1
|
Wimmi S, Fleck M, Helbig C, Brianceau C, Langenfeld K, Szymanski WG, Angelidou G, Glatter T, Diepold A. Pilotins are mobile T3SS components involved in assembly and substrate specificity of the bacterial type III secretion system. Mol Microbiol 2024; 121:304-323. [PMID: 38178634 DOI: 10.1111/mmi.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Fleck
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carlos Helbig
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Corentin Brianceau
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Witold G Szymanski
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georgia Angelidou
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Chacón RD, Ramírez M, Rodríguez-Cueva CL, Sánchez C, Quispe-Rojas WU, Astolfi-Ferreira CS, Piantino Ferreira AJ. Genomic Characterization and Genetic Profiles of Salmonella Gallinarum Strains Isolated from Layers with Fowl Typhoid in Colombia. Genes (Basel) 2023; 14:genes14040823. [PMID: 37107581 PMCID: PMC10138188 DOI: 10.3390/genes14040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Salmonella Gallinarum (SG) is the causative agent of fowl typhoid (FT), a disease that is harmful to the poultry industry. Despite sanitation and prophylactic measures, this pathogen is associated with frequent disease outbreaks in developing countries, causing high morbidity and mortality. We characterized the complete genome sequence of Colombian SG strains and then performed a comparative genome analysis with other SG strains found in different regions worldwide. Eight field strains of SG plus a 9R-derived vaccine were subjected to whole-genome sequencing (WGS) and bioinformatics analysis, and the results were used for subsequent molecular typing; virulome, resistome, and mobilome characterization; and a comparative genome study. We identified 26 chromosome-located resistance genes that mostly encode efflux pumps, and point mutations were found in gyrase genes (gyrA and gyrB), with the gyrB mutation S464T frequently found in the Colombian strains. Moreover, we detected 135 virulence genes, mainly in 15 different Salmonella pathogenicity islands (SPIs). We generated an SPI profile for SG, including C63PI, CS54, ssaD, SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-6, SPI-9, SPI-10, SPI-11, SPI-12, SPI-13, and SPI-14. Regarding mobile genetic elements, we found the plasmids Col(pHAD28) and IncFII(S) in most of the strains and 13 different prophage sequences, indicating a frequently obtained profile that included the complete phage Gifsy_2 and incomplete phage sequences resembling Escher_500465_2, Shigel_SfIV, Entero_mEp237, and Salmon_SJ46. This study presents, for the first time, the genomic content of Colombian SG strains and a profile of the genetic elements frequently found in SG, which can be further studied to clarify the pathogenicity and evolutionary characteristics of this serotype.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
- Inter-Units Program in Biotechnology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Manuel Ramírez
- Unidad de Bioinformática, Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Bellavista 07006, Peru
| | - Carmen L Rodríguez-Cueva
- Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Christian Sánchez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Wilma Ursula Quispe-Rojas
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Claudete S Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| | - Antonio J Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
3
|
Nariya MK, Mallela A, Shi JJ, Deeds EJ. Robustness and the evolution of length control strategies in the T3SS and flagellar hook. Biophys J 2021; 120:3820-3830. [PMID: 34246629 DOI: 10.1016/j.bpj.2021.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells construct many structures, such as the flagellar hook and the type III secretion system (T3SS) injectisome, that aid in crucial physiological processes such as locomotion and pathogenesis. Both of these structures involve long extracellular channels, and the length of these channels must be highly regulated in order for these structures to perform their intended functions. There are two leading models for how length control is achieved in the flagellar hook and T3SS needle: the substrate switching model, in which the length is controlled by assembly of an inner rod, and the ruler model, in which a molecular ruler controls the length. Although there is qualitative experimental evidence to support both models, comparatively little has been done to quantitatively characterize these mechanisms or make detailed predictions that could be used to unambiguously test these mechanisms experimentally. In this work, we constructed a mathematical model of length control based on the ruler mechanism and found that the predictions of this model are consistent with experimental data-not just for the scaling of the average length with the ruler protein length, but also for the variance. Interestingly, we found that the ruler mechanism allows for the evolution of needles with large average lengths without the concomitant large increase in variance that occurs in the substrate switching mechanism. In addition to making further predictions that can be tested experimentally, these findings shed new light on the trade-offs that may have led to the evolution of different length control mechanisms in different bacterial species.
