1
|
Hoolehan W, Harris JC, Rodgers KK. Molecular Mechanisms of DNA Sequence Selectivity in V(D)J Recombination. ACS OMEGA 2023; 8:34206-34214. [PMID: 37779976 PMCID: PMC10536018 DOI: 10.1021/acsomega.3c05601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Antigen receptor (AgR) diversity is central to the ability of adaptive immunity in jawed vertebrates to protect against pathogenic agents. The production of highly diverse AgR repertoires is initiated during B and T cell lymphopoiesis by V(D)J recombination, which assembles the receptor genes from component gene segments in a cut-and-paste recombination reaction. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank AgR gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence, and the molecular mechanism for semiselective V(D)J recombination specificity is unknown. The modulation of chromatin structure during V(D)J recombination is essential in the formation of diverse AgRs in adaptive immunity while also reducing the likelihood for off-target recombination events that can result in chromosomal aberrations and genomic instability. Here we review what is presently known regarding mechanisms that facilitate assembly of RAG1/2 with RSSs, the ensuing conformational changes required for DNA cleavage activity, and how the readout of the RSS sequence affects reaction efficiency.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department
of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Justin C. Harris
- Department
of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Karla K. Rodgers
- Department
of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
2
|
Wu GS, Yang-Iott KS, Klink MA, Hayer KE, Lee KD, Bassing CH. Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion. J Exp Med 2021; 217:151853. [PMID: 32526772 PMCID: PMC7478721 DOI: 10.1084/jem.20200412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
The monoallelic expression of antigen receptor (AgR) genes, called allelic exclusion, is fundamental for highly specific immune responses to pathogens. This cardinal feature of adaptive immunity is achieved by the assembly of a functional AgR gene on one allele, with subsequent feedback inhibition of V(D)J recombination on the other allele. A range of epigenetic mechanisms have been implicated in sequential recombination of AgR alleles; however, we now demonstrate that a genetic mechanism controls this process for Tcrb. Replacement of V(D)J recombinase targets at two different mouse Vβ gene segments with a higher quality target elevates Vβ rearrangement frequency before feedback inhibition, dramatically increasing the frequency of T cells with TCRβ chains derived from both Tcrb alleles. Thus, TCRβ allelic exclusion is enforced genetically by the low quality of Vβ recombinase targets that stochastically restrict the production of two functional rearrangements before feedback inhibition silences one allele.
Collapse
Affiliation(s)
- Glendon S Wu
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine S Yang-Iott
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Morgann A Klink
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katharina E Hayer
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyutae D Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Ireland WT, Beeler SM, Flores-Bautista E, McCarty NS, Röschinger T, Belliveau NM, Sweredoski MJ, Moradian A, Kinney JB, Phillips R. Deciphering the regulatory genome of Escherichia coli, one hundred promoters at a time. eLife 2020; 9:e55308. [PMID: 32955440 PMCID: PMC7567609 DOI: 10.7554/elife.55308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Advances in DNA sequencing have revolutionized our ability to read genomes. However, even in the most well-studied of organisms, the bacterium Escherichia coli, for ≈65% of promoters we remain ignorant of their regulation. Until we crack this regulatory Rosetta Stone, efforts to read and write genomes will remain haphazard. We introduce a new method, Reg-Seq, that links massively parallel reporter assays with mass spectrometry to produce a base pair resolution dissection of more than a E. coli promoters in 12 growth conditions. We demonstrate that the method recapitulates known regulatory information. Then, we examine regulatory architectures for more than 80 promoters which previously had no known regulatory information. In many cases, we also identify which transcription factors mediate their regulation. This method clears a path for highly multiplexed investigations of the regulatory genome of model organisms, with the potential of moving to an array of microbes of ecological and medical relevance.
