readily available, biobased furfurals was explored as alterative to the more classical approaches that rely on reactive but uneconomical reduced dienes (e. g., 2,5-dimethylfuran). To enable cycloaddition chemistry with these otherwise unreactive formyl furans, substrate activation by N,N-dimethyl hydrazone formation was investigated. The choice of the reaction partner was key to the success of the transformation, and in this respect acrylic acid showed the most promising results in the synthesis of aromatics. This strategy allowed for selectivities up to 60 % for a complex transformation consisting of Diels-Alder cycloaddition, oxabridge opening, decarboxylation, and dehydration. Exploration of the furfural scope yielded generic structure-reactivity-stability relationships. The proposed methodology enabled the redox-efficient, operationally simple, and mild synthesis of renewable (p-disubstituted) aromatics of commercial importance under remarkably mild conditions.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| |
Collapse
|
26
|
Yamamoto J, Ito T, Yamaguchi Y, Handa H. Discovery of CRBN as a target of thalidomide: a breakthrough for progress in the development of protein degraders. Chem Soc Rev 2022; 51:6234-6250. [PMID: 35796627 DOI: 10.1039/d2cs00116k] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Progress in strategies aimed at breaking down therapeutic target proteins has led to a paradigm shift in drug discovery. Thalidomide and its derivatives are the only protein degraders currently used in clinical practice. Our understanding of the molecular mechanism of action of thalidomide and its derivatives has advanced dramatically since the identification of cereblon (CRBN) as their direct target. The binding of thalidomide derivatives to CRBN, a substrate recognition receptor for Cullin 4 RING E3 ubiquitin ligase (CRL4), induces the recruitment of non-native substrates to CRL4CRBN and their subsequent degradation. This discovery was a breakthrough in the current rapid development of protein-degrading agents because clarification of the mechanism of action of thalidomide derivatives has demonstrated the clinical value of these compounds. This review provides an overview of the mechanism of action of thalidomide and its derivatives and describes perspectives for protein degraders.
Collapse
Affiliation(s)
- Junichi Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takumi Ito
- Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo 160-8402, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroshi Handa
- Center for Future Medical Research, Tokyo Medical University, Shinjuku, Tokyo 160-8402, Japan.
| |
Collapse
|
27
|
Fu C, Chang X, Xiao L, Wang CJ. Stereodivergent Synthesis of Enantioenriched α-Deuterated α-Amino Acids via Cascade Cu(I)-Catalyzed H-D Exchange and Dual Cu- and Ir-Catalyzed Allylation. Org Lett 2022; 24:5562-5567. [PMID: 35862668 DOI: 10.1021/acs.orglett.2c02102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A one-pot Cu-mediated H-D exchange with inexpensive heavy water as the deuterium source, followed by Cu- and Ir-catalyzed stereodivergent allylic alkylation, has been developed, providing efficient access to enantioenriched α-deuterium-labeled α-amino acids from readily available glycine imine esters in a high yield with excellent stereoselectivity. High deuterium enrichment, exquisite regioselectivity, precise stereoselectivity control, and operationally convenient procedures make this protocol appealing for the preparation of highly synthetically useful α-deuterated α-amino acids.
Collapse
Affiliation(s)
- Cong Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
de la Serna R, Nieto D, Sainz R, Bernardo-Maestro B, Mayoral Á, Márquez-Álvarez C, Pérez-Pariente J, Gómez-Hortigüela L. GTM-3, an Extra-Large Pore Enantioselective Chiral Zeolitic Catalyst. J Am Chem Soc 2022; 144:8249-8256. [PMID: 35502872 PMCID: PMC9100664 DOI: 10.1021/jacs.2c01874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of chiral zeolitic catalysts possessing extra-large pores and endowed with the capability of enantioselectively processing bulky products represents one of the greatest challenges in chemistry. Here, we report the discovery of GTM-3, an enantio-enriched extra-large pore chiral zeolite material with -ITV framework structure, obtained using a simple enantiopure organic cation derived from the chiral pool, N,N-ethyl-methyl-pseudoephedrinium, as the chiral-inductor agent. We demonstrate the enantio-enrichment of GTM-3 in one of the two enantiomorphic polymorphs using the two enantiomers of the organic cation. Interestingly, we prove the ability of this zeolitic material to perform enantioselective catalytic operations with very large substrates, here exemplified by the catalytic epoxide aperture of the bulky trans-stilbene oxide with alcohols, yielding unprecedented product enantiomeric excesses up to 30%. Our discovery opens the way for the use of accessible chiral zeolitic materials for the catalytic asymmetric synthesis of chiral pharmaceutical compounds.
