1
|
Scrosati PM, MacKay-Barr EH, Konermann L. Umbrella Sampling MD Simulations for Retention Prediction in Peptide Reversed-phase Liquid Chromatography. Anal Chem 2025; 97:828-837. [PMID: 39705373 DOI: 10.1021/acs.analchem.4c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide excellent performance based on empirical rules or large sets of RPLC training data. Here we explored a new type of retention prediction strategy that relies on first-principles modeling of peptide interactions with a C18 stationary phase. We recently demonstrated that molecular dynamics (MD) simulations can provide atomistic insights into the behavior of peptides under RPLC conditions (Anal. Chem. 2023, 95, 3892). However, the current work found that it is problematic to use conventional MD data for retention prediction, evident from a poor correlation between experimental retention times and MD-generated "fraction bound" values. We thus turned to umbrella sampling MD, a complementary technique that has previously been applied to probe noncovalent contacts in other types of systems. By restraining the peptide dynamic motions at various positions inside a C18-lined pore, we determined the free energy of the system as a function of peptide-stationary phase distance. ΔGbinding values determined in this way under various mobile phase conditions were linearly correlated with experimental retention times of tryptic test peptides. This work opens retention prediction avenues for novel types of stationary and mobile phases, and for peptides (or other analytes) having arbitrary chemical properties, without the need for RPLC reference data. Umbrella sampling can be used as a stand-alone tool, or it may serve to enhance existing retention prediction algorithms.
Collapse
Affiliation(s)
- Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Evelyn H MacKay-Barr
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
García-Morales A, Balleza D. Exploring Flexibility and Folding Patterns Throughout Time in Voltage Sensors. J Mol Evol 2023; 91:819-836. [PMID: 37955698 DOI: 10.1007/s00239-023-10140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
The voltage-sensing domain (VSD) is a module capable of responding to changes in the membrane potential through conformational changes and facilitating electromechanical coupling to open a pore gate, activate proton permeation pathways, or promote enzymatic activity in some membrane-anchored phosphatases. To carry out these functions, this module acts cooperatively through conformational changes. The VSD is formed by four transmembrane segments (S1-S4) but the S4 segment is critical since it carries positively charged residues, mainly Arg or Lys, which require an aqueous environment for its proper function. The discovery of this module in voltage-gated ion channels (VGICs), proton channels (Hv1), and voltage sensor-containing phosphatases (VSPs) has expanded our understanding of the principle of modularity in the voltage-sensing mechanism of these proteins. Here, by sequence comparison and the evaluation of the relationship between sequence composition, intrinsic flexibility, and structural analysis in 14 selected representatives of these three major protein groups, we report five interesting differences in the folding patterns of the VSD both in prokaryotes and eukaryotes. Our main findings indicate that this module is highly conserved throughout the evolutionary scale, however: (1) segments S1 to S3 in eukaryotes are significantly more hydrophobic than those present in prokaryotes; (2) the S4 segment has retained its hydrophilic character; (3) in eukaryotes the extramembranous linkers are significantly larger and more flexible in comparison with those present in prokaryotes; (4) the sensors present in the kHv1 proton channel and the ciVSP phosphatase, both of eukaryotic origin, exhibit relationships of flexibility and folding patterns very close to the typical ones found in prokaryotic voltage sensors; and (5) archaeal channels KvAP and MVP have flexibility profiles which are clearly contrasting in the S3-S4 region, which could explain their divergent activation mechanisms. Finally, to elucidate the obscure origins of this module, we show further evidence for a possible connection between voltage sensors and TolQ proteins.
Collapse
Affiliation(s)
- Abigail García-Morales
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Calz. Miguel Angel de Quevedo 2779, Col. Formando Hogar, CP. 91897, Veracruz, Ver, Mexico
| | - Daniel Balleza
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Calz. Miguel Angel de Quevedo 2779, Col. Formando Hogar, CP. 91897, Veracruz, Ver, Mexico.
| |
Collapse
|
3
|
Nandel V, Scadden J, Baker MAB. Ion-Powered Rotary Motors: Where Did They Come from and Where They Are Going? Int J Mol Sci 2023; 24:10601. [PMID: 37445779 PMCID: PMC10341847 DOI: 10.3390/ijms241310601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular motors are found in many living organisms. One such molecular machine, the ion-powered rotary motor (IRM), requires the movement of ions across a membrane against a concentration gradient to drive rotational movement. The bacterial flagellar motor (BFM) is an example of an IRM which relies on ion movement through the stator proteins to generate the rotation of the flagella. There are many ions which can be used by the BFM stators to power motility and different ions can be used by a single bacterium expressing multiple stator variants. The use of ancestral sequence reconstruction (ASR) and functional analysis of reconstructed stators shows promise for understanding how these proteins evolved and when the divergence in ion use may have occurred. In this review, we discuss extant BFM stators and the ions that power them as well as recent examples of the use of ASR to study ion-channel selectivity and how this might be applied to further study of the BFM stator complex.
