1
|
Dupin L, Gerardin E, Térémetz M, Hamdoun S, Turc G, Maier MA, Baron JC, Lindberg PG. Alterations of tactile and anatomical spatial representations of the hand after stroke. Cortex 2024; 177:68-83. [PMID: 38838560 DOI: 10.1016/j.cortex.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Stroke often causes long-term motor and somatosensory impairments. Motor planning and tactile perception rely on spatial body representations. However, the link between altered spatial body representations, motor deficit and tactile spatial coding remains unclear. This study investigates the relationship between motor deficits and alterations of anatomical (body) and tactile spatial representations of the hand in 20 post-stroke patients with upper limb hemiparesis. Anatomical and tactile spatial representations were assessed from 10 targets (nails and knuckles) respectively cued verbally by their anatomical name or using tactile stimulations. Two distance metrics (hand width and finger length) and two structural measures (relative organization of targets positions and angular deviation of fingers from their physical posture) were computed and compared to clinical assessments, normative data and lesions sites. Over half of the patients had altered anatomical and/or tactile spatial representations. Metrics of tactile and anatomical representations showed common variations, where a wider hand representation was linked to more severe motor deficits. In contrast, alterations in structural measures were not concomitantly observed in tactile and anatomical representations and did not correlate with clinical assessments. Finally, a preliminary analysis showed that specific alterations in tactile structural measures were associated with dorsolateral prefrontal stroke lesions. This study reveals shared and distinct characteristics of anatomical and tactile hand spatial representations, reflecting different mechanisms that can be affected differently after stroke: metrics and location of tactile and anatomical representations were partially shared while the structural measures of tactile and anatomical representations had distinct characteristics.
Collapse
Affiliation(s)
- Lucile Dupin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France; Université Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France.
| | - Eloïse Gerardin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France
| | - Maxime Térémetz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France
| | - Sonia Hamdoun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France; Service de Médecine Physique et de Réadaptation, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Guillaume Turc
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France; Department of Neurology, GHU-Paris Psychiatrie et Neurosciences, FHU Neurovasc, Paris, France
| | - Marc A Maier
- Université Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France
| | - Jean-Claude Baron
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France; Department of Neurology, GHU-Paris Psychiatrie et Neurosciences, FHU Neurovasc, Paris, France
| | - Påvel G Lindberg
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France
| |
Collapse
|
2
|
Kong G, Cataldo A, Nitu M, Dupin L, Gomi H, Haggard P. Interhemispheric communication during haptic self-perception. Proc Biol Sci 2022; 289:20221977. [PMID: 36475437 PMCID: PMC9727658 DOI: 10.1098/rspb.2022.1977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During the haptic exploration of a planar surface, slight resistances against the hand's movement are illusorily perceived as asperities (bumps) in the surface. If the surface being touched is one's own skin, an actual bump would also produce increased tactile pressure from the moving finger onto the skin. We investigated how kinaesthetic and tactile signals combine to produce haptic perceptions during self-touch. Participants performed two successive movements with the right hand. A haptic force-control robot applied resistances to both movements, and participants judged which movement was felt to contain the larger bump. An additional robot delivered simultaneous but task-irrelevant tactile stroking to the left forearm. These strokes contained either increased or decreased tactile pressure synchronized with the resistance-induced illusory bump encountered by the right hand. We found that the size of bumps perceived by the right hand was enhanced by an increase in left tactile pressure, but also by a decrease. Tactile event detection was thus transferred interhemispherically, but the sign of the tactile information was not respected. Randomizing (rather than blocking) the presentation order of left tactile stimuli abolished these interhemispheric enhancement effects. Thus, interhemispheric transfer during bimanual self-touch requires a stable model of temporally synchronized events, but does not require geometric consistency between hemispheric information, nor between tactile and kinaesthetic representations of a single common object.