Collapse
Affiliation(s)
- Ramón de la Serna
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC. C/ Marie Curie 2, Madrid 28049, Spain
| | - David Nieto
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC. C/ Marie Curie 2, Madrid 28049, Spain
| | - Raquel Sainz
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC. C/ Marie Curie 2, Madrid 28049, Spain
| | | | - Álvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA-CSIC), Universidad de Zaragoza, Zaragoza 50009, Spain.,Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Carlos Márquez-Álvarez
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC. C/ Marie Curie 2, Madrid 28049, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC. C/ Marie Curie 2, Madrid 28049, Spain
| | - Luis Gómez-Hortigüela
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC. C/ Marie Curie 2, Madrid 28049, Spain
| |
Collapse
|
29
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. The Interplay between Kinetics and Thermodynamics in Furan Diels-Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022; 61:e202114720. [PMID: 35014138 PMCID: PMC9304315 DOI: 10.1002/anie.202114720] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 01/21/2023]
Abstract
Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established. Detailed understanding of the intricate interplay between kinetics and thermodynamics in these very particular [4+2] cycloadditions is essential to push further development and truly expand the scope beyond the ubiquitous addend combinations of electron-rich furans and electron-deficient olefins. Herein, we provide pertinent examples of DA chemistry, taken from various fields, to highlight trends, establish correlations and answer open questions in the field with the aim to support future efforts in the sustainable chemicals and materials production.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
30
|
Chang X, Cheng X, Wang CJ. Catalytic asymmetric synthesis of enantioenriched α-deuterated pyrrolidine derivatives. Chem Sci 2022; 13:4041-4049. [PMID: 35440992 PMCID: PMC8985513 DOI: 10.1039/d2sc00826b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
The recent promising applications of deuterium-labeled pharmaceutical compounds have led to an urgent need for the efficient synthetic methodologies that site-specifically incorporate a deuterium atom into bioactive molecules. Nevertheless, precisely building a deuterium-containing stereogenic center, which meets the requirement for optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of chiral drug candidates, remains a significant challenge in organic synthesis. Herein, a catalytic asymmetric strategy combining H/D exchange (H/D-Ex) and azomethine ylide-involved 1,3-dipolar cycloaddition (1,3-DC) was developed for the construction of biologically important enantioenriched α-deuterated pyrrolidine derivatives in good yields with excellent stereoselectivities and uniformly high levels of deuterium incorporation. Directly converting glycine-derived aldimine esters into the deuterated counterparts with D2O via Cu(i)-catalyzed H/D-Ex, and the subsequent thermodynamically/kinetically favored cleavage of the α-C-H bond rather than the α-C-D bond to generate the key N-metallated α-deuterated azomethine ylide species for the ensuing 1,3-DC are crucial to the success of α-deuterated chiral pyrrolidine synthesis. The current protocol exhibits remarkable features, such as readily available substrates, inexpensive and safe deuterium source, mild reaction conditions, and easy manipulation. Notably, the synthetic utility of a reversed 1,3-DC/[H/D-Ex] protocol has been demonstrated by catalytic asymmetric synthesis of deuterium-labelled MDM2 antagonist idasanutlin (RG7388) with high deuterium incorporation.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
31
|
Kokel A, Kadish D, Török B. Preparation of Deuterium Labeled Compounds by Pd/C-Al-D 2O Facilitated Selective H-D Exchange Reactions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030614. [PMID: 35163883 PMCID: PMC8840159 DOI: 10.3390/molecules27030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
The chemo/regioselective H-D exchange of amino acids and synthetic building blocks by an environmentally benign Pd/C-Al-D2O catalytic system is described. Due to the importance of isotope labeled compounds in medicinal chemistry and structural biology, notably their use as improved drug candidates and biological probes, the efficient and selective deuteration methods are of great interest. The approach is based on selective H-D exchange reactions where the deuterium source is simple D2O. D2 gas is generated in situ from the reaction of aluminum and D2O, while the commercially available palladium catalyst assists the H-D exchange reaction. The high selectivity and efficiency, as well as the simplicity and safe nature of the procedure make this method an environmentally benign alternative to current alternatives.