Collapse
Affiliation(s)
- Maulik K Nariya
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas
| | - Abhishek Mallela
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jack J Shi
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas
| | - Eric J Deeds
- Center for Computational Biology, University of Kansas, Lawrence, Kansas; Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas.
| |
Collapse
|
4
|
Singh MK, Zangoui P, Yamanaka Y, Kenney LJ. Genetic code expansion enables visualization of Salmonella type three secretion system components and secreted effectors. eLife 2021; 10:67789. [PMID: 34061032 PMCID: PMC8192122 DOI: 10.7554/elife.67789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Type three secretion systems enable bacterial pathogens to inject effectors into the cytosol of eukaryotic hosts to reprogram cellular functions. It is technically challenging to label effectors and the secretion machinery without disrupting their structure/function. Herein, we present a new approach for labeling and visualization of previously intractable targets. Using genetic code expansion, we site-specifically labeled SsaP, the substrate specificity switch, and SifA, a here-to-fore unlabeled secreted effector. SsaP was secreted at later infection times; SsaP labeling demonstrated the stochasticity of injectisome and effector expression. SifA was labeled after secretion into host cells via fluorescent unnatural amino acids or non-fluorescent labels and a subsequent click reaction. We demonstrate the superiority of imaging after genetic code expansion compared to small molecule tags. It provides an alternative for labeling proteins that do not tolerate N- or C-terminal tags or fluorophores and thus is widely applicable to other secreted effectors and small proteins.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Parisa Zangoui
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Yuki Yamanaka
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| |
Collapse
|
5
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
6
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
7
|
Miletic S, Goessweiner-Mohr N, Marlovits TC. The Structure of the Type III Secretion System Needle Complex. Curr Top Microbiol Immunol 2020; 427:67-90. [PMID: 31667599 DOI: 10.1007/82_2019_178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The type III secretion system (T3SS) is an essential virulence factor of many pathogenic bacterial species including Salmonella, Yersinia, Shigella and enteropathogenic Escherichia coli (EPEC). It is an intricate molecular machine that spans the bacterial membranes and injects effector proteins into target host cells, enabling bacterial infection. The T3SS needle complex comprises of proteinaceous rings supporting a needle filament which extends out into the extracellular environment. It serves as the central conduit for translocating effector proteins. Multiple laboratories have dedicated a remarkable effort to decipher the structure and function of the needle complex. A combination of structural biology techniques such as cryo-electron microscopy (cryoEM), X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and computer modelling have been utilized to study different structural components at progressively higher resolutions. This chapter will provide an overview of the structural details of the T3SS needle complex, shedding light on this essential component of this fascinating bacterial system.
Collapse
Affiliation(s)
- Sean Miletic
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany
| | | | - Thomas C Marlovits
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany.
| |
Collapse
|
8
|
Pena MM, Teper D, Ferreira H, Wang N, Sato KU, Ferro MIT, Ferro JA. mCherry fusions enable the subcellular localization of periplasmic and cytoplasmic proteins in Xanthomonas sp. PLoS One 2020; 15:e0236185. [PMID: 32730344 PMCID: PMC7392301 DOI: 10.1371/journal.pone.0236185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Fluorescent markers are a powerful tool and have been widely applied in biology for different purposes. The genome sequence of Xanthomonas citri subsp. citri (X. citri) revealed that approximately 30% of the genes encoded hypothetical proteins, some of which could play an important role in the success of plant-pathogen interaction and disease triggering. Therefore, revealing their functions is an important strategy to understand the bacterium pathways and mechanisms involved in plant-host interaction. The elucidation of protein function is not a trivial task, but the identification of the subcellular localization of a protein is key to understanding its function. We have constructed an integrative vector, pMAJIIc, under the control of the arabinose promoter, which allows the inducible expression of red fluorescent protein (mCherry) fusions in X. citri, suitable for subcellular localization of target proteins. Fluorescence microscopy was used to track the localization of VrpA protein, which was visualized surrounding the bacterial outer membrane, and the GyrB protein, which showed a diffused cytoplasmic localization, sometimes with dots accumulated near the cellular poles. The integration of the vector into the amy locus of X. citri did not affect bacterial virulence. The vector could be stably maintained in X. citri, and the disruption of the α-amylase gene provided an ease screening method for the selection of the transformant colonies. The results demonstrate that the mCherry-containing vector here described is a powerful tool for bacterial protein localization in cytoplasmic and periplasmic environments.