Collapse
Affiliation(s)
- Gaiqing Kong
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17–19 Queen Square, London WCIN 3AZ, UK,Neuroscience Research Centre of Lyon, INSERM U1028—CNRS UMR5292, Inserm Building, 16 avenue du doyen Lépine, 69500 Bron, France
| | - Antonio Cataldo
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17–19 Queen Square, London WCIN 3AZ, UK,Institute of Philosophy, University of London, Senate House, Malet Street, London WC1E 7HU, UK
| | - Miruna Nitu
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17–19 Queen Square, London WCIN 3AZ, UK
| | - Lucile Dupin
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U 1266—Université de Paris—Hôpital Sainte-Anne, Paris, France
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17–19 Queen Square, London WCIN 3AZ, UK,Chaire Blaise Pascal de la Région Ile de France, Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France
| |
Collapse
|
3
|
Li Q, Zhao W, Kendrick KM. Affective touch in the context of development, oxytocin signaling, and autism. Front Psychol 2022; 13:967791. [PMID: 36506943 PMCID: PMC9728590 DOI: 10.3389/fpsyg.2022.967791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Touch represents one of our most important senses throughout life and particularly in the context of our social and emotional experiences. In this review, we draw on research on touch processing from both animal models and humans. Firstly, we briefly describe the cutaneous touch receptors and neural processing of both affective and discriminative touch. We then outline how our sense of touch develops and summarize increasing evidence demonstrating how essential early tactile stimulation is for the development of brain and behavior, with a particular focus on effects of tactile stimulation in infant animals and pediatric massage and Kangaroo care in human infants. Next, the potential mechanisms whereby early tactile stimulation influences both brain and behavioral development are discussed, focusing on its ability to promote neural plasticity changes and brain interhemispheric communication, development of social behavior and bonding, and reward sensitivity through modulation of growth factor, oxytocin, and opioid signaling. Finally, we consider the implications of evidence for atypical responses to touch in neurodevelopmental disorders such as autism spectrum disorder and discuss existing evidence and future priorities for establishing potential beneficial effects of interventions using massage or pharmacological treatments targeting oxytocin or other neurochemical systems.
Collapse
Affiliation(s)
- Qin Li
- School of Foreign Language, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ministry of Education, Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- Ministry of Education, Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- Ministry of Education, Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Ryan CP, Ciotti S, Cosentino L, Ernst MO, Lacquaniti F, Moscatelli A. Masking Vibrations and Contact Force Affect the Discrimination of Slip Motion Speed in Touch. IEEE TRANSACTIONS ON HAPTICS 2022; 15:693-704. [PMID: 36149999 DOI: 10.1109/toh.2022.3209072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple cues contribute to the discrimination of slip motion speed by touch. In our previous article, we demonstrated that masking vibrations at various frequencies impaired the discrimination of speed. In this article, we extended the previous results to evaluate this phenomenon on a smooth glass surface, and for different values of contact force and duration of the masking stimulus. Speed discrimination was significantly impaired by masking vibrations at high but not at low contact force. Furthermore, a short pulse of masking vibrations at motion onset produced a similar effect as the long masking stimulus, delivered throughout slip motion duration. This last result suggests that mechanical events at motion onset provide important cues to the discrimination of speed.
Collapse
|
5
|
Dupin L, Cuenca M, Baron JC, Maier MA, Lindberg PG. Shrinking of spatial hand representation but not of objects across the lifespan. Cortex 2021; 146:173-185. [PMID: 34883309 DOI: 10.1016/j.cortex.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/02/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Perception and action are based on cerebral spatial representations of the body and the external world. However, spatial representations differ from the physical characteristics of body and external space (e.g., objects). It remains unclear whether these discrepancies are related to functional requirements of action and are shared between different spatial representations, indicating common brain processes. We hypothesized that distortions of spatial hand representation would be affected by age, sensorimotor practice and external space representation. We assessed hand representations using tactile and verbal localization tasks and quantified object representation in three age groups (20-79 yrs, total n = 60). Our results show significant shrinking of spatial hand representations (hand width) with age, unrelated to sensorimotor functions. No such shrinking occurred in spatial object representations despite some common characteristics with hand representations. Therefore, spatial properties of body representation partially share characteristics of object representation but also evolve independently across the lifespan.
Collapse
Affiliation(s)
- Lucile Dupin
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France.
