1
|
Yoon H, Heinzman J, Smith SE, Gopinadhan M, Edmond KV, Clingenpeel AC, Alvarez NJ. Highly stable petroleum pitches provide access to the deep glassy state. SOFT MATTER 2023. [PMID: 38037425 DOI: 10.1039/d3sm01246h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Differential scanning calorimetry (DSC) was used to study the fast aging behavior of two petroleum pitch materials despite being only three to five years old. We observe that these highly aromatic pitches with broad distributions of both molecular weight and aromaticity exhibit large enthalpic relaxation endotherms in initial DSC heating scans, and 20-32 °C reductions in the fictive temperature and 0.35-0.87 of θK, which are indicative of aged glasses similar to ultrastable glasses and 20 MA aged amber. Quantifying the degree of thermodynamic stability relative to the Kauzmann temperature vs. the aging time demonstrates that these materials age just as quickly as low fragility metallic glasses. Additionally, we observe that pitches age faster than polymers reported in the literature when compared using down-jump experiments. We hypothesize that the fraction of higher aromaticity of pitch molecules plays a crucial role in faster dynamics. The unique aging behavior and the ability to produce pitches in bulk quantities using pilot-scale equipment, while being possible to tailor their molecular composition, make them a useful material for studying complex aging dynamics in the deep glassy state.
Collapse
Affiliation(s)
- Heedong Yoon
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - James Heinzman
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - Stuart E Smith
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Manesh Gopinadhan
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Kazem V Edmond
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Amy C Clingenpeel
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Nicolas J Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Leoni F, Martelli F, Royall CP, Russo J. Structural Signatures of Ultrastability in a Deposited Glassformer. PHYSICAL REVIEW LETTERS 2023; 130:198201. [PMID: 37243654 DOI: 10.1103/physrevlett.130.198201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
Glasses obtained from vapor deposition on a cold substrate have superior thermodynamic and kinetic stability with respect to ordinary glasses. Here we perform molecular dynamics simulations of vapor deposition of a model glassformer and investigate the origin of its high stability compared to that of ordinary glasses. We find that the vapor deposited glass is characterized by locally favored structures (LFSs) whose occurrence correlates with its stability, reaching a maximum at the optimal deposition temperature. The formation of LFSs is enhanced near the free surface, hence supporting the idea that the stability of vapor deposited glasses is connected to the relaxation dynamics at the surface.
Collapse
Affiliation(s)
- Fabio Leoni
- Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Fausto Martelli
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
| | - C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - John Russo
- Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
3
|
Berthier L, Ediger MD. How to "measure" a structural relaxation time that is too long to be measured? J Chem Phys 2020; 153:044501. [PMID: 32752666 DOI: 10.1063/5.0015227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has recently become possible to prepare ultrastable glassy materials characterized by structural relaxation times, which vastly exceed the duration of any feasible experiment. Similarly, new algorithms have led to the production of ultrastable computer glasses. Is it possible to obtain a reliable estimate of a structural relaxation time that is too long to be measured? We review, organize, and critically discuss various methods to estimate very long relaxation times. We also perform computer simulations of three dimensional ultrastable hard spheres glasses to test and quantitatively compare some of these methods for a single model system. The various estimation methods disagree significantly, and non-linear and non-equilibrium methods lead to a strong underestimate of the actual relaxation time. It is not yet clear how to accurately estimate extremely long relaxation times.
Collapse
Affiliation(s)
- L Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
4
|
Diver A, Dicks O, Elena AM, Todorov IT, Trachenko K. Evolution of amorphous structure under irradiation: zircon case study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:415703. [PMID: 32579131 DOI: 10.1088/1361-648x/ab9f51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The nature of the amorphous state has been notably difficult to ascertain at the microscopic level. In addition to the fundamental importance of understanding the amorphous state, potential changes to amorphous structures as a result of radiation damage have direct implications for the pressing problem of nuclear waste encapsulation. Here, we develop new methods to identify and quantify the damage produced by high-energy collision cascades that are applicable to amorphous structures and perform large-scale molecular dynamics simulations of high-energy collision cascades in a model zircon system. We find that, whereas the averaged probes of order such as pair distribution function do not indicate structural changes, local coordination analysis shows that the amorphous structure substantially evolves due to radiation damage. Our analysis shows a correlation between the local structural changes and enthalpy. Important implications for the long-term storage of nuclear waste follow from our detection of significant local density inhomogeneities. Although we do not reach the point of convergence where the changes of the amorphous structure saturate, our results imply that the nature of this new converged amorphous state will be of substantial interest in future experimental and modeling work.