Collapse
Affiliation(s)
| | | | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW 2033, Australia; (V.N.); (J.S.)
| |
Collapse
|
4
|
Homma M, Nishikino T, Kojima S. Achievements in bacterial flagellar research with focus on Vibrio species. Microbiol Immunol 2021; 66:75-95. [PMID: 34842307 DOI: 10.1111/1348-0421.12954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
In 1980's, the most genes involved in the bacterial flagellar function and formation had been isolated though many of their functions or roles were not clarified. Bacterial flagella are the primary locomotive organ and are not necessary for growing in vitro but are probably essential for living in natural condition and are involved in the pathogenicity. In vitro, the flagella-deficient strains can grow at rates similar to wild-type strains. More than 50 genes are responsible for flagellar function, and the flagellum is constructed by more than 20 structural proteins. The maintenance cost of flagellum is high as several genes are required for its development. The fact that it evolved as a motor organ even with such the high cost shows that the motility is indispensable to survive under the harsh environment of Earth. In this review, we focus on flagella-related research conducted by the authors for about 40 years and flagellar research focused on Vibrio spp. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
5
|
Levintov L, Vashisth H. Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides. Biophys J 2021; 120:5060-5073. [PMID: 34710377 PMCID: PMC8633718 DOI: 10.1016/j.bpj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions between RNA molecules and proteins are critical to many cellular processes and are implicated in various diseases. The RNA-peptide complexes are good model systems to probe the recognition mechanism of RNA by proteins. In this work, we report studies on the binding-unbinding process of a helical peptide from a viral RNA element using nonequilibrium molecular dynamics simulations. We explored the existence of various dissociation pathways with distinct free-energy profiles that reveal metastable states and distinct barriers to peptide dissociation. We also report the free-energy differences for each of the four pathways to be 96.47 ± 12.63, 96.1 ± 10.95, 91.83 ± 9.81, and 92 ± 11.32 kcal/mol. Based on the free-energy analysis, we further propose the preferred pathway and the mechanism of peptide dissociation. The preferred pathway is characterized by the formation of sequential hydrogen-bonding and salt-bridging interactions between several key arginine amino acids and the viral RNA nucleotides. Specifically, we identified one arginine amino acid (R8) of the peptide to play a significant role in the recognition mechanism of the peptide by the viral RNA molecule.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire.
| |
Collapse
|
6
|
Scrosati PM, Yin V, Konermann L. Hydrogen/Deuterium Exchange Measurements May Provide an Incomplete View of Protein Dynamics: a Case Study on Cytochrome c. Anal Chem 2021; 93:14121-14129. [PMID: 34644496 DOI: 10.1021/acs.analchem.1c02471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many aspects of protein function rely on conformational fluctuations. Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) provides a window into these dynamics. Despite the widespread use of HDX-MS, it remains unclear whether this technique provides a truly comprehensive view of protein dynamics. HDX is mediated by H-bond-opening/closing events, implying that HDX methods provide an H-bond-centric view. This raises the question if there could be fluctuations that leave the H-bond network unaffected, thereby rendering them undetectable by HDX-MS. We explore this issue in experiments on cytochrome c (cyt c). Compared to the Fe(II) protein, Fe(III) cyt c shows enhanced deuteration on both the distal and proximal sides of the heme. Previous studies have attributed the enhanced dynamics of Fe(III) cyt c to the facile and reversible rupture of the distal M80-Fe(III) bond. Using molecular dynamics (MD) simulations, we conducted a detailed analysis of various cyt c conformers. Our MD data confirm that rupture of the M80-Fe(III) contact triggers major reorientation of the distal Ω loop. Surprisingly, this event takes place with only miniscule H-bonding alterations. In other words, the distal loop dynamics are almost "HDX-silent". Moreover, distal loop movements cannot account for enhanced dynamics on the opposite (proximal) side of the heme. Instead, enhanced deuteration of Fe(III) cyt c is attributed to sparsely populated conformers where both the distal (M80) and proximal (H18) coordination bonds have been ruptured, along with opening of numerous H-bonds on both sides of the heme. We conclude that there can be major structural fluctuations that are only weakly coupled to changes in H-bonding, making them virtually impossible to track by HDX-MS. In such cases, HDX-MS may provide an incomplete view of protein dynamics.
Collapse
Affiliation(s)
- Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Victor Yin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
7
|
Hu H, Santiveri M, Wadhwa N, Berg HC, Erhardt M, Taylor NMI. Structural basis of torque generation in the bi-directional bacterial flagellar motor. Trends Biochem Sci 2021; 47:160-172. [PMID: 34294545 DOI: 10.1016/j.tibs.2021.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The flagellar stator unit is an oligomeric complex of two membrane proteins (MotA5B2) that powers bi-directional rotation of the bacterial flagellum. Harnessing the ion motive force across the cytoplasmic membrane, the stator unit operates as a miniature rotary motor itself to provide torque for rotation of the flagellum. Recent cryo-electron microscopic (cryo-EM) structures of the stator unit provided novel insights into its assembly, function, and subunit stoichiometry, revealing the ion flux pathway and the torque generation mechanism. Furthermore, in situ cryo-electron tomography (cryo-ET) studies revealed unprecedented details of the interactions between stator unit and rotor. In this review, we summarize recent advances in our understanding of the structure and function of the flagellar stator unit, torque generation, and directional switching of the motor.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Navish Wadhwa
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Marc Erhardt
- Institut für Biologie/Bakterienphysiologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
8
|
Chang Y, Carroll BL, Liu J. Structural basis of bacterial flagellar motor rotation and switching. Trends Microbiol 2021; 29:1024-1033. [PMID: 33865677 DOI: 10.1016/j.tim.2021.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023]
Abstract
The bacterial flagellar motor, a remarkable rotary machine, can rapidly switch between counterclockwise (CCW) and clockwise (CW) rotational directions to control the migration behavior of the bacterial cell. The flagellar motor consists of a bidirectional spinning rotor surrounded by torque-generating stator units. Recent high-resolution in vitro and in situ structural studies have revealed stunning details of the individual components of the flagellar motor and their interactions in both the CCW and CW senses. In this review, we discuss these structures and their implications for understanding the molecular mechanisms underlying flagellar rotation and switching.