Collapse
Affiliation(s)
- Michelle Mendonça Pena
- Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Doron Teper
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Kenny Umino Sato
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Maria Inês Tiraboschi Ferro
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Jesus Aparecido Ferro
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- * E-mail:
| |
Collapse
|
9
|
Type three secretion system in Salmonella Typhimurium: the key to infection. Genes Genomics 2020; 42:495-506. [PMID: 32112371 DOI: 10.1007/s13258-020-00918-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/12/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Type Three Secretion Systems (T3SS) are nanomachine complexes, which display the ability to inject effector proteins directly into host cells. This skill allows for gram-negative bacteria to modulate several host cell responses, such as cytoskeleton rearrangement, signal transduction, and cytokine production, which in turn increase the pathogenicity of these bacteria. The Salmonella enterica subsp. enterica serovar Typhimurium (ST) T3SS has been the most characterized so far. Among gram-negative bacterium, ST is one of enterica groups predicted to have two T3SSs activated during different phases of infection. OBJECTIVE To comprise current information about ST T3SS structure and function as well as an overview of its assembly and hierarchical regulation. METHODS With a brief and straightforward reading, this review summarized aspects of both ST T3SS, such as its structure and function. That was possible due to the development of novel techniques, such as X-ray crystallography, cryoelectron microscopy, and nano-gold labelling, which also elucidated the mechanisms behind T3SS assembly and regulation, which was addressed in this review. CONCLUSION This paper provided fundamental overview of ST T3SS assembly and regulation, besides summarized the structure and function of this complex. Due to T3SS relevance in ST pathogenicity, this complex could become a potential target in therapeutic studies as this nanomachine modulates the infection process.
Collapse
|
10
|
The flexible linker of the secreted FliK ruler is required for export switching of the flagellar protein export apparatus. Sci Rep 2020; 10:838. [PMID: 31964971 PMCID: PMC6972891 DOI: 10.1038/s41598-020-57782-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
The hook length of the flagellum is controlled to about 55 nm in Salmonella. The flagellar type III protein export apparatus secretes FliK to determine hook length during hook assembly and changes its substrate specificity from the hook protein to the filament protein when the hook length has reached about 55 nm. Salmonella FliK consists of an N-terminal domain (FliKN, residues 1–207), a C-terminal domain (FliKC, residues 268–405) and a flexible linker (FliKL, residues 208–267) connecting these two domains. FliKN is a ruler to measure hook length. FliKC binds to a transmembrane export gate protein FlhB to undergo the export switching. FliKL not only acts as part of the ruler but also contributes to this switching event, but it remains unknown how. Here we report that FliKL is required for efficient interaction of FliKC with FlhB. Deletions in FliKL not only shortened hook length according to the size of deletions but also caused a loose length control. Deletion of residues 206–265 significantly reduced the binding affinity of FliKC for FlhB, thereby producing much longer hooks. We propose that an appropriate length of FliKL is required for efficient interaction of FliKC with FlhB.