Collapse
Affiliation(s)
- William T Ireland
- Department of Physics, California Institute of TechnologyPasadenaUnited States
| | - Suzannah M Beeler
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Emanuel Flores-Bautista
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Nicholas S McCarty
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Tom Röschinger
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Nathan M Belliveau
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of TechnologyPasadenaUnited States
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of TechnologyPasadenaUnited States
| | - Justin B Kinney
- Simons Center for Quantitative Biology, Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Rob Phillips
- Department of Physics, California Institute of TechnologyPasadenaUnited States
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
4
|
Hirokawa S, Chure G, Belliveau NM, Lovely GA, Anaya M, Schatz DG, Baltimore D, Phillips R. Sequence-dependent dynamics of synthetic and endogenous RSSs in V(D)J recombination. Nucleic Acids Res 2020; 48:6726-6739. [PMID: 32449932 PMCID: PMC7337519 DOI: 10.1093/nar/gkaa418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022] Open
Abstract
Developing lymphocytes of jawed vertebrates cleave and combine distinct gene segments to assemble antigen-receptor genes. This process called V(D)J recombination that involves the RAG recombinase binding and cutting recombination signal sequences (RSSs) composed of conserved heptamer and nonamer sequences flanking less well-conserved 12- or 23-bp spacers. Little quantitative information is known about the contributions of individual RSS positions over the course of the RAG-RSS interaction. We employ a single-molecule method known as tethered particle motion to track the formation, lifetime and cleavage of individual RAG-12RSS-23RSS paired complexes (PCs) for numerous synthetic and endogenous 12RSSs. We reveal that single-bp changes, including in the 12RSS spacer, can significantly and selectively alter PC formation or the probability of RAG-mediated cleavage in the PC. We find that some rarely used endogenous gene segments can be mapped directly to poor RAG binding on their adjacent 12RSSs. Finally, we find that while abrogating RSS nicking with Ca2+ leads to substantially shorter PC lifetimes, analysis of the complete lifetime distributions of any 12RSS even on this reduced system reveals that the process of exiting the PC involves unidentified molecular details whose involvement in RAG-RSS dynamics are crucial to quantitatively capture kinetics in V(D)J recombination.
Collapse
Affiliation(s)
- Soichi Hirokawa
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Griffin Chure
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathan M Belliveau
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Geoffrey A Lovely
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael Anaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Mukherjee A, Vasquez KM. Targeting Chromosomal Architectural HMGB Proteins Could Be the Next Frontier in Cancer Therapy. Cancer Res 2020; 80:2075-2082. [PMID: 32152151 DOI: 10.1158/0008-5472.can-19-3066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Chromatin-associated architectural proteins are part of a fundamental support system for cellular DNA-dependent processes and can maintain/modulate the efficiency of DNA replication, transcription, and DNA repair. Interestingly, prognostic outcomes of many cancer types have been linked with the expression levels of several of these architectural proteins. The high mobility group box (HMGB) architectural protein family has been well studied in this regard. The differential expression levels of HMGB proteins and/or mRNAs and their implications in cancer etiology and prognosis present the potential of novel targets that can be explored to increase the efficacy of existing cancer therapies. HMGB1, the most studied member of the HMGB protein family, has pleiotropic roles in cells including an association with nucleotide excision repair, base excision repair, mismatch repair, and DNA double-strand break repair. Moreover, the HMGB proteins have been identified in regulating DNA damage responses and cell survival following treatment with DNA-damaging agents and, as such, may play roles in modulating the efficacy of chemotherapeutic drugs by modulating DNA repair pathways. Here, we discuss the functions of HMGB proteins in DNA damage processing and their potential roles in cancer etiology, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas.