Collapse
Affiliation(s)
- Yunjie Chang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Brittany L Carroll
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
9
|
Biquet-Bisquert A, Labesse G, Pedaci F, Nord AL. The Dynamic Ion Motive Force Powering the Bacterial Flagellar Motor. Front Microbiol 2021; 12:659464. [PMID: 33927708 PMCID: PMC8076557 DOI: 10.3389/fmicb.2021.659464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial flagellar motor (BFM) is a rotary molecular motor embedded in the cell membrane of numerous bacteria. It turns a flagellum which acts as a propeller, enabling bacterial motility and chemotaxis. The BFM is rotated by stator units, inner membrane protein complexes that stochastically associate to and dissociate from individual motors at a rate which depends on the mechanical and electrochemical environment. Stator units consume the ion motive force (IMF), the electrochemical gradient across the inner membrane that results from cellular respiration, converting the electrochemical energy of translocated ions into mechanical energy, imparted to the rotor. Here, we review some of the main results that form the base of our current understanding of the relationship between the IMF and the functioning of the flagellar motor. We examine a series of studies that establish a linear proportionality between IMF and motor speed, and we discuss more recent evidence that the stator units sense the IMF, altering their rates of dynamic assembly. This, in turn, raises the question of to what degree the classical dependence of motor speed on IMF is due to stator dynamics vs. the rate of ion flow through the stators. Finally, while long assumed to be static and homogeneous, there is mounting evidence that the IMF is dynamic, and that its fluctuations control important phenomena such as cell-to-cell signaling and mechanotransduction. Within the growing toolbox of single cell bacterial electrophysiology, one of the best tools to probe IMF fluctuations may, ironically, be the motor that consumes it. Perfecting our incomplete understanding of how the BFM employs the energy of ion flow will help decipher the dynamical behavior of the bacterial IMF.
Collapse
Affiliation(s)
- Anaïs Biquet-Bisquert
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Ashley L Nord
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
10
|
Nishikino T, Kojima S, Homma M. [Flagellar related genes and functions in Vibrio]. Nihon Saikingaku Zasshi 2021; 75:195-214. [PMID: 33390367 DOI: 10.3412/jsb.75.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteria can move or swim by flagella. On the other hand, the motile ability is not necessary to live at all. In laboratory, the flagella-deficient strains can grow just like the wild-type strains. The flagellum is assembled from more than 20 structural proteins and there are more than 50 genes including the structural genes to regulate or support the flagellar formation. The cost to construct the flagellum is so expensive. The fact that it evolved as a motor organ means even at such the large cost shows that the flagellum is essential for survival in natural condition. In this review, we would like to focus on the flagella-related researches conducted by the authors and the flagellar research on Vibrio spp.
Collapse
Affiliation(s)
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
11
|
Expansion of Necrosis Depending on Hybrid Motor-Driven Motility of Aeromonas hydrophila in a Murine Wound Infection Model. Microorganisms 2020; 9:microorganisms9010010. [PMID: 33375129 PMCID: PMC7822177 DOI: 10.3390/microorganisms9010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/04/2022] Open
Abstract
The gram-negative bacterium Aeromonas hydrophila is a cause of fulminant and lethal necrotizing soft tissue infections (NSTIs). Suppressing the rapid proliferation of the pathogen and expansion of the necrosis caused in the host is an important issue in clinical practice, but the pathogenic mechanism for the rapid aggravation has not been clarified. In this study, we characterized the function of two types of motor stators in A. hydrophila and explored the role of motility during wound infection. In vitro analysis showed that the motility was reliably maintained while being complemented by the stators. We created a non-motile strain that lacked genes encoding two types of motor stators and analyzed the role of motility in a murine wound infection model. Examination of the bacterial burden in the local infection site and systemic circulation revealed that motility was not essential for the proliferation of A. hydrophila in the host. However, the extent of necrosis at the lesions was lower, and survival times were prolonged in mice infected with the non-motile strain compared with mice infected with the parent strain. These results provide evidence that the rapid expansion of necrosis and the progression to death within a short time period is dependent on the motility of A. hydrophila.
Collapse
|
12
|
Deme JC, Johnson S, Vickery O, Aron A, Monkhouse H, Griffiths T, James RH, Berks BC, Coulton JW, Stansfeld PJ, Lea SM. Structures of the stator complex that drives rotation of the bacterial flagellum. Nat Microbiol 2020; 5:1553-1564. [PMID: 32929189 PMCID: PMC7610383 DOI: 10.1038/s41564-020-0788-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023]
Abstract
The bacterial flagellum is the prototypical protein nanomachine and comprises a rotating helical propeller attached to a membrane-embedded motor complex. The motor consists of a central rotor surrounded by stator units that couple ion flow across the cytoplasmic membrane to generate torque. Here, we present the structures of the stator complexes from Clostridium sporogenes, Bacillus subtilis and Vibrio mimicus, allowing interpretation of the extensive body of data on stator mechanism. The structures reveal an unexpected asymmetric A5B2 subunit assembly where the five A subunits enclose the two B subunits. Comparison to structures of other ion-driven motors indicates that this A5B2 architecture is fundamental to bacterial systems that couple energy from ion flow to generate mechanical work at a distance and suggests that such events involve rotation in the motor structures.