Collapse
|
32
|
Cioc R, Crockatt M, Van der Waal JC, Bruijnincx P. The Interplay between Kinetics and Thermodynamics in Furan Diels‐Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Razvan Cioc
- Utrecht University: Universiteit Utrecht Chemistry NETHERLANDS
| | - Marc Crockatt
- TNO Sustainable Process and Energy Systems NETHERLANDS
| | | | - Pieter Bruijnincx
- Utrecht University Chemistry Universiteitsweg99Netherlands 3584 CG Utrecht NETHERLANDS
| |
Collapse
|
33
|
Comparative Chiral Separation of Thalidomide Class of Drugs Using Polysaccharide-Type Stationary Phases with Emphasis on Elution Order and Hysteresis in Polar Organic Mode. Molecules 2021; 27:molecules27010111. [PMID: 35011343 PMCID: PMC8746373 DOI: 10.3390/molecules27010111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
The enantioseparation of four phthalimide derivatives (thalidomide, pomalidomide, lenalidomide and apremilast) was investigated on five different polysaccharide-type stationary phases (Chiralpak AD, Chiralpak AS, Lux Amylose-2, Chiralcel OD and Chiralcel OJ-H) using neat methanol (MeOH), ethanol (EtOH), 1-propanol (PROP), 2-propanol (IPA) and acetonitrile (ACN) as polar organic mobile phases and also in combination. Along with the separation capacity of the applied systems, our study also focuses on the elution sequences, the effect of mobile phase mixtures and the hysteresis of retention and selectivity. Although on several cases extremely high resolutions (Rs > 10) were observed for certain compounds, among the tested conditions only Chiralcel OJ-H column with MeOH was successful for baseline-separation of all investigated drugs. Chiral selector- and mobile-phase-dependent reversals of elution order were observed. Reversal of elution order and hysteresis of retention and enantioselectivity were further investigated using different eluent mixtures on Chiralpak AD, Chiralcel OD and Lux Amylose-2 column. In an IPA/MeOH mixture, enantiomer elution-order reversal was observed depending on the eluent composition. Furthermore, in eluent mixtures, enantioselectivity depends on the direction from which the composition of the eluent is approached, regardless of the eluent pair used on amylose-based columns. Using a mixture of polar alcohols not only the selectivities but the enantiomer elution order can also be fine-tuned on Chiralpak AD column, which opens up the possibility of a new type of chiral screening strategy.
Collapse
|
34
|
Ghanem A, Marzouk AA, El-Adl SM, Fouad A. A Polymer-based Monolithic Capillary Column with Polymyxin-B Chiral Selector for the Enantioselective Nano-High Performance Liquid Chromatographic Pharmaceutical Analysis. J Chromatogr A 2021; 1662:462714. [PMID: 34902721 DOI: 10.1016/j.chroma.2021.462714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022]
Abstract
Herein, we report the first use of Polymyxin-B antibiotic as a enantio-selector in polymer monolithic capillary. The capillaries were functionalised, characterized and tested for the enantioselective nano-HPLC separation of 50 racemic pharmaceutical drugs. They have been easily prepared by immobilizing Polymyxin-B over the organic polymer for 48 h (P1) or encapsulating Polymyxin-B within the organic polymer (P2) and tested for the enantioselective resolution of racemic drugs. Acceptable resolution was achieved for 21 drugs using RP-HPLC conditions on both (P1) and (P2) capillary columns, while no separation was observed under NP-HPLC conditions. Polymyxin-B is commercially available, easily solubilized and stable in both acidic and neutral media. The developed Polymyxin-B-based polymer monolithic capillaries provide a promising expansion of platform in enantioselective HPLC separations.