| | - Macarena Cuenca
- Centre de Recherche Clinique, GHU, Hôpital Sainte-Anne, Paris, France
| | - Jean-Claude Baron
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France
| | - Marc A Maier
- Université de Paris, INCC UMR 8002, CNRS, Paris, France
| | - Påvel G Lindberg
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France
| |
Collapse
|
6
|
Ryan CP, Bettelani GC, Ciotti S, Parise C, Moscatelli A, Bianchi M. The interaction between motion and texture in the sense of touch. J Neurophysiol 2021; 126:1375-1390. [PMID: 34495782 DOI: 10.1152/jn.00583.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Besides providing information on elementary properties of objects, like texture, roughness, and softness, the sense of touch is also important in building a representation of object movement and the movement of our hands. Neural and behavioral studies shed light on the mechanisms and limits of our sense of touch in the perception of texture and motion, and of its role in the control of movement of our hands. The interplay between the geometrical and mechanical properties of the touched objects, such as shape and texture, the movement of the hand exploring the object, and the motion felt by touch, will be discussed in this article. Interestingly, the interaction between motion and textures can generate perceptual illusions in touch. For example, the orientation and the spacing of the texture elements on a static surface induces the illusion of surface motion when we move our hand on it or can elicit the perception of a curved trajectory during sliding, straight hand movements. In this work we present a multiperspective view that encompasses both the perceptual and the motor aspects, as well as the response of peripheral and central nerve structures, to analyze and better understand the complex mechanisms underpinning the tactile representation of texture and motion. Such a better understanding of the spatiotemporal features of the tactile stimulus can reveal novel transdisciplinary applications in neuroscience and haptics.
Collapse
Affiliation(s)
- Colleen P Ryan
- Department of Systems Medicine and Centre of Space Bio-Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - Gemma C Bettelani
- Research Center E. Piaggio, University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Simone Ciotti
- Department of Systems Medicine and Centre of Space Bio-Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Alessandro Moscatelli
- Department of Systems Medicine and Centre of Space Bio-Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - Matteo Bianchi
- Research Center E. Piaggio, University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Ciotti S, P Ryan C, Bianchi M, Lacquaniti F, Moscatelli A. A Novel Device Decoupling Tactile Slip and Hand Motion in Reaching Tasks: The HaptiTrack Device. IEEE TRANSACTIONS ON HAPTICS 2021; 14:248-253. [PMID: 33886474 DOI: 10.1109/toh.2021.3075024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hand reaching is a complex task that requires the integration of multiple sensory information from muscle, joints and the skin, and an internal model of the motor command. Recent studies in neuroscience highlighted the important role of touch for the control of hand movement while reaching for a target. In this article, present a novel device, the HaptiTrack device, to physically decouple tactile slip motion and hand movements. The new device generates precisely controlled 2D motion of a contact plate, measures contact forces, and provides hand and finger tracking through an external tracking system. By means of a control algorithm described in this manuscript, the velocity of tactile slip can be changed independently from the velocity of the hand sliding on the device's surface. Due to these multiple features, the device can be a powerful tool for the evaluation of tactile sense during hand reaching movements in healthy and pathological conditions.
Collapse
|
8
|
Glowania C, Plaisier MA, Ernst MO, Van Dam LCJ. No need to touch this: Bimanual haptic slant adaptation does not require touch. PLoS One 2020; 15:e0236824. [PMID: 32735569 PMCID: PMC7394449 DOI: 10.1371/journal.pone.0236824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/14/2020] [Indexed: 12/05/2022] Open
Abstract
In our daily life, we often interact with objects using both hands raising the question the question to what extent information between the hands is shared. It has, for instance, been shown that curvature adaptation aftereffects can transfer from the adapted hand to the non-adapted hand. However, this transfer only occurred for dynamic exploration, e.g. by moving a single finger over a surface, but not for static exploration when keeping static contact with the surface and combining the information from different parts of the hand. This raises the question to what extent adaptation to object shape is shared between the hands when both hands are used in static fashion simultaneously and the object shape estimates require information from both hands. Here we addressed this question in three experiments using a slant adaptation paradigm. In Experiment 1 we investigated whether an aftereffect of static bimanual adaptation occurs at all and whether it transfers to conditions in which one hand was moving. In Experiment 2 participants adapted either to a felt slanted surface or simply be holding their hands in mid-air at similar positions, to investigate to what extent the effects of static bimanual adaptation are posture-based rather than object based. Experiment 3 further explored the idea that bimanual adaptation is largely posture based. We found that bimanual adaptation using static touch did lead to aftereffects when using the same static exploration mode for testing. However, the aftereffect did not transfer to any exploration mode that included a dynamic component. Moreover, we found similar aftereffects both with and without a haptic surface. Thus, we conclude that static bimanual adaptation is of proprioceptive nature and does not occur at the level at which the object is represented.