Collapse
Affiliation(s)
- Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Owen Vickery
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Amy Aron
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Holly Monkhouse
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Thomas Griffiths
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Département de Biochemie et Médecine Moleculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Terahara N, Namba K, Minamino T. Dynamic exchange of two types of stator units in Bacillus subtilis flagellar motor in response to environmental changes. Comput Struct Biotechnol J 2020; 18:2897-2907. [PMID: 33163150 PMCID: PMC7595845 DOI: 10.1016/j.csbj.2020.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Bacteria can migrate towards more suitable environments by rotating flagella that are under the control of sensory signal transduction networks. The bacterial flagellum is composed of the long helical filament functioning as a propeller, the flexible hook as a universal joint and the basal body as a rotary motor powered by ion motive force across the cell membrane. The flagellar motor consists of a rotor and multiple stator units, each of which couples the ion flow through its ion channel with force generation. The flagellar building blocks and motor proteins are highly conserved among bacterial species, but structural and functional diversity of flagella has also been revealed. It has been reported that the structure and function of the flagellar motor of a Gram-positive bacterium, Bacillus subtilis, differ from those of Escherichia coli and Salmonella. The flagellar motor of the B. subtilis BR151MA strain possesses two distinct types of stator complexes, H+-type MotAB and Na+-type MotPS, around the rotor. These two types of stator units dynamically assemble to and disassemble from the rotor in response to environmental changes such as viscosity and external Na+ concentrations. In this mini-review article, we describe our recent understanding of the structure and dynamics of the B. subtilis flagellar motor.
Collapse
Affiliation(s)
- Naoya Terahara
- Department of Physics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Keiichi Namba
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- RIKEN Spring-8 Center and Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Minamino
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Levintov L, Vashisth H. Ligand Recognition in Viral RNA Necessitates Rare Conformational Transitions. J Phys Chem Lett 2020; 11:5426-5432. [PMID: 32551654 DOI: 10.1021/acs.jpclett.0c01390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ribonucleic acids (RNAs) are conformationally flexible molecules that fold into three-dimensional structures and play an important role in different cellular processes as well as in the development of many diseases. RNA has therefore become an important target for developing novel therapeutic approaches. The biophysical processes underlying RNA function are often associated with rare structural transitions that play a key role in ligand recognition. In this work, we probe these rarely occurring transitions using nonequilibrium simulations by characterizing the dissociation of a ligand molecule from an HIV-1 viral RNA element. Specifically, we observed base-flipping rare events that are coupled with ligand binding/unbinding and also provided mechanistic details underlying these transitions.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| |
Collapse
|
15
|
Abstract
The bacterial flagellar motor is driven by an ion flux that is converted to torque by motor-attendant complexes known as stators. The dynamics of stator assembly around the motor in response to external stimuli have been the subject of much recent research, but less is known about the evolutionary origins of stator complexes and how they select for specific ions. Here, we review the latest structural and biochemical data for the stator complexes and compare these with other ion transporters and microbial motors to examine possible evolutionary origins of the stator complex.
Collapse
|
16
|
Nord AL, Pedaci F. Mechanisms and Dynamics of the Bacterial Flagellar Motor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:81-100. [PMID: 32894478 DOI: 10.1007/978-3-030-46886-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many bacteria are able to actively propel themselves through their complex environment, in search of resources and suitable niches. The source of this propulsion is the Bacterial Flagellar Motor (BFM), a molecular complex embedded in the bacterial membrane which rotates a flagellum. In this chapter we review the known physical mechanisms at work in the motor. The BFM shows a highly dynamic behavior in its power output, its structure, and in the stoichiometry of its components. Changes in speed, rotation direction, constituent protein conformations, and the number of constituent subunits are dynamically controlled in accordance to external chemical and mechanical cues. The mechano-sensitivity of the motor is likely related to the surface-sensing ability of bacteria, relevant in the initial stage of biofilm formation.
Collapse
Affiliation(s)
- A L Nord
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France
| | - F Pedaci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
17
|
Romero-Romero S, Martínez-Delgado G, Balleza D. Voltage vs. Ligand II: Structural insights of the intrinsic flexibility in cyclic nucleotide-gated channels. Channels (Austin) 2019; 13:382-399. [PMID: 31552786 PMCID: PMC6768053 DOI: 10.1080/19336950.2019.1666456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
In the preceding article, we present a flexibility analysis of the voltage-gated ion channel (VGIC) superfamily. In this study, we describe in detail the flexibility profile of the voltage-sensor domain (VSD) and the pore domain (PD) concerning the evolution of 6TM ion channels. In particular, we highlight the role of flexibility in the emergence of CNG channels and describe a significant level of sequence similarity between the archetypical VSD and the TolQ proteins. A highly flexible S4-like segment exhibiting Lys instead Arg for these membrane proteins is reported. Sequence analysis indicates that, in addition to this S4-like segment, TolQ proteins also show similarity with specific motifs in S2 and S3 from typical V-sensors. Notably, S3 flexibility profiles from typical VSDs and S3-like in TolQ proteins are also similar. Interestingly, TolQ from early divergent prokaryotes are comparatively more flexible than those in modern counterparts or true V-sensors. Regarding the PD, we also found that 2TM K+-channels in early prokaryotes are considerably more flexible than the ones in modern microbes, and such flexibility is comparable to the one present in CNG channels. Voltage dependence is mainly exhibited in prokaryotic CNG channels whose VSD is rigid whereas the eukaryotic CNG channels are considerably more flexible and poorly V-dependent. The implication of the flexibility present in CNG channels, their sensitivity to cyclic nucleotides and the cation selectivity are discussed. Finally, we generated a structural model of the putative cyclic nucleotide-modulated ion channel, which we coined here as AqK, from the thermophilic bacteria Aquifex aeolicus, one of the earliest diverging prokaryotes known. Overall, our analysis suggests that V-sensors in CNG-like channels were essentially rigid in early prokaryotes but raises the possibility that this module was probably part of a very flexible stator protein of the bacterial flagellum motor complex.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. Current address: Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Gustavo Martínez-Delgado
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Daniel Balleza
- Departamento de Química ICET, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
18
|
Mino T, Nishikino T, Iwatsuki H, Kojima S, Homma M. Effect of sodium ions on conformations of the cytoplasmic loop of the PomA stator protein of Vibrio alginolyticus. J Biochem 2019; 166:331-341. [PMID: 31147681 DOI: 10.1093/jb/mvz040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023] Open
Abstract
The sodium driven flagellar stator of Vibrio alginolyticus is a hetero-hexamer membrane complex composed of PomA and PomB, and acts as a sodium ion channel. The conformational change in the cytoplasmic region of PomA for the flagellar torque generation, which interacts directly with a rotor protein, FliG, remains a mystery. In this study, we introduced cysteine mutations into cytoplasmic charged residues of PomA, which are highly conserved and interact with FliG, to detect the conformational change by the reactivity of biotin maleimide. In vivo labelling experiments of the PomA mutants revealed that the accessibility of biotin maleimide at position of E96 was reduced with sodium ions. Such a reduction was also seen in the D24N and the plug deletion mutants of PomB, and the phenomenon was independent in the presence of FliG. This sodium ions specific reduction was also detected in Escherichia coli that produced PomA and PomB from a plasmid, but not in the purified stator complex. These results demonstrated that sodium ions cause a conformational change around the E96 residue of loop2-3 in the biological membrane.