Collapse
Affiliation(s)
- Ashraf Ghanem
- Chirality Program, Faculty of Science and Technology, University of Canberra, ACT, 2601, Australia.
| | - Adel A Marzouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | - Sobhy M El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Ali Fouad
- Chirality Program, Faculty of Science and Technology, University of Canberra, ACT, 2601, Australia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| |
Collapse
|
35
|
Galkin KI, Ananikov VP. Intermolecular Diels-Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes. Int J Mol Sci 2021; 22:11856. [PMID: 34769287 PMCID: PMC8584476 DOI: 10.3390/ijms222111856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
A recent strong trend toward green and sustainable chemistry has promoted the intensive use of renewable carbon sources for the production of polymers, biofuels, chemicals, monomers and other valuable products. The Diels-Alder reaction is of great importance in the chemistry of renewable resources and provides an atom-economic pathway for fine chemical synthesis and for the production of materials. The biobased furans furfural and 5-(hydroxymethyl)furfural, which can be easily obtained from the carbohydrate part of plant biomass, were recognized as "platform chemicals" that will help to replace the existing oil-based refining to biorefining. Diels-Alder cycloaddition of furanic dienes with various dienophiles represents the ideal example of a "green" process characterized by a 100% atom economy and a reasonable E-factor. In this review, we first summarize the literature data on the regio- and diastereoselectivity of intermolecular Diels-Alder reactions of furfural derivatives with alkenes with the aim of establishing the current progress in the efficient production of practically important low-molecular-weight products. The information provided here will be useful and relevant to scientists in many fields, including medical and pharmaceutical research, polymer development and materials science.
Collapse
Affiliation(s)
- Konstantin I. Galkin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia;
- Laboratory of Functional Composite Materials, Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia;
| |
Collapse
|
36
|
Detection of Raspberry Ketone after Percutaneous Absorption of Rhododendrol-Containing Cosmetics and Its Mechanism of Formation. COSMETICS 2021. [DOI: 10.3390/cosmetics8040097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here, we aimed to elucidate the mechanism of rhododendrol (RD)-induced leukoderma. We investigated the skin permeability of RD in an aqueous solution and in different cosmetic formulations (lotion and emulsion) in an in vitro skin permeation study. The samples were analyzed using high-performance liquid chromatography (HPLC), and an unknown substance appeared on the spectrum. For identification, we analyzed various possible substances, such as raspberry ketone (RK) and rhododendrol quinone, using HPLC and then compared the detected absorption spectra and further verified the matched components using liquid chromatography–mass spectrometry. The unknown substance was found to be RK. To clarify the mechanism of formation of RK, we conducted a 24-h skin permeation test on heat-treated skin. By quantifying the RK in the samples using HPLC, we observed that an enzyme in the skin seemed to be the cause of RK generation and that the components of the emulsion formulation could also be a cause. To investigate the enzyme, we reacted alcohol dehydrogenase with RD and observed that it was one of the converting enzymes. As RK has been reported to be a substance that causes leukoderma, the intraepidermal metabolism of RD to RK may be one of the mechanisms of susceptibility to leukoderma.
Collapse
|
37
|
Ravasco JMJM, Gomes RFA. Recent Advances on Diels-Alder-Driven Preparation of Bio-Based Aromatics. CHEMSUSCHEM 2021; 14:3047-3053. [PMID: 34058082 PMCID: PMC8453924 DOI: 10.1002/cssc.202100813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Indexed: 05/08/2023]
Abstract
The preparation of high value-added chemicals from renewable resources is a crucial approach towards a sustainable economy. One prominent alternative to the production of petroleum-based chemicals from fossil resources is through the sequential Diels-Alder/aromatization reactions of biomass-derived furan platforms. This Concept is focused on the recent boom in bio-based furan DA strategies for aromatization of bio-based platform chemicals, particularly that of furfurals, ranging from indirect use and activation strategies to recent examples of direct DA reaction of these electron-withdrawing biomass-derived furans.
Collapse
Affiliation(s)
- Joao M. J. M. Ravasco
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversity of LisbonAvenida Professor Gama Pinto1649-003LisbonPortugal
| | - Rafael F. A. Gomes
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversity of LisbonAvenida Professor Gama Pinto1649-003LisbonPortugal
| |
Collapse
|
38
|
Dherbassy Q, Manna S, Shi C, Prasitwatcharakorn W, Crisenza GEM, Perry GJP, Procter DJ. Enantioselective Copper-Catalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angew Chem Int Ed Engl 2021; 60:14355-14359. [PMID: 33847459 PMCID: PMC8252434 DOI: 10.1002/anie.202103259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/15/2022]
Abstract
Quinazolinones are common substructures in molecules of medicinal importance. We report an enantioselective copper-catalyzed borylative cyclization for the assembly of privileged pyrroloquinazolinone motifs. The reaction proceeds with high enantio- and diastereocontrol, and can deliver products containing quaternary stereocenters. The utility of the products is demonstrated through further manipulations.