| |
Collapse
|
6
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Mandke P, Vasquez KM. Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses. DNA Repair (Amst) 2019; 83:102701. [PMID: 31563843 DOI: 10.1016/j.dnarep.2019.102701] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023]
Abstract
High mobility group box protein 1 (HMGB1) is a highly versatile, abundant, and ubiquitously expressed, non-histone chromosomal protein, which belongs to the HMGB family of proteins. These proteins form an integral part of the architectural protein repertoire to support chromatin structure in the nucleus. In the nucleus, the role of HMGB1 is attributed to its ability to bind to undamaged DNA, damaged DNA, and alternative (i.e. non-B) DNA structures with high affinity and subsequently induce bending of the DNA substrates. Due to its binding to DNA, HMGB1 has been implicated in critical biological processes, such as DNA transcription, replication, repair, and recombination. In addition to its intracellular functions, HMGB1 can also be released in the extracellular space where it elicits immunological responses. HMGB1 associates with many different molecules, including DNA, RNA, proteins, and lipopolysaccharides to modulate a variety of processes in both DNA metabolism and in innate immunity. In this review, we will focus on the implications of the interactions of HMGB1 with nucleic acids in DNA repair and immune responses. We report on the roles of HMGB1 in nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR) and DNA double-strand break repair (DSBR). We also report on its roles in immune responses via its potential effects on antigen receptor diversity generation [V(D)J recombination] and interactions with foreign and self-nucleic acids. HMGB1 expression is altered in a variety of cancers and immunological disorders. However, due to the diversity and complexity of the biological processes influenced by HMGB1 (and its family members), a detailed understanding of the intracellular and extracellular roles of HMGB1 in DNA damage repair and immune responses is warranted to ensure the development of effective HMGB1-related therapies.
Collapse
Affiliation(s)
- Pooja Mandke
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA.
| |
Collapse
|
8
|
Cut-and-Run: A Distinct Mechanism by which V(D)J Recombination Causes Genome Instability. Mol Cell 2019; 74:584-597.e9. [PMID: 30905508 PMCID: PMC6509286 DOI: 10.1016/j.molcel.2019.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/20/2018] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
V(D)J recombination is essential to generate antigen receptor diversity but is also a potent cause of genome instability. Many chromosome alterations that result from aberrant V(D)J recombination involve breaks at single recombination signal sequences (RSSs). A long-standing question, however, is how such breaks occur. Here, we show that the genomic DNA that is excised during recombination, the excised signal circle (ESC), forms a complex with the recombinase proteins to efficiently catalyze breaks at single RSSs both in vitro and in vivo. Following cutting, the RSS is released while the ESC-recombinase complex remains intact to potentially trigger breaks at further RSSs. Consistent with this, chromosome breaks at RSSs increase markedly in the presence of the ESC. Notably, these breaks co-localize with those found in acute lymphoblastic leukemia patients and occur at key cancer driver genes. We have named this reaction “cut-and-run” and suggest that it could be a significant cause of lymphocyte genome instability. A complex between the recombination by-product and RAGs triggers multiple DNA breaks The breaks co-localize with chromosome breakpoints in acute lymphoblastic leukemias The breaks occur at many frequently mutated genes in acute lymphoblastic leukemia Cut-and-run may underpin the most common types of lymphocyte chromosome instabilities
Collapse
|
9
|
A novel RAG1 mutation reveals a critical in vivo role for HMGB1/2 during V(D)J recombination. Blood 2018; 133:820-829. [PMID: 30538136 DOI: 10.1182/blood-2018-07-866939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
The Recombination Activating Genes, RAG1 and RAG2, are essential for V(D)J recombination and adaptive immunity. Mutations in these genes often cause immunodeficiency, the severity of which reflects the importance of the altered residue or residues during recombination. Here, we describe a novel RAG1 mutation that causes immunodeficiency in an unexpected way: The mutated protein severely disrupts binding of the accessory protein, HMGB1. Although HMGB1 enhances RAG cutting in vitro, its role in vivo was controversial. We show here that reduced HMGB1 binding by the mutant protein dramatically reduces RAG cutting in vitro and almost completely eliminates recombination in vivo. The RAG1 mutation, R401W, places a bulky tryptophan opposite the binding site for HMG Box A at both 12- and 23-spacer recombination signal sequences, disrupting stable binding of HMGB1. Replacement of R401W with leucine and then lysine progressively restores HMGB1 binding, correlating with increased RAG cutting and recombination in vivo. We show further that knockdown of HMGB1 significantly reduces recombination by wild-type RAG1, whereas its re-addition restores recombination with wild-type, but not the mutant, RAG1 protein. Together, these data provide compelling evidence that HMGB1 plays a critical role during V(D)J recombination in vivo.