Collapse
Affiliation(s)
- Taira Mino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Tatsuro Nishikino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Hiroto Iwatsuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| |
Collapse
|
19
|
Onoue Y, Iwaki M, Shinobu A, Nishihara Y, Iwatsuki H, Terashima H, Kitao A, Kandori H, Homma M. Essential ion binding residues for Na + flow in stator complex of the Vibrio flagellar motor. Sci Rep 2019; 9:11216. [PMID: 31375690 PMCID: PMC6677748 DOI: 10.1038/s41598-019-46038-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 06/17/2019] [Indexed: 01/06/2023] Open
Abstract
The bacterial flagellar motor is a unique supramolecular complex which converts ion flow into rotational force. Many biological devices mainly use two types of ions, proton and sodium ion. This is probably because of the fact that life originated in seawater, which is rich in protons and sodium ions. The polar flagellar motor in Vibrio is coupled with sodium ion and the energy converting unit of the motor is composed of two membrane proteins, PomA and PomB. It has been shown that the ion binding residue essential for ion transduction is the conserved aspartic acid residue (PomB-D24) in the PomB transmembrane region. To reveal the mechanism of ion selectivity, we identified essential residues, PomA-T158 and PomA-T186, other than PomB-D24, in the Na+-driven flagellar motor. It has been shown that the side chain of threonine contacts Na+ in Na+-coupled transporters. We monitored the Na+-binding specific structural changes using ATR-FTIR spectroscopy. The signals were abolished in PomA-T158A and -T186A, as well as in PomB-D24N. Molecular dynamics simulations further confirmed the strong binding of Na+ to D24 and showed that T158A and T186A hindered the Na+ binding and transportation. The data indicate that two threonine residues (PomA-T158 and PomA-T186), together with PomB-D24, are important for Na+ conduction in the Vibrio flagellar motor. The results contribute to clarify the mechanism of ion recognition and conversion of ion flow into mechanical force.
Collapse
Affiliation(s)
- Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masayo Iwaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Ai Shinobu
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
| | - Yasutaka Nishihara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan
| | - Hiroto Iwatsuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| |
Collapse
|
20
|
Flagella-Driven Motility of Bacteria. Biomolecules 2019; 9:biom9070279. [PMID: 31337100 PMCID: PMC6680979 DOI: 10.3390/biom9070279] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/17/2023] Open
Abstract
The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial species possessing flagella at the cell exterior, the long helical flagellar filament acts as a molecular screw to generate thrust. Meanwhile, the flagella of spirochetes reside within the periplasmic space and not only act as a cytoskeleton to determine the helicity of the cell body, but also rotate or undulate the helical cell body for propulsion. Despite structural diversity of the flagella among bacterial species, flagellated bacteria share a common rotary nanomachine, namely the flagellar motor, which is located at the base of the filament. The flagellar motor is composed of a rotor ring complex and multiple transmembrane stator units and converts the ion flux through an ion channel of each stator unit into the mechanical work required for motor rotation. Intracellular chemotactic signaling pathways regulate the direction of flagella-driven motility in response to changes in the environments, allowing bacteria to migrate towards more desirable environments for their survival. Recent experimental and theoretical studies have been deepening our understanding of the molecular mechanisms of the flagellar motor. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Collapse
|
21
|
Abstract
Bacteria move by a variety of mechanisms, but the best understood types of motility are powered by flagella (72). Flagella are complex machines embedded in the cell envelope that rotate a long extracellular helical filament like a propeller to push cells through the environment. The flagellum is one of relatively few biological machines that experience continuous 360° rotation, and it is driven by one of the most powerful motors, relative to its size, on earth. The rotational force (torque) generated at the base of the flagellum is essential for motility, niche colonization, and pathogenesis. This review describes regulatory proteins that control motility at the level of torque generation.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
22
|
Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the Salmonella H +-Driven Flagellar Motor. J Bacteriol 2019; 201:JB.00727-18. [PMID: 30642987 DOI: 10.1128/jb.00727-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
The bacterial flagellar motor is composed of a rotor and a dozen stators and converts the ion flux through the stator into torque. Each stator unit alternates in its attachment to and detachment from the rotor even during rotation. In some species, stator assembly depends on the input energy, but it remains unclear how an electrochemical potential across the membrane (e.g., proton motive force [PMF]) or ion flux is involved in stator assembly dynamics. Here, we focused on pH dependence of a slow motile MotA(M206I) mutant of Salmonella The MotA(M206I) motor produces torque comparable to that of the wild-type motor near stall, but its rotation rate is considerably decreased as the external load is reduced. Rotation assays of flagella labeled with 1-μm beads showed that the rotation rate of the MotA(M206I) motor is increased by lowering the external pH whereas that of the wild-type motor is not. Measurements of the speed produced by a single stator unit using 1-μm beads showed that the unit speed of the MotA(M206I) is about 60% of that of the wild-type and that a decrease in external pH did not affect the MotA(M206I) unit speed. Analysis of the subcellular stator localization revealed that the number of functional stators is restored by lowering the external pH. The pH-dependent improvement of stator assembly was observed even when the PMF was collapsed and proton transfer was inhibited. These results suggest that MotA-Met206 is responsible for not only load-dependent energy coupling between the proton influx and rotation but also pH-dependent stator assembly.IMPORTANCE The bacterial flagellar motor is a rotary nanomachine driven by the electrochemical transmembrane potential (ion motive force). About 10 stators (MotA/MotB complexes) are docked around a rotor, and the stator recruitment depends on the load, ion motive force, and coupling ion flux. The MotA(M206I) mutation slows motor rotation and decreases the number of docked stators in Salmonella We show that lowering the external pH improves the assembly of the mutant stators. Neither the collapse of the ion motive force nor a mutation mimicking the proton-binding state inhibited stator localization to the motor. These results suggest that MotA-Met206 is involved in torque generation and proton translocation and that stator assembly is stabilized by protonation of the stator.