Collapse
Affiliation(s)
- A Diver
- School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - O Dicks
- School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - A M Elena
- Daresbury Laboratory STFC UKRI, Scientific Computing Department, Keckwick Lane, Daresbury WA4 4AD, Cheshire, United Kingdom
| | - I T Todorov
- Daresbury Laboratory STFC UKRI, Scientific Computing Department, Keckwick Lane, Daresbury WA4 4AD, Cheshire, United Kingdom
| | - K Trachenko
- School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| |
Collapse
|
5
|
Kasting BJ, Beasley MS, Guiseppi-Elie A, Richert R, Ediger MD. Relationship between aged and vapor-deposited organic glasses: Secondary relaxations in methyl-m-toluate. J Chem Phys 2019; 151:144502. [DOI: 10.1063/1.5123305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- B. J. Kasting
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706, USA
| | - M. S. Beasley
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706, USA
| | - A. Guiseppi-Elie
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - R. Richert
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Wang L, Berthier L, Flenner E, Guan P, Szamel G. Sound attenuation in stable glasses. SOFT MATTER 2019; 15:7018-7025. [PMID: 31433423 DOI: 10.1039/c9sm01092k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the difference between the universal low-temperature properties of amorphous and crystalline solids requires an explanation for the stronger damping of long-wavelength phonons in amorphous solids. A longstanding sound attenuation scenario, resulting from a combination of experiments, theories, and simulations, leads to a quartic scaling of sound attenuation with the wavevector, which is commonly attributed to the Rayleigh scattering of sound. Modern computer simulations offer conflicting conclusions regarding the validity of this picture. We simulate glasses with an unprecedentedly broad range of stabilities to perform the first microscopic analysis of sound damping in model glass formers across a range of experimentally relevant preparation protocols. We present convincing evidence that quartic scaling is recovered for small wavevectors irrespective of the glass's stability. With increasing stability, the wavevector where the quartic scaling begins increases by approximately a factor of three and the sound attenuation decreases by over an order of magnitude. Our results uncover an intimate connection between glass stability and sound damping.
Collapse
Affiliation(s)
- Lijin Wang
- Beijing Computational Science Research Center, Beijing 100193, P. R. China. and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Pengfei Guan
- Beijing Computational Science Research Center, Beijing 100193, P. R. China.
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| |
Collapse
|
7
|
Pogna EAA, Chumakov AI, Ferrante C, Ramos MA, Scopigno T. Tracking the Connection between Disorder and Energy Landscape in Glasses Using Geologically Hyperaged Amber. J Phys Chem Lett 2019; 10:427-432. [PMID: 30615469 DOI: 10.1021/acs.jpclett.9b00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fossil amber offers the unique opportunity to investigate an amorphous material that has been exploring its energy landscape for more than 110 million years of natural aging. By applying different X-ray scattering methods to amber before and after annealing the sample to erase its thermal history, we identify a link between the potential energy landscape and the structural and vibrational properties of glasses. We find that hyperaging induces a depletion of the vibrational density of states in the terahertz region, also ruling the sound dispersion and attenuation properties of the corresponding acoustic waves. Critically, this is accompanied by a densification with structural implications different in nature from that caused by hydrostatic compression. Our results, rationalized within the framework of fluctuating elasticity theory, reveal how upon approaching the bottom of the potential energy landscape (9% decrease in the fictive temperature) the elastic matrix becomes increasingly less disordered (6%) and longer-range correlated (22%).