Collapse
Affiliation(s)
- Catharina Glowania
- Cognitive Neuroscience Department and Cognitive Interaction Technology—Center of Excellence, Bielefeld University, Bielefeld, Germany
- * E-mail:
| | - Myrthe A. Plaisier
- Department of Mechanical Engineering, Dynamics & Control group, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marc O. Ernst
- Cognitive Neuroscience Department and Cognitive Interaction Technology—Center of Excellence, Bielefeld University, Bielefeld, Germany
- Applied Cognitive Psychology, Institute for Psychology, Ulm University, Ulm, Germany
| | - Loes C. J. Van Dam
- Cognitive Neuroscience Department and Cognitive Interaction Technology—Center of Excellence, Bielefeld University, Bielefeld, Germany
- Department of Psychology, University of Essex, Colchester, United Kingdom
| |
Collapse
|
9
|
Moscatelli A, Nimbi FM, Ciotti S, Jannini EA. Haptic and Somesthetic Communication in Sexual Medicine. Sex Med Rev 2020; 9:267-279. [PMID: 32690471 DOI: 10.1016/j.sxmr.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The word "haptics" refers to sensory inputs arising from receptors in the skin and in the musculoskeletal system, particularly crucial in sexual economy. Haptic stimuli provide information about mechanical properties of touched objects and about the position and motion of the body. An important area in this field is the development of robotic interfaces for communication through the "haptic channel," which typically requires a collaboration between engineers, neuroscientists, and psychologists. Many aspects of human sexuality, such as arousal and intercourse, can be considered from a haptic perspective. OBJECTIVES To review the current literature on haptics and somatosensation, and discuss potential applications of haptic interfaces in sexual medicine. METHODS Articles for this review were collected based on the results of a bibliographic search of relevant papers in Cochrane Library, Google Scholar, Web of Science, Scopus, and EBSCO. The search terms used, including asterisks, were "haptic∗," "somatosensor∗," "sexual∗," and related terms describing the role of touch, technology, and sexuality. Additional terms included "interface∗," "touch," and "sex∗." RESULTS We have provided a functional and anatomical description of the somatosensory system in humans, with special focus on neural structures involved in affective and erotic touch. One interesting topic is the development of haptic interfaces, which are specialized robots generating mechanical signals that stimulate our somatosensory system. We provided an overview on haptic interfaces and evaluated the role of haptics in sexual medicine. CONCLUSION Haptics and studies on the neuroscience of the somatosensory system are expected to provide useful insights for sexual medicine and novel tools for sexual dysfunction. In the future, crosstalk between sexology and haptics may produce a novel generation of user-friendly haptic devices generating a higher level of realism and presence in providing stimuli. Moscatelli A, Nimbi FM, Ciotti S, et al. Haptic and Somesthetic Communication in Sexual Medicine. J Sex Med 2021;9:267-279.
Collapse
Affiliation(s)
- Alessandro Moscatelli
- Course of Physiology, Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy; Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Filippo M Nimbi
- Course of Psychosexology, Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Simone Ciotti
- Course of Physiology, Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy; Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology & Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
10
|
Costes A, Danieau F, Argelaguet F, Guillotel P, Lecuyer A. Towards Haptic Images: A Survey on Touchscreen-Based Surface Haptics. IEEE TRANSACTIONS ON HAPTICS 2020; 13:530-541. [PMID: 32248125 DOI: 10.1109/toh.2020.2984754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of tactile screens opens new perspectives for co-located images and haptic rendering, leading to the concept of "haptic images." They emerge from the combination of image data, rendering hardware, and haptic perception. This enables one to perceive haptic feedback while manually exploring an image. This raises nevertheless two scientific challenges, which serve as thematic axes for the state of the art of this survey. Firstly, the choice of appropriate haptic data raises a number of issues about human perception, measurements, modeling and distribution. Secondly, the choice of appropriate rendering technology implies a difficult trade-off between expressiveness and usability.