Collapse
|
23
|
Marbach S, Bocquet L. Osmosis, from molecular insights to large-scale applications. Chem Soc Rev 2019; 48:3102-3144. [PMID: 31114820 DOI: 10.1039/c8cs00420j] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osmosis is a universal phenomenon occurring in a broad variety of processes and fields. It is the archetype of entropic forces, both trivial in its fundamental expression - the van 't Hoff perfect gas law - and highly subtle in its physical roots. While osmosis is intimately linked with transport across membranes, it also manifests itself as an interfacial transport phenomenon: the so-called diffusio-osmosis and -phoresis, whose consequences are presently actively explored for example for the manipulation of colloidal suspensions or the development of active colloidal swimmers. Here we give a global and unifying view of the phenomenon of osmosis and its consequences with a multi-disciplinary perspective. Pushing the fundamental understanding of osmosis allows one to propose new perspectives for different fields and we highlight a number of examples along these lines, for example introducing the concepts of osmotic diodes, active separation and far from equilibrium osmosis, raising in turn fundamental questions in the thermodynamics of separation. The applications of osmosis are also obviously considerable and span very diverse fields. Here we discuss a selection of phenomena and applications where osmosis shows great promises: osmotic phenomena in membrane science (with recent developments in separation, desalination, reverse osmosis for water purification thanks in particular to the emergence of new nanomaterials); applications in biology and health (in particular discussing the kidney filtration process); osmosis and energy harvesting (in particular, osmotic power and blue energy as well as capacitive mixing); applications in detergency and cleaning, as well as for oil recovery in porous media.
Collapse
Affiliation(s)
- Sophie Marbach
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
24
|
Minamino T, Terahara N, Kojima S, Namba K. Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment. Mol Microbiol 2018; 109:723-734. [DOI: 10.1111/mmi.14092] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences Osaka University 1‐3 YamadaokaSuita Osaka 565‐0871Japan
| | - Naoya Terahara
- Graduate School of Frontier Biosciences Osaka University 1‐3 YamadaokaSuita Osaka 565‐0871Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science Nagoya University Chikusa‐kuNagoya 464‐8602Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences Osaka University 1‐3 YamadaokaSuita Osaka 565‐0871Japan
- RIKEN Center for Biosystems Dynamics Research & SPring‐8 Center 1‐3 YamadaokaSuita Osaka 565‐0871Japan
| |
Collapse
|
25
|
Wineman-Fisher V, Simkovich R, Huppert D, Trujillo K, Remington SJ, Miller Y. Mutagenic induction of an ultra-fast water-chain proton wire. Phys Chem Chem Phys 2018; 18:23089-95. [PMID: 27492977 DOI: 10.1039/c6cp05071a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacement of the hydroxyl group of a hydrophilic sidechain by an H atom in the proton wire of GFP induces formation of a water-chain proton wire. Surprisingly, this "non-native" water chain functions as a proton wire with response times within 10 ps of the wild type protein. This remarkable rate retention is understood as a natural consequence of the well-known Grotthuss mechanism of proton transfer in water.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel. and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel
| | - Ron Simkovich
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Huppert
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kristina Trujillo
- Department of Physics and Institute of Molecular Biology, University of Oregon, Eugene, USA
| | - S James Remington
- Department of Physics and Institute of Molecular Biology, University of Oregon, Eugene, USA
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel. and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel
| |
Collapse
|
26
|
SwrD (YlzI) Promotes Swarming in Bacillus subtilis by Increasing Power to Flagellar Motors. J Bacteriol 2017; 200:JB.00529-17. [PMID: 29061663 DOI: 10.1128/jb.00529-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/29/2017] [Indexed: 11/20/2022] Open
Abstract
The bacterium Bacillus subtilis is capable of two kinds of flagellum-mediated motility: swimming, which occurs in liquid, and swarming, which occurs on a surface. Swarming is distinct from swimming in that it requires secretion of a surfactant, an increase in flagellar density, and perhaps additional factors. Here we report a new gene, swrD, located within the 32 gene fla-che operon dedicated to flagellar biosynthesis and chemotaxis, which when mutated abolished swarming motility. SwrD was not required for surfactant production, flagellar gene expression, or an increase in flagellar number. Instead, SwrD was required to increase flagellar power. Mutation of swrD reduced swimming speed and torque of tethered flagella, and all swrD-related phenotypes were restored when the stator subunits MotA and MotB were overexpressed either by spontaneous suppressor mutations or by artificial induction. We conclude that swarming motility requires flagellar power in excess of that which is needed to swim.IMPORTANCE Bacteria swim in liquid and swarm over surfaces by rotating flagella, but the difference between swimming and swarming is poorly understood. Here we report that SwrD of Bacillus subtilis is necessary for swarming because it increases flagellar torque and cells mutated for swrD swim with reduced speed. How flagellar motors generate power is primarily studied in Escherichia coli, and SwrD likely increases power in other organisms, like the Firmicutes, Clostridia, Spirochaetes, and the Deltaproteobacteria.