Collapse
|
11
|
Torres‐Vargas CE, Kronenberger T, Roos N, Dietsche T, Poso A, Wagner S. The inner rod of virulence‐associated type III secretion systems constitutes a needle adapter of one helical turn that is deeply integrated into the system's export apparatus. Mol Microbiol 2019; 112:918-931. [DOI: 10.1111/mmi.14327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Claudia E. Torres‐Vargas
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Thales Kronenberger
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Nora Roos
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Tobias Dietsche
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Antti Poso
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
- Partner‐Site Tübingen German Center for Infection Research (DZIF) Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| |
Collapse
|
12
|
Plesiomonas shigelloides sipD mutant, generated by an efficient gene transfer system, is less invasive. J Microbiol Methods 2019; 159:75-80. [PMID: 30817946 DOI: 10.1016/j.mimet.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/24/2019] [Accepted: 02/24/2019] [Indexed: 11/24/2022]
Abstract
Plesiomonas shigelloides is widely associated with human diarrheal disease. Research on this pathogen has been hampered by the absence of an effective genetic manipulation system. In the present study, an efficient and precise conjugation transfer procedure, mediated by suicide vector pRE112 was used to overcome this limitation. The efficiency of generating double recombinants was average 74.3%, and the conjugation protocol may be applied to other P. shigelloides strains. We also identified that the SipD protein of P. shigelloides G5884 (serotype O45) is 65% similar to the SipD in Salmonella pathogenicity island 1 (SPI-1), which is a key element of the type III secretion system related to Salmonella invasion. A P. shigelloides sipD null mutant was generated via the conjugation system, using the suicide vector pRE112. The isogenic mutant strain lacking sipD showed a 50% reduction in its capacity to invade Caco-2 cells.
Collapse
|
13
|
Diepold A. Assembly and Post-assembly Turnover and Dynamics in the Type III Secretion System. Curr Top Microbiol Immunol 2019; 427:35-66. [PMID: 31218503 DOI: 10.1007/82_2019_164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type III secretion system (T3SS) is one of the largest transmembrane complexes in bacteria, comprising several intricately linked and embedded substructures. The assembly of this nanomachine is a hierarchical process which is regulated and controlled by internal and external cues at several critical points. Recently, it has become obvious that the assembly of the T3SS is not a unidirectional and deterministic process, but that parts of the T3SS constantly exchange or rearrange. This article aims to give an overview on the assembly and post-assembly dynamics of the T3SS, with a focus on emerging general concepts and adaptations of the general assembly pathway.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.
| |
Collapse
|
14
|
Case HB, Mattock DS, Dickenson NE. Shutting Down Shigella Secretion: Characterizing Small Molecule Type Three Secretion System ATPase Inhibitors. Biochemistry 2018; 57:6906-6916. [PMID: 30460850 DOI: 10.1021/acs.biochem.8b01077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many important human pathogens rely on one or more type three secretion systems (T3SSs) to inject bacterial effector proteins directly into the host cell cytoplasm. Secretion of protein through the needlelike type three secretion apparatus (T3SA) is essential for pathogen virulence and relies on a highly conserved ATPase at the base of the apparatus, making it an attractive target for anti-infective therapeutics. Here, we leveraged the ability to purify an active oligomeric Shigella T3SS ATPase to provide kinetic analyses of three T3SS ATPase inhibitors of Spa47. In agreement with in silico docking simulations, the inhibitors displayed noncompetitive inhibition profiles and efficiently reduced Spa47 ATPase activity with IC50s as low as 52 ± 3 μM. Two of the inhibitors functioned well in vivo, nearly abolishing effector protein secretion without significantly affecting the Shigella growth phenotype or HeLa cell viability. Furthermore, characterization of Spa47 complexes in vitro and Shigella T3SA formation in vivo showed that the inhibitors do not function through disruption of Spa47 oligomers or by preventing T3SA formation. Together, these findings suggest that inhibitors targeting Spa47 may be an effective means of combating Shigella infection by shutting down type three secretion without preventing presentation of the highly antigenic T3SA tip proteins that aid in clearing the infection and developing pan- Shigella immunological memory. In summary, this is the first report of Shigella T3SS ATPase inhibitors and one of only a small number of studies characterizing T3SS ATPase inhibition in general. The work presented here provides much-needed insight into T3SS ATPase inhibition mechanisms and provides a strong platform for developing and evaluating non-antibiotic therapeutics targeting Spa47 and other T3SS ATPases.