Collapse
|
11
|
Risi N, Shah V, Mrotek LA, Casadio M, Scheidt RA. Supplemental vibrotactile feedback of real-time limb position enhances precision of goal-directed reaching. J Neurophysiol 2019; 122:22-38. [PMID: 30995149 DOI: 10.1152/jn.00337.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined vibrotactile stimulation as a form of supplemental limb state feedback to enhance planning and ongoing control of goal-directed movements. Subjects wore a two-dimensional vibrotactile display on their nondominant arm while performing horizontal planar reaching with the dominant arm. The vibrotactile display provided feedback of hand position such that small hand displacements were more easily discriminable using vibrotactile feedback than with intrinsic proprioceptive feedback. When subjects relied solely on proprioception to capture visuospatial targets, performance was degraded by proprioceptive drift and an expansion of task space. By contrast, reach accuracy was enhanced immediately when subjects were provided vibrotactile feedback and further improved over 2 days of training. Improvements reflected resolution of proprioceptive drift, which occurred only when vibrotactile feedback was active, demonstrating that benefits of vibrotactile feedback are due, in part to its integration into the ongoing control of movement. A partial resolution of task space expansion persisted even when vibrotactile feedback was inactive, demonstrating that training with vibrotactile feedback also induced changes in movement planning. However, the benefits of vibrotactile feedback come at a cognitive cost. All subjects adopted a stereotyped strategy wherein they attempted to capture targets by moving first along one axis of the vibrotactile display and then the other. For most subjects, this inefficient approach did not resolve over two bouts of training performed on separate days, suggesting that additional training is needed to integrate vibrotactile feedback into the planning and online control of goal-directed reaching in a way that promotes smooth and efficient movement. NEW & NOTEWORTHY A two-dimensional vibrotactile display provided state (not error) feedback to enhance control of a moving limb. Subjects learned to use state feedback to perform blind reaches with accuracy and precision exceeding that attained using intrinsic proprioception alone. Feedback utilization incurred substantial cognitive cost: subjects moved first along one axis of the vibrotactile display, then the other. This stereotyped control strategy must be overcome if vibrotactile limb state feedback is to promote naturalistic limb movements.
Collapse
Affiliation(s)
- Nicoletta Risi
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova , Genoa , Italy
| | - Valay Shah
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Leigh A Mrotek
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Maura Casadio
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova , Genoa , Italy.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Robert A Scheidt
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine , Chicago, Illinois.,Division of Civil, Mechanical and Manufacturing Innovation, National Science Foundation , Alexandria, Virginia
| |
Collapse
|
12
|
Dupin L, Haggard P. Dynamic Displacement Vector Interacts with Tactile Localization. Curr Biol 2019; 29:492-498.e3. [PMID: 30686734 PMCID: PMC6370943 DOI: 10.1016/j.cub.2018.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 11/25/2022]
Abstract
Locating a tactile stimulus on the body seems effortless and straightforward. However, the perceived location of a tactile stimulation can differ from its physical location [1, 2, 3]. Tactile mislocalizations can depend on the timing of successive stimulations [2, 4, 5], tactile motion mechanisms [6], or processes that “remap” stimuli from skin locations to external space coordinates [7, 8, 9, 10, 11]. We report six experiments demonstrating that the perception of tactile localization on a static body part is strongly affected by the displacement between the locations of two successive task-irrelevant actions. Participants moved their index finger between two keys. Each keypress triggered synchronous tactile stimulation at a randomized location on the immobilized wrist or forehead. Participants reported the location of the second tactile stimulation relative to the first. The direction of either active finger movements or passive finger displacements biased participants’ tactile orientation judgements (experiment 1). The effect generalized to tactile stimuli delivered to other body sites (experiment 2). Two successive keypresses, by different fingers at distinct locations, reproduced the effect (experiment 3). The effect remained even when the hand that moved was placed far from the tactile stimulation site (experiments 4 and 5). Temporal synchrony within 600 ms between the movement and tactile stimulations was necessary for the effect (experiment 6). Our results indicate that a dynamic displacement vector, defined as the location of one sensorimotor event relative to the one before, plays a strong role in structuring tactile spatial perception. Human tactile localization is biased by simultaneous finger displacement The shift between two successive events biases the relative localization of touches Both active and passive movements induce a bias, even if far from the touched site The bias effect is vectorially organized
Collapse
Affiliation(s)
- Lucile Dupin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK.
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK
| |
Collapse
|
13
|
Abstract
The shape of objects is typically identified through active touch. The accrual of spatial information by the hand over time requires the continuous integration of tactile and movement information. Sensory inputs arising from one single sensory source gives rise to an infinite number of possible touched locations in space. This observation raises the question of the determination of a common reference frame that might be employed by humans to resolve spatial ambiguity. Here, we employ a paradigm where observers reconstruct the spatial attributes of a triangle from tactile inputs applied to a stationary hand correlated with the voluntary movements of the other hand. We varied the orientation of the hands with respect to one another and to the trunk, and tested three distinct hypotheses regarding a reference frame used for integration: a hand-centred, a trunk-centred or an allocentric reference frame. The results indicated strongly that the integration of movement information and tactile inputs was performed in a radial trunk-centred reference frame.