Collapse
Affiliation(s)
- Quentin Dherbassy
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Srimanta Manna
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Chunling Shi
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- School of Material and Chemical EngineeringXuzhou University of TechnologyXuzhou221018P.R. China
| | | | | | - Gregory J. P. Perry
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
39
|
Dherbassy Q, Manna S, Shi C, Prasitwatcharakorn W, Crisenza GEM, Perry GJP, Procter DJ. Enantioselective Copper‐Catalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Quentin Dherbassy
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Srimanta Manna
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Chunling Shi
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
- School of Material and Chemical Engineering Xuzhou University of Technology Xuzhou 221018 P.R. China
| | | | | | - Gregory J. P. Perry
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J. Procter
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
40
|
Rowbotham JS, Reeve HA, Vincent KA. Hybrid Chemo-, Bio-, and Electrocatalysis for Atom-Efficient Deuteration of Cofactors in Heavy Water. ACS Catal 2021; 11:2596-2604. [PMID: 33842020 PMCID: PMC8025731 DOI: 10.1021/acscatal.0c03437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/31/2021] [Indexed: 11/29/2022]
Abstract
Deuterium-labeled nicotinamide cofactors such as [4-2H]-NADH can be used as mechanistic probes in biological redox processes and offer a route to the synthesis of selectively [2H] labeled chemicals via biocatalytic reductive deuteration. Atom-efficient routes to the formation and recycling of [4-2H]-NADH are therefore highly desirable but require careful design in order to alleviate the requirement for [2H]-labeled reducing agents. In this work, we explore a suite of electrode or hydrogen gas driven catalyst systems for the generation of [4-2H]-NADH and consider their use for driving reductive deuteration reactions. Catalysts are evaluated for their chemoselectivity, stereoselectivity, and isotopic selectivity, and it is shown that inclusion of an electronically coupled NAD+-reducing enzyme delivers considerable advantages over purely metal based systems, yielding exclusively [4S-2H]-NADH. We further demonstrate the applicability of these types of [4S-2H]-NADH recycling systems for driving reductive deuteration reactions, regardless of the facioselectivity of the coupled enzyme.
Collapse
Affiliation(s)
- Jack S. Rowbotham
- Department of Chemistry,
Inorganic Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Holly A. Reeve
- Department of Chemistry,
Inorganic Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Department of Chemistry,
Inorganic Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
41
|
Ning L, Li H, Lai Z, Szostak M, Chen X, Dong Y, Jin S, An J. Synthesis of α-Deuterated Primary Amines via Reductive Deuteration of Oximes Using D 2O as a Deuterium Source. J Org Chem 2021; 86:2907-2916. [PMID: 33486945 DOI: 10.1021/acs.joc.0c02829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective introduction of the deuterium atom into the α-position of amines is important for the development of all types of novel deuterated drugs and agrochemicals due to the pervasive presence of amines. In this study, we report the first general single-electron-transfer reductive deuteration of both ketoximes and aldoximes using SmI2 as an electron donor and D2O as a deuterium source for the synthesis of α-deuterated primary amines with excellent levels of deuterium incorporations (>95% [D]). This protocol exhibits excellent chemoselectivity and tolerates a variety of functional groups. The potential application of this new method was showcased in the synthesis of deuterated drugs, such as rimantadine-d4, the tebufenpyrad analogue, derivatives of nabumetone and pregnenolone, and a series of building blocks for the rapid and general assembly of deuterated drugs and pesticides.