Collapse
Affiliation(s)
- Heather B Case
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Dominic S Mattock
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Nicholas E Dickenson
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| |
Collapse
|
15
|
SsaV Interacts with SsaL to Control the Translocon-to-Effector Switch in the Salmonella SPI-2 Type Three Secretion System. mBio 2018; 9:mBio.01149-18. [PMID: 30279280 PMCID: PMC6168863 DOI: 10.1128/mbio.01149-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salmonella Typhimurium is an intracellular pathogen that uses the SPI-2 type III secretion system to deliver virulence proteins across the vacuole membrane surrounding intracellular bacteria. This involves a tightly regulated hierarchy of protein secretion controlled by two molecular switches. We found that SPI-2-encoded proteins SsaP and SsaU are involved in the first but not the second secretion switch. We identify key amino acids of the inner membrane protein SsaV that are required to interact with the so-called gatekeeper protein SsaL and show that the dissociation of SsaV-SsaL causes the second switch, leading to delivery of effector proteins. Our results provide insights into the molecular events controlling virulence-associated type III secretion and suggest a broader model describing how the process is regulated. Nonflagellar type III secretion systems (nf T3SSs) form a cell surface needle-like structure and an associated translocon that deliver bacterial effector proteins into eukaryotic host cells. This involves a tightly regulated hierarchy of protein secretion. A switch involving SctP and SctU stops secretion of the needle protein. The gatekeeper protein SctW is required for secretion of translocon proteins and controls a second switch to start effector secretion. Salmonella enterica serovar Typhimurium encodes two T3SSs in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. The acidic vacuole containing intracellular bacteria stimulates assembly of the SPI-2 T3SS and its translocon. Sensing the nearly neutral host cytosolic pH is required for effector translocation. Here, we investigated the involvement of SPI-2-encoded proteins SsaP (SctP), SsaU (SctU), SsaV (SctV), and SsaL (SctW) in regulation of secretion. We found that SsaP and SsaU are involved in the first but not the second secretion switch. A random-mutagenesis screen identified amino acids of SsaV that regulate translocon and effector secretion. Single substitutions in subdomain 4 of SsaV or InvA (SPI-1-encoded SctV) phenocopied mutations of their corresponding gatekeepers with respect to translocon and effector protein secretion and host cell interactions. SsaL interacted with SsaV in bacteria exposed to low ambient pH but not after the pH was raised to 7.2. We propose that SsaP and SsaU enable the apparatus to become competent for a secretion switch and facilitate the SsaL-SsaV interaction. This mediates secretion of translocon proteins until neutral pH is sensed, which causes their dissociation, resulting in arrest of translocon secretion and derepression of effector translocation.
Collapse
|
16
|
Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 2018; 365:5068689. [PMID: 30107569 PMCID: PMC6140923 DOI: 10.1093/femsle/fny201] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Virulence-associated type III secretion systems (T3SS) serve the injection of bacterial effector proteins into eukaryotic host cells. They are able to secrete a great diversity of substrate proteins in order to modulate host cell function, and have evolved to sense host cell contact and to inject their substrates through a translocon pore in the host cell membrane. T3SS substrates contain an N-terminal signal sequence and often a chaperone-binding domain for cognate T3SS chaperones. These signals guide the substrates to the machine where substrates are unfolded and handed over to the secretion channel formed by the transmembrane domains of the export apparatus components and by the needle filament. Secretion itself is driven by the proton motive force across the bacterial inner membrane. The needle filament measures 20-150 nm in length and is crowned by a needle tip that mediates host-cell sensing. Secretion through T3SS is a highly regulated process with early, intermediate and late substrates. A strict secretion hierarchy is required to build an injectisome capable of reaching, sensing and penetrating the host cell membrane, before host cell-acting effector proteins are deployed. Here, we review the recent progress on elucidating the assembly, structure and function of T3SS injectisomes.