Collapse
|
14
|
Bilateral Tactile Input Patterns Decoded at Comparable Levels But Different Time Scales in Neocortical Neurons. J Neurosci 2018. [PMID: 29540549 DOI: 10.1523/jneurosci.2891-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of contralateral tactile input can profoundly affect ipsilateral tactile perception, and unilateral stroke in somatosensory areas can result in bilateral tactile deficits, suggesting that bilateral tactile integration is an important part of brain function. Although previous studies have shown that bilateral tactile inputs exist and that there are neural interactions between inputs from the two sides, no previous study explored to what extent the local neuronal circuitry processing contains detailed information about the nature of the tactile input from the two sides. To address this question, we used a recently introduced approach to deliver a set of electrical, reproducible, tactile afferent, spatiotemporal activation patterns, which permits a high-resolution analysis of the neuronal decoding capacity, to the skin of the second forepaw digits of the anesthetized male rat. Surprisingly, we found that individual neurons of the primary somatosensory can decode contralateral and ipsilateral input patterns to comparable extents. Although the contralateral input was stronger and more rapidly decoded, given sufficient poststimulus processing time, ipsilateral decoding levels essentially caught up to contralateral levels. Moreover, there was a weak but significant correlation for neurons with high decoding performance for contralateral tactile input to also perform well on decoding ipsilateral input. Our findings shed new light on the brain mechanisms underlying bimanual haptic integration.SIGNIFICANCE STATEMENT Here we demonstrate that the spiking activity of single neocortical neurons in the somatosensory cortex of the rat can be used to decode patterned tactile stimuli delivered to the distal ventral skin of the second forepaw digits on both sides of the body. Even though comparable levels of decoding of the tactile input were achieved faster for contralateral input, given sufficient integration time each neuron was found to decode ipsilateral input with a comparable level of accuracy. Given that the neocortical neurons could decode ipsilateral inputs with such small differences between the patterns suggests that S1 cortex has access to very precise information about ipsilateral events. The findings shed new light on possible network mechanisms underlying bimanual haptic processing.
Collapse
|
15
|
Dowell CJ, Norman JF, Moment JR, Shain LM, Norman HF, Phillips F, Kappers AML. Haptic shape discrimination and interhemispheric communication. Sci Rep 2018; 8:377. [PMID: 29321557 PMCID: PMC5762789 DOI: 10.1038/s41598-017-18691-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
In three experiments participants haptically discriminated object shape using unimanual (single hand explored two objects) and bimanual exploration (both hands were used, but each hand, left or right, explored a separate object). Such haptic exploration (one versus two hands) requires somatosensory processing in either only one or both cerebral hemispheres; previous studies related to the perception of shape/curvature found superior performance for unimanual exploration, indicating that shape comparison is more effective when only one hemisphere is utilized. The current results, obtained for naturally shaped solid objects (bell peppers, Capsicum annuum) and simple cylindrical surfaces demonstrate otherwise: bimanual haptic exploration can be as effective as unimanual exploration, showing that there is no necessary reduction in ability when haptic shape comparison requires interhemispheric communication. We found that while successive bimanual exploration produced high shape discriminability, the participants’ bimanual performance deteriorated for simultaneous shape comparisons. This outcome suggests that either interhemispheric interference or the need to attend to multiple objects simultaneously reduces shape discrimination ability. The current results also reveal a significant effect of age: older adults’ shape discrimination abilities are moderately reduced relative to younger adults, regardless of how objects are manipulated (left hand only, right hand only, or bimanual exploration).
Collapse
Affiliation(s)
- Catherine J Dowell
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA
| | - J Farley Norman
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA.