Collapse
Affiliation(s)
- E A A Pogna
- Laboratorio NEST , CNR-INFM and Scuola Normale Superiore , Piazza San Silvestro 12 , I-56127 Pisa , Italy
- Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - A I Chumakov
- ESRF-The European Synchrotron Radiation Facility CS40220 , F-38043 Grenoble Cedex, 9, France
- National Research Centre "Kurchatov Institute" , 123182 Moscow , Russia
| | - C Ferrante
- Dipartimento di Fisica , Universitá di Roma , La Sapienza , I-00185 Rome , Italy
- Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Viale Regina, Elena 291 , 00161 Rome , Italy
| | - M A Ramos
- Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera , Universidad Autónoma de Madrid , E-28049 Madrid , Spain
| | - T Scopigno
- Dipartimento di Fisica , Universitá di Roma , La Sapienza , I-00185 Rome , Italy
- Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Viale Regina, Elena 291 , 00161 Rome , Italy
| |
Collapse
|
8
|
Girard A, Nguyen-Thanh T, Souliou SM, Stekiel M, Morgenroth W, Paolasini L, Minelli A, Gambetti D, Winkler B, Bosak A. A new diffractometer for diffuse scattering studies on the ID28 beamline at the ESRF. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:272-279. [PMID: 30655495 DOI: 10.1107/s1600577518016132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
A new diffractometer is now available to the general user community at the ESRF. The new diffractometer is a side station of the high-resolution inelastic X-ray scattering spectrometer on beamline ID28 and is located in the same experimental hutch. Both instruments can be operated simultaneously. The new diffractometer combines a fast and low-noise hybrid pixel detector with a variable diffraction geometry. The beam spot on the sample is 50 µm × 50 µm, where focusing is achieved by a combination of Be lenses and a KB mirror. Wavelengths from 0.5 to 0.8 Å can be used for the diffraction experiments. The setup is compatible with a variety of sample environments, allowing studies under non-ambient conditions. The diffractometer is optimized to allow a rapid survey of reciprocal space and diffuse scattering for the identification of regions of interest for subsequent inelastic scattering studies, but can also be employed as a fully independent station for structural studies from both powder and single-crystal diffraction experiments. Several software packages for the transformation and visualization of diffraction data are available. An analysis of data collected with the new diffractometer shows that the ID28 side station is a state-of-the-art instrument for structural investigations using diffraction and diffuse scattering experiments.
Collapse
Affiliation(s)
- A Girard
- Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
| | - T Nguyen-Thanh
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - S M Souliou
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - M Stekiel
- Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
| | - W Morgenroth
- Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
| | - L Paolasini
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - A Minelli
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - D Gambetti
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - B Winkler
- Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
| | - A Bosak
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
9
|
Niss K, Hecksher T. Perspective: Searching for simplicity rather than universality in glass-forming liquids. J Chem Phys 2018; 149:230901. [PMID: 30579292 DOI: 10.1063/1.5048093] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article gives an overview of experimental results on dynamics in bulk glass-forming molecular liquids. Rather than looking for phenomenology that is universal, in the sense that it is seen in all liquids, the focus is on identifying the basic characteristics, or "stylized facts," of the glass transition problem, i.e., the central observations that a theory of the physics of glass formation should aim to explain in a unified manner.
Collapse
Affiliation(s)
- Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
10
|
Yoon H, McKenna GB. Testing the paradigm of an ideal glass transition: Dynamics of an ultrastable polymeric glass. SCIENCE ADVANCES 2018; 4:eaau5423. [PMID: 30588491 PMCID: PMC6303122 DOI: 10.1126/sciadv.aau5423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/20/2018] [Indexed: 05/29/2023]
Abstract
A major challenge to understanding glass-forming materials is obtaining equilibrium data far below the laboratory glass transition temperature T g. The challenge arises because it takes geologic aging times to achieve the equilibrium glassy state when temperatures are well below T g. Here, we finesse this problem through measurements on an ultrastable amorphous Teflon with fictive temperature T f near to its Kauzmann temperature T K. In the window between T f and T g, the material has a lower molecular mobility than the equilibrium state because of its low specific volume and enthalpy. Our measurements show that the determined scaled relaxation times deviate strongly from the classical expectation of divergence of time scales at a finite temperature. The results challenge the view of an ideal glass transition at or near to T K.
Collapse
|
11
|
Royall CP, Turci F, Tatsumi S, Russo J, Robinson J. The race to the bottom: approaching the ideal glass? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:363001. [PMID: 29972145 DOI: 10.1088/1361-648x/aad10a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass.