Collapse
|
10
|
Chure G, Lee HJ, Rasmussen A, Phillips R. Connecting the Dots between Mechanosensitive Channel Abundance, Osmotic Shock, and Survival at Single-Cell Resolution. J Bacteriol 2018; 200:e00460-18. [PMID: 30201782 PMCID: PMC6222198 DOI: 10.1128/jb.00460-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022] Open
Abstract
Rapid changes in extracellular osmolarity are one of many insults microbial cells face on a daily basis. To protect against such shocks, Escherichia coli and other microbes express several types of transmembrane channels that open and close in response to changes in membrane tension. In E. coli, one of the most abundant channels is the mechanosensitive channel of large conductance (MscL). While this channel has been heavily characterized through structural methods, electrophysiology, and theoretical modeling, our understanding of its physiological role in preventing cell death by alleviating high membrane tension remains tenuous. In this work, we examine the contribution of MscL alone to cell survival after osmotic shock at single-cell resolution using quantitative fluorescence microscopy. We conducted these experiments in an E. coli strain which is lacking all mechanosensitive channel genes save for MscL, whose expression was tuned across 3 orders of magnitude through modifications of the Shine-Dalgarno sequence. While theoretical models suggest that only a few MscL channels would be needed to alleviate even large changes in osmotic pressure, we find that between 500 and 700 channels per cell are needed to convey upwards of 80% survival. This number agrees with the average MscL copy number measured in wild-type E. coli cells through proteomic studies and quantitative Western blotting. Furthermore, we observed zero survival events in cells with fewer than ∼100 channels per cell. This work opens new questions concerning the contribution of other mechanosensitive channels to survival, as well as regulation of their activity.IMPORTANCE Mechanosensitive (MS) channels are transmembrane protein complexes which open and close in response to changes in membrane tension as a result of osmotic shock. Despite extensive biophysical characterization, the contribution of these channels to cell survival remains largely unknown. In this work, we used quantitative video microscopy to measure the abundance of a single species of MS channel in single cells, followed by their survival after a large osmotic shock. We observed total death of the population with fewer than ∼100 channels per cell and determined that approximately 500 to 700 channels were needed for 80% survival. The number of channels we found to confer nearly full survival is consistent with the counts of the numbers of channels in wild-type cells in several earlier studies. These results prompt further studies to dissect the contribution of other channel species to survival.
Collapse
Affiliation(s)
- Griffin Chure
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of Technology, Pasadena, California, USA
| | - Akiko Rasmussen
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Rob Phillips
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Department of Physics, California Institute of Technology, Pasadena, California, USA
- Department of Applied Physics, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
11
|
Lin SG, Ba Z, Alt FW, Zhang Y. RAG Chromatin Scanning During V(D)J Recombination and Chromatin Loop Extrusion are Related Processes. Adv Immunol 2018; 139:93-135. [PMID: 30249335 DOI: 10.1016/bs.ai.2018.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An effective adaptive immune system depends on the ability of developing B and T cells to generate diverse immunoglobulin (Ig) and T cell receptor repertoires, respectively. Such diversity is achieved through a programmed somatic recombination process whereby germline V, D, and J segments of antigen receptor loci are assembled to form the variable region V(D)J exons of Ig and TCRs. Studies of this process, termed V(D)J recombination, have provided key insights into our understanding of a variety of general gene regulatory and DNA repair processes over the last several decades. V(D)J recombination is initiated by the RAG endonuclease which generates DNA double-stranded breaks at the borders of V, D, and J segments. In this review, we cover recent work that has elucidated RAG structure and work that revealed that RAG has a novel chromatin scanning activity, likely mediated by chromatin loop extrusion, that contributes to its ability to locate V, D, J gene segment substrates within large chromosomal loop domains bounded by CTCF-binding elements (CBEs). This latter function, coupled with the role CBE-based chromatin loop domains and subdomains within them play in focusing V(D)J recombination activity within antigen receptor loci, provide mechanistic explanations for long-standing questions regarding V(D)J segment usage diversification and in limiting potentially deleterious off-target RAG-initiated recombination events genome-wide. This review will focus mainly on studies of the mouse Ig heavy chain locus, but the principles described also apply to other Ig loci and to TCR loci in mice and humans.
