1
|
Migliore A, Messina A. Controlling the charge-transfer dynamics of two-level systems around avoided crossings. J Chem Phys 2024; 160:084112. [PMID: 38415830 DOI: 10.1063/5.0188749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Two-level quantum systems are fundamental physical models that continue to attract growing interest due to their crucial role as a building block of quantum technologies. The exact analytical solution of the dynamics of these systems is central to control theory and its applications, such as that to quantum computing. In this study, we reconsider the two-state charge transfer problem by extending and using a methodology developed to study (pseudo)spin systems in quantum electrodynamics contexts. This approach allows us to build a time evolution operator for the charge transfer system and to show new opportunities for the coherent control of the system dynamics, with a particular emphasis on the critical dynamic region around the transition state coordinate, where the avoided crossing of the energy levels occurs. We identify and propose possible experimental implementations of a class of rotations of the charge donor (or acceptor) that endow the electronic coupling matrix element with a time-dependent phase that can be employed to realize controllable coherent dynamics of the system across the avoided level crossing. The analogy of these rotations to reference frame rotations in generalized semiclassical Rabi models is discussed. We also show that the physical rotations in the charge-transfer systems can be performed so as to implement quantum gates relevant to quantum computing. From an exquisitely physical-mathematical viewpoint, our approach brings to light situations in which the time-dependent state of the system can be obtained without resorting to the special functions appearing in the Landau-Zener approach.
Collapse
Affiliation(s)
- Agostino Migliore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Antonino Messina
- Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi, 34, I-90123 Palermo, Italy
| |
Collapse
|
2
|
Navamani K, Rajkumar K. Generalization on Entropy-Ruled Charge and Energy Transport for Organic Solids and Biomolecular Aggregates. ACS OMEGA 2022; 7:27102-27115. [PMID: 35967056 PMCID: PMC9366796 DOI: 10.1021/acsomega.2c01118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/13/2022] [Indexed: 05/27/2023]
Abstract
Herein, a generalized version of the entropy-ruled charge and energy transport mechanism for organic solids and biomolecular aggregates is presented. The effects of thermal disorder and electric field on electronic transport in molecular solids have been quantified by entropy, which eventually varies with respect to the typical disorder (static or dynamic). Based on our previous differential entropy (h s )-driven charge transport method, we explore the nonsteady carrier energy flux principle for soft matter systems from small organic solids to macrobiomolecular aggregates. Through this principle, the synergic nature of charge and energy transport in different organic systems is addressed. In this work, entropy is the key parameter to classify whether the carrier dynamics is in a nonsteady or steady state. Besides that, we also propose the formulation for unifying the hopping and band transport, which provides the relaxation time-hopping rate relation and the relaxation time-effective mass ratio. The calculated disorder drift time (or entropy-weighted carrier drift time) for hole transport in an alkyl-substituted triphenylamine (TPA) molecular device is 9.3 × 10-7 s, which illustrates nuclear dynamics-coupled charge transfer kinetics. The existence of nonequilibrium transport is anticipated while the carrier dynamics is in the nonsteady state, which is further examined from the rate of traversing potential in octupolar molecules. Our entropy-ruled Einstein model connects the adiabatic band and nonadiabatic hopping transport mechanisms. The logarithmic current density at different electric field-assisted site energy differences provides information about the typical transport (whether trap-free diffusion or trap-assisted recombination) in molecular devices, which reflects in the Navamani-Shockley diode equation.
Collapse
Affiliation(s)
- Karuppuchamy Navamani
- Department
of Physics, Centre for Research and Development
(CFRD), KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - Kanakaraj Rajkumar
- Department
of Physics, Indian Institute of Technology
Madras, Chennai 600036, India
| |
Collapse
|
3
|
Piras A, Ehlert C, Gryn'ova G. Sensing and sensitivity: Computational chemistry of
graphene‐based
sensors. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anna Piras
- Heidelberg Institute for Theoretical Studies (HITS gGmbH) and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| | - Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH) and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies (HITS gGmbH) and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| |
Collapse
|
4
|
Onuchic JN, Rubtsov IV, Therien MJ. Tribute to David N. Beratan. J Phys Chem B 2020; 124:3437-3440. [DOI: 10.1021/acs.jpcb.0c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Migliore A. How To Extract Quantitative Information on Electronic Transitions from the Density Functional Theory "Black Box". J Chem Theory Comput 2019; 15:4915-4923. [PMID: 31314526 DOI: 10.1021/acs.jctc.9b00518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electronic couplings and vertical excitation energies are crucial determinants of charge and excitation energy transfer rates in a broad variety of processes ranging from biological charge transfer to charge transport through inorganic materials, from molecular sensing to intracellular signaling. Density Functional Theory (DFT) is generally used to calculate these critical parameters, but the quality of the results is unpredictable because of the semiempirical nature of the available DFT approaches. This study identifies a small set of fundamental rules that enables accurate DFT computation of electronic couplings and vertical excitation energies in molecular complexes and materials. These rules are applied to predict efficient DFT approaches to coupling calculations. The result is an easy-to-use guide for reliable DFT descriptions of electronic transitions.