Collapse
Affiliation(s)
- C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom. School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom. Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Rodríguez-Tinoco C, Ngai KL, Rams-Baron M, Rodríguez-Viejo J, Paluch M. Distinguishing different classes of secondary relaxations from vapour deposited ultrastable glasses. Phys Chem Chem Phys 2018; 20:21925-21933. [PMID: 29862402 DOI: 10.1039/c8cp02341g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary relaxations persistent in the glassy state after structural arrest are especially relevant for the properties of the glass. A major thrust in research in dynamics of glass-forming liquids is to identify what secondary relaxations exhibit a connection to the structural relaxation and are hence more relevant. Via the Coupling Model, secondary relaxations having such connection have been identified by properties similar to the primitive relaxation of the Coupling Model and are called the Johari-Goldstein (JG) β-relaxations. They involve the motion of the entire molecule and act as the precursor of the structural α-relaxation. The change in dynamics of the secondary relaxation by aging an ordinary glass is one way to understand the connection between the two relaxations, but the results are often equivocal. Ultrastable glasses, formed by physical vapour deposition, exhibit density and enthalpy levels comparable to ordinary glasses aged for thousands of years, as well as some particular molecular arrangement. Thus, ultrastable glasses enable the monitoring of the evolution of secondary processes in case aging does not provide any definitive information. Here, we study the secondary relaxation of several ultrastable glasses to identify different types of secondary relaxations from their different relationship with the structural relaxation. We show the existence of two clearly differentiated groups of relaxations: those becoming slower in the ultrastable state and those becoming faster, with respect to the ordinary unaged glass. We propose ultrastability as a way to distinguish between secondary processes arising from the particular microstructure of the system and those connected in properties to and acting as the precursor of the structural relaxation in the sense of the Coupling Model.
Collapse
|
13
|
Grassia L, Koh YP, Rosa M, Simon SL. Complete Set of Enthalpy Recovery Data Using Flash DSC: Experiment and Modeling. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Luigi Grassia
- Department of Industrial
and Information Engineering, Università degli Studi della Campania “Luigi Vanvitelli”, Via Roma 19, 81031 Aversa (CE), Italy
| | - Yung P. Koh
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, United States
| | - Mattia Rosa
- Department of Industrial
and Information Engineering, Università degli Studi della Campania “Luigi Vanvitelli”, Via Roma 19, 81031 Aversa (CE), Italy
| | - Sindee L. Simon
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
14
|
Cangialosi D. Glass Transition and Physical Aging of Confined Polymers Investigated by Calorimetric Techniques. RECENT ADVANCES, TECHNIQUES AND APPLICATIONS 2018. [DOI: 10.1016/b978-0-444-64062-8.00013-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Ngai KL, Paluch M, Rodríguez-Tinoco C. Why is the change of the Johari–Goldstein β-relaxation time by densification in ultrastable glass minor? Phys Chem Chem Phys 2018; 20:27342-27349. [DOI: 10.1039/c8cp05107k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coupling-Model-based theoretical explanation of the minor change of JG β-relaxation achieved by ultrastability in contrast to the dramatic change in α-relaxation.
Collapse
Affiliation(s)
| | - Marian Paluch
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- Institute of Physics
- University of Silesia
| | - Cristian Rodríguez-Tinoco
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- Institute of Physics
- University of Silesia
| |
Collapse
|
16
|
Affiliation(s)
- M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison,
1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
17
|
Boucher VM, Cangialosi D, Alegría A, Colmenero J. Complex nonequilibrium dynamics of stacked polystyrene films deep in the glassy state. J Chem Phys 2017; 146:203312. [DOI: 10.1063/1.4977207] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Boucher VM, Cangialosi D, Alegría A, Colmenero J. Reaching the ideal glass transition by aging polymer films. Phys Chem Chem Phys 2017; 19:961-965. [DOI: 10.1039/c6cp07139b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By aging, we draw glassy polymer films to a thermodynamic state, the ideal glass, with the entropy of the crystal.