Collapse
Affiliation(s)
- Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Nidhi Singh
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Claudia E Torres-Vargas
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Sibel Westerhausen
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Minamino T. Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus. FEMS Microbiol Lett 2018; 365:4993518. [DOI: 10.1093/femsle/fny117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Abstract
Type III secretion systems (T3SSs) are protein transport nanomachines that are found in Gram-negative bacterial pathogens and symbionts. Resembling molecular syringes, T3SSs form channels that cross the bacterial envelope and the host cell membrane, which enable bacteria to inject numerous effector proteins into the host cell cytoplasm and establish trans-kingdom interactions with diverse hosts. Recent advances in cryo-electron microscopy and integrative imaging have provided unprecedented views of the architecture and structure of T3SSs. Furthermore, genetic and molecular analyses have elucidated the functions of many effectors and key regulators of T3SS assembly and secretion hierarchy, which is the sequential order by which the protein substrates are secreted. As essential virulence factors, T3SSs are attractive targets for vaccines and therapeutics. This Review summarizes our current knowledge of the structure and function of this important protein secretion machinery. A greater understanding of T3SSs should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.
Collapse
|
19
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
20
|
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [PMID: 27818950 PMCID: PMC5073101 DOI: 10.3389/fcimb.2016.00129] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Meztlli O Gaytán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Verónica I Martínez-Santos
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Eduardo Soto
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
21
|
Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0020. [PMID: 26370933 DOI: 10.1098/rstb.2015.0020] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The flagellum and the injectisome are two of the most complex and fascinating bacterial nanomachines. At their core, they share a type III secretion system (T3SS), a transmembrane export complex that forms the extracellular appendages, the flagellar filament and the injectisome needle. Recent advances, combining structural biology, cryo-electron tomography, molecular genetics, in vivo imaging, bioinformatics and biophysics, have greatly increased our understanding of the T3SS, especially the structure of its transmembrane and cytosolic components, the transcriptional, post-transcriptional and functional regulation and the remarkable adaptivity of the system. This review aims to integrate these new findings into our current knowledge of the evolution, function, regulation and dynamics of the T3SS, and to highlight commonalities and differences between the two systems, as well as their potential applications.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
22
|
Abstract
The cell represents a highly organized state of living matter in which numerous geometrical parameters are under dynamic regulation in order to match the form of a cell with its function. Cells appear capable of regulating not only the total quantity of their internal organelles, but also the size and number of those organelles. The regulation of three parameters, size, number, and total quantity, can in principle be accomplished by regulating the production or growth of organelles, their degradation or disassembly, and their partitioning among daughter cells during division. Any or all of these steps could in principle be under regulation. But if organelle assembly or disassembly is regulated by number or size, how would the cell know how many copies of an organelle it has, or how big they are?
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143;
| |
Collapse
|
23
|
Zhang J, Ferré-DAmaré AR. Trying on tRNA for Size: RNase P and the T-box Riboswitch as Molecular Rulers. Biomolecules 2016; 6:biom6020018. [PMID: 27043647 PMCID: PMC4919913 DOI: 10.3390/biom6020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/27/2022] Open
Abstract
Length determination is a fundamental problem in biology and chemistry. Numerous proteins measure distances on linear biopolymers to exert effects with remarkable spatial precision. Recently, ruler-like devices made of noncoding RNAs have been structurally and biochemically characterized. Two prominent examples are the RNase P ribozyme and the T-box riboswitch. Both act as molecular calipers. The two RNAs clamp onto the elbow of tRNA (or pre-tRNA) and make distance measurements orthogonal to each other. Here, we compare and contrast the molecular ruler characteristics of these RNAs. RNase P appears pre-configured to measure a fixed distance on pre-tRNA to ensure the fidelity of its maturation. RNase P is a multiple-turnover ribozyme, and its rigid structure efficiently selects pre-tRNAs, cleaves, and releases them. In contrast, the T-box is flexible and segmented, an architecture that adapts to the intrinsically flexible tRNA. The tripartite T-box inspects the overall shape, anticodon sequence, and aminoacylation status of an incoming tRNA while it folds co-transcriptionally, leading to a singular, conditional genetic switching event. The elucidation of the structures and mechanisms of action of these two RNA molecular rulers may augur the discovery of new RNA measuring devices in noncoding and viral transcriptomes, and inform the design of artificial RNA rulers.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA.