Collapse
Affiliation(s)
- Lei Ning
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Hengzhao Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Zemin Lai
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xingyue Chen
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Yanhong Dong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Shuhui Jin
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
42
|
Naret T, Lesot P, Puente AR, Polavarapu PL, Buisson DA, Crassous J, Pieters G, Feuillastre S. Chemical Synthesis of [ 2H]-Ethyl Tosylate and Exploration of Its Crypto-optically Active Character Combining Complementary Spectroscopic Tools. Org Lett 2020; 22:8846-8849. [PMID: 33141582 DOI: 10.1021/acs.orglett.0c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small chiral molecules are excellent candidates to push the boundaries of enantiodiscrimination analytical techniques. Here is reported the synthesis of two new deuterated chiral probes, (R)- and (S)-[2H]-ethyl tosylate, obtained with high enantiomeric excesses. Due to their crypto-optically active properties, the discrimination of each enantiomer is challenging. Whereas their enantiopurity is determined by 2H NMR in chiral anisotropic media, their identification was performed by combining quantum chemical calculations and vibrational circular dichroism analysis.
Collapse
Affiliation(s)
- Timothée Naret
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Philippe Lesot
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, F-91405 Orsay cedex, France
| | - Andrew R Puente
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prasad L Polavarapu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David-Alexandre Buisson
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Jeanne Crassous
- Univ. Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Campus de Beaulieu, F-35042 Rennes cedex, France
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
43
|
DeWitt S, Czarnik AW, Jacques V. Deuterium-Enabled Chiral Switching (DECS) Yields Chirally Pure Drugs from Chemically Interconverting Racemates. ACS Med Chem Lett 2020; 11:1789-1792. [PMID: 33062153 PMCID: PMC7549104 DOI: 10.1021/acsmedchemlett.0c00052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
Separation of the preferred enantiomer
from racemic mixtures, i.e.
“chiral switching,” often improves efficacy and reduces
toxicity. However, this strategy is not applicable for all chiral
compounds—particularly for molecules with hydrogen-containing
chiral centers, which can be prone to rapid stereoisomerization. Deuterium
incorporation can stabilize such chiral centers while retaining the
pharmacologic characteristics of the parent racemic mixture, thereby
enabling their “chiral switching”, changing the drug
from a racemate to a single enantiomer. We describe “deuterium-enabled
chiral switching” (DECS) as a means of improving on the therapeutic
promise of chemically unstable racemic drugs and demonstrate its utility
with the isolation and characterization of stable preferred enantiomers
of thalidomide and thiazolidinedione (TZD) analogs.
Collapse
Affiliation(s)
- Sheila DeWitt
- DeuteRx, LLC, 300 Brickstone Square, Suite 201, Andover Massachusetts 01810, United States
| | - Anthony W. Czarnik
- DeuteRx, LLC, 300 Brickstone Square, Suite 201, Andover Massachusetts 01810, United States
| | - Vincent Jacques
- DeuteRx, LLC, 300 Brickstone Square, Suite 201, Andover Massachusetts 01810, United States
| |
Collapse
|
44
|
|
45
|
Ji P, Zhang Y, Dong Y, Huang H, Wei Y, Wang W. Synthesis of Enantioenriched α-Deuterated α-Amino Acids Enabled by an Organophotocatalytic Radical Approach. Org Lett 2020; 22:1557-1562. [PMID: 32045253 PMCID: PMC7936574 DOI: 10.1021/acs.orglett.0c00154] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mild, versatile organophotoredox protocol has been developed for the preparation of diverse, enantioenriched α-deuterated α-amino acids. Distinct from the well-established two-electron transformations, this radical-based strategy offers the unrivaled capacity of the convergent unification of readily accessible feedstock carboxylic acids and a chiral methyleneoxazolidinone fragment and the simultaneous highly diastereo-, chemo-, and regioselective incorporation of deuterium. Furthermore, the approach has addressed the long-standing challenge of the installation of sterically demanding side chains into α-amino acids.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Yueteng Zhang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Yue Dong
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - He Huang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Yongyi Wei
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
46
|
Li Y, MacGorman K, Liu L, Chen J, Hoffmann M, Palmisano M, Zhou S. Single-Dose Pharmacokinetics, Safety, and Tolerability of Avadomide (CC-122) in Subjects With Mild, Moderate, or Severe Renal Impairment. Clin Pharmacol Drug Dev 2019; 9:785-796. [PMID: 31891240 DOI: 10.1002/cpdd.760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023]
Abstract
CC-122 (Avadomide) is a nonphthalimide analogue of thalidomide that has multiple pharmacological activities including immune modulation of several immune cell subsets, antigrowth activity, antiproliferative activity, and antiangiogenic activity. CC-122 as monotherapy and in combination with other agents is being evaluated for multiple indications including hematologic malignancies and advanced solid tumors. Given that renal clearance is one of the major routes of elimination for CC-122 and its clearance/exposure could be affected by renal impairment, a total of 50 subjects with various degrees of renal function were enrolled in an open-label, single-dose study to evaluate the impact of renal impairment on CC-122 pharmacokinetic disposition. The study showed that following administration of a single oral dose of 3 mg CC-122, renal impairment reduced both the apparent total plasma clearance and renal clearance of CC-122, but it had less impact on CC-122 absorption, as demonstrated by similar Tmax and Cmax among groups with various degrees of renal function. Compared with exposure in subjects with normal renal function, total plasma exposure to CC-122 increased by ∼20%, ∼50%, and ∼120% in subjects with mild, moderate, and severe renal insufficiency, respectively. Results from this study combined with modeling/simulation suggest that dose adjustments are necessary in patients with moderate or severe but not with mild renal impairment. Finally, a single dose of 3 mg CC-122 was safe and well tolerated by healthy subjects and subjects with mild, moderate, and severe renal impairment.