Collapse
Affiliation(s)
- Agostino Migliore
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
6
|
Abstract
The corpus of electron transfer (ET) theory provides considerable power to describe the kinetics and dynamics of electron flow at the nanoscale. How is it, then, that nucleic acid (NA) ET continues to surprise, while protein-mediated ET is relatively free of mechanistic bombshells? I suggest that this difference originates in the distinct electronic energy landscapes for the two classes of reactions. In proteins, the donor/acceptor-to-bridge energy gap is typically several-fold larger than in NAs. NA ET can access tunneling, hopping, and resonant transport among the bases, and fluctuations can enable switching among mechanisms; protein ET is restricted to tunneling among redox active cofactors and, under strongly oxidizing conditions, a few privileged amino acid side chains. This review aims to provide conceptual unity to DNA and protein ET reaction mechanisms. The establishment of a unified mechanistic framework enabled the successful design of NA experiments that switch electronic coherence effects on and off for ET processes on a length scale of multiple nanometers and promises to provide inroads to directing and detecting charge flow in soft-wet matter.
Collapse
Affiliation(s)
- David N Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, USA; .,Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
7
|
Xia CJ, Yang AY, Zhang BQ, Su YH, Tu ZY, Wang J. Effect of the anchoring groups on the switching behaviour of the dihydroazulene/vinylheptafulvene molecular junction with zigzag-edged graphene nanoribbons electrodes. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1308026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cai-Juan Xia
- School of Science, Xi'an Polytechnic University, Xi'an, P.R. China
| | - Ai-Yun Yang
- School of Science, Xi'an Polytechnic University, Xi'an, P.R. China
| | - Bo-Qun Zhang
- School of Science, Xi'an Polytechnic University, Xi'an, P.R. China
| | - Yao Heng Su
- School of Science, Xi'an Polytechnic University, Xi'an, P.R. China
| | - Zhe-Yan Tu
- School of Science, Xi'an Polytechnic University, Xi'an, P.R. China
| | - Jun Wang
- School of Science, Xi'an Polytechnic University, Xi'an, P.R. China
| |
Collapse
|
8
|
Wang PP, Yu SJ, Govorov AO, Ouyang M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat Commun 2017; 8:14312. [PMID: 28148957 PMCID: PMC5296657 DOI: 10.1038/ncomms14312] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.
Collapse
Affiliation(s)
- Peng-peng Wang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| | - Shang-Jie Yu
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Ouyang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
9
|
Hossain MS, Iqbal A, Bevan KH. Interfacial Screening in Ultrafast Voltammetry: A Theoretical Study of Redox-Active Monolayers. Anal Chem 2016; 88:9062-70. [DOI: 10.1021/acs.analchem.6b01835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md. Sazzad Hossain
- Materials Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Asif Iqbal
- Materials Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Kirk H. Bevan
- Materials Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| |
Collapse
|
10
|
Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu DH, Tian H, Ratner MA, Xu HQ, Nitzan A, Guo X. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016; 352:1443-5. [PMID: 27313042 DOI: 10.1126/science.aaf6298] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023]
Abstract
Through molecular engineering, single diarylethenes were covalently sandwiched between graphene electrodes to form stable molecular conduction junctions. Our experimental and theoretical studies of these junctions consistently show and interpret reversible conductance photoswitching at room temperature and stochastic switching between different conductive states at low temperature at a single-molecule level. We demonstrate a fully reversible, two-mode, single-molecule electrical switch with unprecedented levels of accuracy (on/off ratio of ~100), stability (over a year), and reproducibility (46 devices with more than 100 cycles for photoswitching and ~10(5) to 10(6) cycles for stochastic switching).
Collapse
Affiliation(s)
- Chuancheng Jia
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | | | - Na Xin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shaoyun Huang
- Department of Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, P. R. China
| | - Jinying Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Qi Yang
- Department of Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, P. R. China
| | - Shuopei Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongliang Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Duoming Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Boyong Feng
- Department of Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, P. R. China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Guangyu Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mark A Ratner
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - H Q Xu
- Department of Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, P. R. China.
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA. School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China.
| |
Collapse
|
11
|
Liu C, Beratan DN, Zhang P. Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise. J Phys Chem B 2016; 120:3624-33. [DOI: 10.1021/acs.jpcb.6b01018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chaoren Liu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Departments
of Biochemistry and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Peng Zhang
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|