Collapse
Affiliation(s)
| | | | - Angel Alegría
- Centro de Física de Materiales
- 20018 San Sebastián
- Spain
- Departamento de Física de Materiales (UPV/EHU)
- 20080 San Sebastián
| | - Juan Colmenero
- Centro de Física de Materiales
- 20018 San Sebastián
- Spain
- Departamento de Física de Materiales (UPV/EHU)
- 20080 San Sebastián
| |
Collapse
|
19
|
Rodríguez-Tinoco C, Ràfols-Ribé J, González-Silveira M, Rodríguez-Viejo J. Relaxation dynamics of glasses along a wide stability and temperature range. Sci Rep 2016; 6:35607. [PMID: 27767071 PMCID: PMC5073287 DOI: 10.1038/srep35607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
While lots of measurements describe the relaxation dynamics of the liquid state, experimental data of the glass dynamics at high temperatures are much scarcer. We use ultrafast scanning calorimetry to expand the timescales of the glass to much shorter values than previously achieved. Our data show that the relaxation time of glasses follows a super-Arrhenius behaviour in the high-temperature regime above the conventional devitrification temperature heating at 10 K/min. The liquid and glass states can be described by a common VFT-like expression that solely depends on temperature and limiting fictive temperature. We apply this common description to nearly-isotropic glasses of indomethacin, toluene and to recent data on metallic glasses. We also show that the dynamics of indomethacin glasses obey density scaling laws originally derived for the liquid. This work provides a strong connection between the dynamics of the equilibrium supercooled liquid and non-equilibrium glassy states.
Collapse
Affiliation(s)
- C. Rodríguez-Tinoco
- Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - J. Ràfols-Ribé
- Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - J. Rodríguez-Viejo
- Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
20
|
Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure. Sci Rep 2016; 6:34296. [PMID: 27694814 PMCID: PMC5046104 DOI: 10.1038/srep34296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 01/19/2023] Open
Abstract
Pressure experiments provide a unique opportunity to unravel new insights into glass-forming liquids by exploring its effect on the dynamics of viscous liquids and on the evolution of the glass transition temperature. Here we compare the pressure dependence of the onset of devitrification, Ton, between two molecular glasses prepared from the same material but with extremely different ambient-pressure kinetic and thermodynamic stabilities. Our data clearly reveal that, while both glasses exhibit different dTon/dP values at low pressures, they evolve towards closer calorimetric devitrification temperature and pressure dependence as pressure increases. We tentatively interpret these results from the different densities of the starting materials at room temperature and pressure. Our data shows that at the probed pressures, the relaxation time of the glass into the supercooled liquid is determined by temperature and pressure similarly to the behaviour of liquids, but using stability-dependent parameters.
Collapse
|
21
|
|
22
|
Lyubimov I, Antony L, Walters DM, Rodney D, Ediger MD, de Pablo JJ. Orientational anisotropy in simulated vapor-deposited molecular glasses. J Chem Phys 2015; 143:094502. [PMID: 26342372 DOI: 10.1063/1.4928523] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Enhanced kinetic stability of vapor-deposited glasses has been established for a variety of glass organic formers. Several recent reports indicate that vapor-deposited glasses can be orientationally anisotropic. In this work, we present results of extensive molecular simulations that mimic a number of features of the experimental vapor deposition process. The simulations are performed on a generic coarse-grained model and an all-atom representation of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), a small organic molecule whose vapor-deposited glasses exhibit considerable orientational anisotropy. The coarse-grained model adopted here is found to reproduce several key aspects reported in experiments. In particular, the molecular orientation of vapor-deposited glasses is observed to depend on substrate temperature during deposition. For a fixed deposition rate, the molecular orientation in the glasses changes from isotropic, at the glass transition temperature, Tg, to slightly normal to the substrate at temperatures just below Tg. Well below Tg, molecular orientation becomes predominantly parallel to the substrate. The all-atom model is used to confirm some of the equilibrium structural features of TPD interfaces that arise above the glass transition temperature. We discuss a mechanism based on distinct orientations observed at equilibrium near the surface of the film, which get trapped within the film during the non-equilibrium process of vapor deposition.
Collapse
Affiliation(s)
- Ivan Lyubimov
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lucas Antony
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Diane M Walters
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David Rodney
- Science et Ingénierie des Matériaux et Procédés, Grenoble INP, CNRS/UJF, 38402 Saint Martin d'Hères, France
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
23
|
Tripathi P, Romanini M, Tamarit JL, Macovez R. Collective relaxation dynamics and crystallization kinetics of the amorphous Biclotymol antiseptic. Int J Pharm 2015; 495:420-427. [DOI: 10.1016/j.ijpharm.2015.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|