| | - Jackie R Moment
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA
| | - Lindsey M Shain
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA
| | - Hideko F Norman
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA
| | - Flip Phillips
- Skidmore College, Department of Psychology & Neuroscience Program, Saratoga Springs, New York, 12866, USA
| | - Astrid M L Kappers
- Vrije Universiteit, Department of Human Movement Sciences, MOVE Research Institute, 1081 HV, Amsterdam, Netherlands
| |
Collapse
|
16
|
Wang D, Peng C, Afzal N, Li W, Wu D, Zhang Y. Localization Performance of Multiple Vibrotactile Cues on Both Arms. IEEE TRANSACTIONS ON HAPTICS 2018; 11:97-106. [PMID: 28841557 DOI: 10.1109/toh.2017.2742507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To present information using vibrotactile stimuli in wearable devices, it is fundamental to understand human performance of localizing vibrotactile cues across the skin surface. In this paper, we studied human ability to identify locations of multiple vibrotactile cues activated simultaneously on both arms. Two haptic bands were mounted in proximity to the elbow and shoulder joints on each arm, and two vibrotactile motors were mounted on each band to provide vibration cues to the dorsal and palmar side of the arm. The localization performance under four conditions were compared, with the number of the simultaneously activated cues varying from one to four in each condition. Experimental results illustrate that the rate of correct localization decreases linearly with the increase in the number of activated cues. It was 27.8 percent for three activated cues, and became even lower for four activated cues. An analysis of the correct rate and error patterns show that the layout of vibrotactile cues can have significant effects on the localization performance of multiple vibrotactile cues. These findings might provide guidelines for using vibrotactile cues to guide the simultaneous motion of multiple joints on both arms.
Collapse
|
17
|
Genna C, Oddo CM, Fanciullacci C, Chisari C, Jörntell H, Artoni F, Micera S. Spatiotemporal Dynamics of the Cortical Responses Induced by a Prolonged Tactile Stimulation of the Human Fingertips. Brain Topogr 2017; 30:473-485. [PMID: 28497235 DOI: 10.1007/s10548-017-0569-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023]
Abstract
The sense of touch is fundamental for daily behavior. The aim of this work is to understand the neural network responsible for touch processing during a prolonged tactile stimulation, delivered by means of a mechatronic platform by passively sliding a ridged surface under the subject's fingertip while recording the electroencephalogram (EEG). We then analyzed: (i) the temporal features of the Somatosensory Evoked Potentials and their topographical distribution bilaterally across the cortex; (ii) the associated temporal modulation of the EEG frequency bands. Long-latency SEP were identified with the following physiological sequence P100-N140-P240. P100 and N140 were bilateral potentials with higher amplitude in the contralateral hemisphere and with delayed latency in the ipsilateral side. Moreover, we found a late potential elicited around 200 ms after the stimulation was stopped, which likely encoded the end of tactile input. The analysis of cortical oscillations indicated an initial increase in the power of theta band (4-7 Hz) for 500 ms after the stimulus onset followed a decrease in the power of the alpha band (8-15 Hz) that lasted for the remainder of stimulation. This decrease was prominent in the somatosensory cortex and equally distributed in both contralateral and ipsilateral hemispheres. This study shows that prolonged stimulation of the human fingertip engages the cortex in widespread bilateral processing of tactile information, with different modulations of the theta and alpha bands across time.
Collapse
Affiliation(s)
- Clara Genna
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Calogero M Oddo
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chiara Fanciullacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Neurorehabilitation Unit, University Hospital of Pisa, Pisa, Italy
| | - Carmelo Chisari
- Neurorehabilitation Unit, University Hospital of Pisa, Pisa, Italy
| | - Henrik Jörntell
- Department of Experimental Medical Science, BMC, Lund University, Lund, Sweden
| | - Fiorenzo Artoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, School of Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy. .,Bertarelli Foundation Chair in Translational NeuroEngineering, School of Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
Brown JD, Shelley MK, Gardner D, Gansallo EA, Gillespie RB. Non-Colocated Kinesthetic Display Limits Compliance Discrimination in the Absence of Terminal Force Cues. IEEE TRANSACTIONS ON HAPTICS 2016; 9:387-396. [PMID: 27101616 DOI: 10.1109/toh.2016.2554120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An important goal of haptic display is to make available the action/reaction relationships that define interactions between the body and the physical world. While in physical world interactions reaction cues invariably impinge on the same part of the body involved in action (reaction and action are colocated), a haptic interface is quite capable of rendering feedback to a separate body part than that used for producing exploratory actions (non-colocated action and reaction). This most commonly occurs with the use of vibrotactile display, in which a cutaneous cue has been substituted for a kinesthetic cue (a kind of sensory substitution). In this paper, we investigate whether non-colocated force and displacement cues degrade the perception of compliance. Using a custom non-colocated kinesthetic display in which one hand controls displacement and the other senses force, we ask participants to discriminate between two virtual springs with matched terminal force and adjustable non-linearity. An additional condition includes one hand controlling displacement while the other senses force encoded in a vibrotactile cue. Results show that when the terminal force cue is unavailable, and even when sensory substitution is not involved, non-colocated kinesthetic displays degrade compliance discrimination relative to colocated kinesthetic displays. Compliance discrimination is also degraded with vibrotactile display of force. These findings suggest that non-colocated kinesthetic displays and, likewise, cutaneous sensory substitution displays should be avoided when discrimination of compliance is necessary for task success.