Collapse
|
27
|
Kitao A, Hata H. Molecular dynamics simulation of bacterial flagella. Biophys Rev 2017; 10:617-629. [PMID: 29181743 DOI: 10.1007/s12551-017-0338-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022] Open
Abstract
The bacterial flagellum is a biological nanomachine for the locomotion of bacteria, and is seen in organisms like Salmonella and Escherichia coli. The flagellum consists of tens of thousands of protein molecules and more than 30 different kinds of proteins. The basal body of the flagellum contains a protein export apparatus and a rotary motor that is powered by ion motive force across the cytoplasmic membrane. The filament functions as a propeller whose helicity is controlled by the direction of the torque. The hook that connects the motor and filament acts as a universal joint, transmitting torque generated by the motor to different directions. This report describes the use of molecular dynamics to study the bacterial flagellum. Molecular dynamics simulation is a powerful method that permits the investigation, at atomic resolution, of the molecular mechanisms of biomolecular systems containing many proteins and solvent. When applied to the flagellum, these studies successfully unveiled the polymorphic supercoiling and transportation mechanism of the filament, the universal joint mechanism of the hook, the ion transfer mechanism of the motor stator, the flexible nature of the transport apparatus proteins, and activation of proteins involved in chemotaxis.
Collapse
Affiliation(s)
- Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, M6-13, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Hiroaki Hata
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Terahara N, Kodera N, Uchihashi T, Ando T, Namba K, Minamino T. Na +-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. SCIENCE ADVANCES 2017; 3:eaao4119. [PMID: 29109979 PMCID: PMC5665596 DOI: 10.1126/sciadv.aao4119] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/06/2017] [Indexed: 05/03/2023]
Abstract
The bacterial flagellar motor consists of a rotor and a dozen stator units and regulates the number of active stator units around the rotor in response to changes in the environment. The MotPS complex is a Na+-type stator unit in the Bacillus subtilis flagellar motor and binds to the peptidoglycan layer through the peptidoglycan-binding (PGB) domain of MotS to act as the stator. The MotPS complex is activated in response to an increase in the Na+ concentration in the environment, but the mechanism of this activation has remained unknown. We report that activation occurs by a Na+-induced folding and dimer formation of the PGB domain of MotS, as revealed in real-time imaging by high-speed atomic force microscopy. The MotPS complex showed two distinct ellipsoid domains connected by a flexible linker. A smaller domain, corresponding to the PGB domain, became structured and unstructured in the presence and absence of 150 mM NaCl, respectively. When the amino-terminal portion of the PGB domain adopted a partially stretched conformation in the presence of NaCl, the center-to-center distance between these two domains increased by up to 5 nm, allowing the PGB domain to reach and bind to the peptidoglycan layer. We propose that assembly of the MotPS complex into a motor proceeds by means of Na+-induced structural transitions of its PGB domain.
Collapse
Affiliation(s)
- Naoya Terahara
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takayuki Uchihashi
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Goban-cho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author. (T.M.); (K.N.)
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author. (T.M.); (K.N.)
| |
Collapse
|
29
|
Pourjaberi SNS, Terahara N, Namba K, Minamino T. The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor. Mol Microbiol 2017; 106:646-658. [DOI: 10.1111/mmi.13843] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Affiliation(s)
| | - Naoya Terahara
- Graduate School of Frontier Biosciences; Osaka University, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences; Osaka University, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
- RIKEN; Quantitative Biology Center, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences; Osaka University, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
| |
Collapse
|
30
|
Dunn CD. Some Liked It Hot: A Hypothesis Regarding Establishment of the Proto-Mitochondrial Endosymbiont During Eukaryogenesis. J Mol Evol 2017; 85:99-106. [PMID: 28916841 PMCID: PMC5682861 DOI: 10.1007/s00239-017-9809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 01/17/2023]
Abstract
Eukaryotic cells are characterized by a considerable increase in subcellular compartmentalization when compared to prokaryotes. Most evidence suggests that the earliest eukaryotes consisted of mitochondria derived from an α-proteobacterial ancestor enclosed within an archaeal host cell. However, what benefits the archaeal host and the proto-mitochondrial endosymbiont might have obtained at the beginning of this endosymbiotic relationship remains unclear. In this work, I argue that heat generated by the proto-mitochondrion initially permitted an archaeon living at high temperatures to colonize a cooler environment, thereby removing apparent limitations on cellular complexity. Furthermore, heat generation by the endosymbiont would have provided phenotypic flexibility not available through fixed alleles selected for fitness at specific temperatures. Finally, a role for heat production by the proto-mitochondrion bridges a conceptual gap between initial endosymbiont entry to the archaeal host and a later role for mitochondrial ATP production in permitting increased cellular complexity.