Collapse
Affiliation(s)
- Yan Li
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, New Jersey, USA
| | - Kimberly MacGorman
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, New Jersey, USA
| | - Liangang Liu
- Biostatistics and Statistical Programming, Celgene Corporation, Summit, New Jersey, USA
| | - Jian Chen
- Non-Clinical Development, Celgene Corporation, Summit, New Jersey, USA
| | - Matthew Hoffmann
- Non-Clinical Development, Celgene Corporation, Summit, New Jersey, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, New Jersey, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, New Jersey, USA
| |
Collapse
|
47
|
Deuterium and its impact on living organisms. Folia Microbiol (Praha) 2019; 64:673-681. [DOI: 10.1007/s12223-019-00740-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
|
48
|
Liao K, Hu X, Zhu R, Rao R, Yu J, Zhou F, Zhou J. Catalytic Enantioselective Protonation of Monofluorinated Silyl Enol Ethers towards Chiral α‐Fluoroketones. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kui Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Xiao‐Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Ren‐Yi Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Ruo‐Han Rao
- Chengdu Shude High School Foreign Language Campus 398N Bairihong West Road, Chengdu Sichuan 610066 China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS Shanghai 200032 China
| |
Collapse
|
49
|
Pirali T, Serafini M, Cargnin S, Genazzani AA. Applications of Deuterium in Medicinal Chemistry. J Med Chem 2019; 62:5276-5297. [DOI: 10.1021/acs.jmedchem.8b01808] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Marta Serafini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
50
|
Uteng M, Urban L, Brees D, Muller PY, Kullak-Ublick GA, Bouchard P, Tougas G, Chibout SD. Safety differentiation: emerging competitive edge in drug development. Drug Discov Today 2018; 24:285-292. [PMID: 30244081 DOI: 10.1016/j.drudis.2018.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
With increasing expectations to provide evidence of drug efficacy, safety, and cost-effectiveness, best-in-class drugs are a major value driver for the pharmaceutical industry. Superior safety is a key differentiation criterion that could be achieved through better risk:benefit profiles, safety margins, fewer contraindications, and improved patient compliance. To accomplish this, comparative safety assessments using innovative and adaptive nonclinical and clinical outcome-based approaches should be undertaken, and continuous strategic adjustments must be made as the risk:benefit profiles evolve. Key success criteria include scientific expertise and integration between all disciplines during the full extent of the drug development process.
Collapse
Affiliation(s)
- Marianne Uteng
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Basel, Switzerland.
| | - Laszlo Urban
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Cambridge, MA, USA
| | - Dominique Brees
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Basel, Switzerland
| | | | - Gerd A Kullak-Ublick
- Novartis Pharma AG, Global Drug Development, Chief Medical Office and Patient Safety, Basel, Switzerland; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Page Bouchard
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Cambridge, MA, USA
| | - Gervais Tougas
- Novartis Pharma AG, Global Drug Development, Chief Medical Office and Patient Safety, Basel, Switzerland
| | - Salah-Dine Chibout
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Basel, Switzerland
| |
Collapse
|