Collapse
|
19
|
Tamè L, Braun C, Holmes NP, Farnè A, Pavani F. Bilateral representations of touch in the primary somatosensory cortex. Cogn Neuropsychol 2016; 33:48-66. [PMID: 27314449 DOI: 10.1080/02643294.2016.1159547] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
According to current textbook knowledge, the primary somatosensory cortex (SI) supports unilateral tactile representations, whereas structures beyond SI, in particular the secondary somatosensory cortex (SII), support bilateral tactile representations. However, dexterous and well-coordinated bimanual motor tasks require early integration of bilateral tactile information. Sequential processing, first of unilateral and subsequently of bilateral sensory information, might not be sufficient to accomplish these tasks. This view of sequential processing in the somatosensory system might therefore be questioned, at least for demanding bimanual tasks. Evidence from the last 15 years is forcing a revision of this textbook notion. Studies in animals and humans indicate that SI is more than a simple relay for unilateral sensory information and, together with SII, contributes to the integration of somatosensory inputs from both sides of the body. Here, we review a series of recent works from our own and other laboratories in favour of interactions between tactile stimuli on the two sides of the body at early stages of processing. We focus on tactile processing, although a similar logic may also apply to other aspects of somatosensation. We begin by describing the basic anatomy and physiology of interhemispheric transfer, drawing on neurophysiological studies in animals and behavioural studies in humans that showed tactile interactions between body sides, both in healthy and in brain-damaged individuals. Then we describe the neural substrates of bilateral interactions in somatosensation as revealed by neurophysiological work in animals and neuroimaging studies in humans (i.e., functional magnetic resonance imaging, magnetoencephalography, and transcranial magnetic stimulation). Finally, we conclude with considerations on the dilemma of how efficiently integrating bilateral sensory information at early processing stages can coexist with more lateralized representations of somatosensory input, in the context of motor control.
Collapse
Affiliation(s)
- Luigi Tamè
- a Department of Psychological Sciences , Birkbeck, University of London , London , UK
| | - Christoph Braun
- b MEG-Center, University of Tübingen , Tübingen , Germany.,c Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen , Tübingen , Germany.,d Center for Mind/Brain Sciences, University of Trento , Rovereto , Italy.,e Department of Psychological Sciences , University of Trento , Rovereto , Italy
| | | | - Alessandro Farnè
- g INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre , Lyon , France.,h University Claude Bernard Lyon I , Lyon , France
| | - Francesco Pavani
- d Center for Mind/Brain Sciences, University of Trento , Rovereto , Italy.,e Department of Psychological Sciences , University of Trento , Rovereto , Italy.,g INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre , Lyon , France
| |
Collapse
|
20
|
Defining filled and empty space: reassessing the filled space illusion for active touch and vision. Exp Brain Res 2016; 234:2697-708. [PMID: 27233286 PMCID: PMC4978768 DOI: 10.1007/s00221-016-4673-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/11/2016] [Indexed: 10/26/2022]
Abstract
In the filled space illusion, an extent filled with gratings is estimated as longer than an equivalent extent that is apparently empty. However, researchers do not seem to have carefully considered the terms filled and empty when describing this illusion. Specifically, for active touch, smooth, solid surfaces have typically been used to represent empty space. Thus, it is not known whether comparing gratings to truly empty space (air) during active exploration by touch elicits the same illusionary effect. In Experiments 1 and 2, gratings were estimated as longer if they were compared to smooth, solid surfaces rather than being compared to truly empty space. Consistent with this, Experiment 3 showed that empty space was perceived as longer than solid surfaces when the two were compared directly. Together these results are consistent with the hypothesis that, for touch, the standard filled space illusion only occurs if gratings are compared to smooth, solid surfaces and that it may reverse if gratings are compared to empty space. Finally, Experiment 4 showed that gratings were estimated as longer than both solid and empty extents in vision, so the direction of the filled space illusion in vision was not affected by the nature of the comparator. These results are discussed in relation to the dual nature of active touch.
Collapse
|