| | - Adrian R Ferré-DAmaré
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Nariya MK, Israeli J, Shi JJ, Deeds EJ. Mathematical Model for Length Control by the Timing of Substrate Switching in the Type III Secretion System. PLoS Comput Biol 2016; 12:e1004851. [PMID: 27078235 PMCID: PMC4831731 DOI: 10.1371/journal.pcbi.1004851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/06/2016] [Indexed: 12/28/2022] Open
Abstract
Type III Secretion Systems (T3SS) are complex bacterial structures that provide gram-negative pathogens with a unique virulence mechanism whereby they grow a needle-like structure in order to inject bacterial effector proteins into the cytoplasm of a host cell. Numerous experiments have been performed to understand the structural details of this nanomachine during the past decade. Despite the concerted efforts of molecular and structural biologists, several crucial aspects of the assembly of this structure, such as the regulation of the length of the needle itself, remain unclear. In this work, we used a combination of mathematical and computational techniques to better understand length control based on the timing of substrate switching, which is a possible mechanism for how bacteria ensure that the T3SS needles are neither too short nor too long. In particular, we predicted the form of the needle length distribution based on this mechanism, and found excellent agreement with available experimental data from Salmonella typhimurium with only a single free parameter. Although our findings provide preliminary evidence in support of the substrate switching model, they also make a set of quantitative predictions that, if tested experimentally, would assist in efforts to unambiguously characterize the regulatory mechanisms that control the growth of this crucial virulence factor.
Collapse
Affiliation(s)
- Maulik K. Nariya
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas, United States of America
| | - Johnny Israeli
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas, United States of America
| | - Jack J. Shi
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas, United States of America
| | - Eric J. Deeds
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Sante Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
25
|
Bergeron JRC, Fernández L, Wasney GA, Vuckovic M, Reffuveille F, Hancock REW, Strynadka NCJ. The Structure of a Type 3 Secretion System (T3SS) Ruler Protein Suggests a Molecular Mechanism for Needle Length Sensing. J Biol Chem 2015; 291:1676-1691. [PMID: 26589798 DOI: 10.1074/jbc.m115.684423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/06/2022] Open
Abstract
The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed "ruler" protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a "ball-and-chain" architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein's N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems.
Collapse
Affiliation(s)
- Julien R C Bergeron
- From the Department of Biochemistry and Molecular Biology,; the Centre for Blood Research, and
| | - Lucia Fernández
- the Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | - Fany Reffuveille
- the Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert E W Hancock
- the Centre for Blood Research, and; the Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- From the Department of Biochemistry and Molecular Biology,; the Centre for Blood Research, and.
| |
Collapse
|
26
|
Marshall WF. How Cells Measure Length on Subcellular Scales. Trends Cell Biol 2015; 25:760-768. [PMID: 26437596 DOI: 10.1016/j.tcb.2015.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
Cells are not just amorphous bags of enzymes, but precise and complex machines. With any machine, it is important that the parts be of the right size, yet our understanding of the mechanisms that control size of cellular structures remains at a rudimentary level in most cases. One problem with studying size control is that many cellular organelles have complex 3D structures that make their size hard to measure. Here we focus on linear structures within cells, for which the problem of size control reduces to the problem of length control. We compare and contrast potential mechanisms for length control to understand how cells solve simple geometry problems.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, Center for Systems and Synthetic Biology, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| |
Collapse
|