Collapse
Affiliation(s)
- Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland. .,College of Sciences, Koç University, 34450, Sarıyer, İstanbul, Turkey.
| |
Collapse
|
31
|
Nirody JA, Berry RM, Oster G. The Limiting Speed of the Bacterial Flagellar Motor. Biophys J 2017; 111:557-564. [PMID: 27508439 DOI: 10.1016/j.bpj.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/13/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
Recent experiments on the bacterial flagellar motor have shown that the structure of this nanomachine, which drives locomotion in a wide range of bacterial species, is more dynamic than previously believed. Specifically, the number of active torque-generating complexes (stators) was shown to vary across applied loads. This finding brings under scrutiny the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. In this study, we propose that, contrary to previous assumptions, the maximum speed of the motor increases as additional stators are recruited. This result arises from our assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence in chimeric motors, as well as with the requirement that a processive motor driving a large load via an elastic linkage must have a high duty ratio.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, California.
| | - Richard M Berry
- Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom
| | - George Oster
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| |
Collapse
|
32
|
Abstract
Many bacteria move through liquids and across surfaces by using flagella-filaments propelled by a membrane-embedded rotary motor. Much is known about the flagellum: its basic structure, the function of its individual motor components, and the regulation of its synthesis. However, we are only beginning to identify the dynamics of flagellar proteins and to understand how the motor structurally adapts to environmental stimuli. In this review, we discuss the external and cellular factors that influence the dynamics of stator complexes (the ion-conducting channels of the flagellar motor). We focus on recent discoveries suggesting that stator dynamics are a means for controlling flagellar function in response to different environments.
Collapse
|
33
|
Structure of the MotA/B Proton Channel. Methods Mol Biol 2017. [PMID: 28389950 DOI: 10.1007/978-1-4939-6927-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Flagellar motors utilize the motive force of protons and other ions as an energy source. To elucidate the mechanisms of ion permeation and torque generation, it is essential to investigate the structure of the motor stator complex; however, the atomic structure of the transmembrane region of the stator has not been determined experimentally. We recently constructed an atomic model structure of the transmembrane region of the Escherichia coli MotA/B stator complex based on previously published disulfide cross-linking and tryptophan scanning mutations. Dynamic permeation by hydronium ions, sodium ions, and water molecules was then observed using steered molecular dynamics simulations, and free energy profiles for ion/water permeation were calculated using umbrella sampling. We also examined the possible ratchet motion of the cytoplasmic domain induced by the protonation/deprotonation cycle of the MotB proton binding site, Asp32. In this chapter, we describe the methods used to conduct these analyses, including atomic structure modeling of the transmembrane region of the MotA/B complex; molecular dynamics simulations in equilibrium and in ion permeation processes; and ion permeation-free energy profile calculations.
Collapse
|
34
|
Gu Q, Su P, Xia Y, Yang Z, Trindle CO, Knee JL. Quantitative probing of subtle interactions among H-bonds in alpha hydroxy carboxylic acid complexes. Phys Chem Chem Phys 2017; 19:24399-24411. [DOI: 10.1039/c7cp03917d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The alpha OH stretching frequency may be affected upon complexing with water and formic acid.
Collapse
Affiliation(s)
- Quanli Gu
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
- Chemistry Department
| | - Peifeng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Yong Xia
- State Key Laboratory of Precision Spectroscopy
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
- China
| | - Zhijun Yang
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Carl O. Trindle
- Chemistry Department
- University of Virginia
- Charlottesville
- USA
| | | |
Collapse
|
35
|
The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium. Sci Rep 2016; 6:31526. [PMID: 27531865 PMCID: PMC4987623 DOI: 10.1038/srep31526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/20/2016] [Indexed: 11/09/2022] Open
Abstract
Rotation of bacterial flagellar motor is driven by the interaction between the stator and rotor, and the driving energy is supplied by ion influx through the stator channel. The stator is composed of the MotA and MotB proteins, which form a hetero-hexameric complex with a stoichiometry of four MotA and two MotB molecules. MotA and MotB are four- and single-transmembrane proteins, respectively. To generate torque, the MotA/MotB stator unit changes its conformation in response to the ion influx, and interacts with the rotor protein FliG. Here, we overproduced and purified MotA of the hyperthermophilic bacterium Aquifex aeolicus. A chemical crosslinking experiment revealed that MotA formed a multimeric complex, most likely a tetramer. The three-dimensional structure of the purified MotA, reconstructed by electron microscopy single particle imaging, consisted of a slightly elongated globular domain and a pair of arch-like domains with spiky projections, likely to correspond to the transmembrane and cytoplasmic domains, respectively. We show that MotA molecules can form a stable tetrameric complex without MotB, and for the first time, demonstrate the cytoplasmic structure of the stator.
Collapse
|
36
|
Gupta A, Bansal M. The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study. Phys Chem Chem Phys 2016; 18:28767-28780. [DOI: 10.1039/c6cp04617g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work highlights a sequence dependent unfolding pathway of an RNA pseudoknot under force-induced pulling conditions.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Manju Bansal
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|