Collapse
Affiliation(s)
- Sherry G Lin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States.
| | - Yu Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Das D, Dey S, Brewster RC, Choubey S. Effect of transcription factor resource sharing on gene expression noise. PLoS Comput Biol 2017; 13:e1005491. [PMID: 28414750 PMCID: PMC5411101 DOI: 10.1371/journal.pcbi.1005491] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/01/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022] Open
Abstract
Gene expression is intrinsically a stochastic (noisy) process with important implications for cellular functions. Deciphering the underlying mechanisms of gene expression noise remains one of the key challenges of regulatory biology. Theoretical models of transcription often incorporate the kinetics of how transcription factors (TFs) interact with a single promoter to impact gene expression noise. However, inside single cells multiple identical gene copies as well as additional binding sites can compete for a limiting pool of TFs. Here we develop a simple kinetic model of transcription, which explicitly incorporates this interplay between TF copy number and its binding sites. We show that TF sharing enhances noise in mRNA distribution across an isogenic population of cells. Moreover, when a single gene copy shares it’s TFs with multiple competitor sites, the mRNA variance as a function of the mean remains unaltered by their presence. Hence, all the data for variance as a function of mean expression collapse onto a single master curve independent of the strength and number of competitor sites. However, this result does not hold true when the competition stems from multiple copies of the same gene. Therefore, although previous studies showed that the mean expression follows a universal master curve, our findings suggest that different scenarios of competition bear distinct signatures at the level of variance. Intriguingly, the introduction of competitor sites can transform a unimodal mRNA distribution into a multimodal distribution. These results demonstrate the impact of limited availability of TF resource on the regulation of noise in gene expression. Genetically identical cells, even when they are exposed to the same environmental conditions, display incredible diversity. Gene expression noise is attributed to be a key source of this phenotypic diversity. Transcriptional dynamics is a dominant source of expression noise. Although scores of theoretical and experimental studies have explored how noise is regulated at the level of transcription, most of them focus on the gene specific, cis regulatory elements, such as the number of transcription factor (TF) binding sites, their binding strength, etc. However, how the global properties of transcription, such as the limited availability of TFs impact noise in gene expression remains rather elusive. Here we build a theoretical model that incorporates the effect of limiting TF pool on gene expression noise. We find that competition between genes for TFs leads to enhanced variability in mRNA copy number across an isogenic population. Moreover, for gene copies sharing TFs with other competitor sites, mRNA variance as a function of the mean shows distinct imprints for one gene copy and multiple gene copies respectively. This stands in sharp contrast to the universal behavior found in mean expression irrespective of the different scenarios of competition. An interesting feature of competition is that introduction of competitor sites can transform a unimodal mRNA distribution into a multimodal distribution, which could lead to phenotypic variability.
Collapse
Affiliation(s)
- Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Supravat Dey
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France
| | - Robert C. Brewster
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (RCB); (SC)
| | - Sandeep Choubey
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (RCB); (SC)
| |
Collapse
|
13
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Single-molecule studies of high-mobility group B architectural DNA bending proteins. Biophys Rev 2016; 9:17-40. [PMID: 28303166 PMCID: PMC5331113 DOI: 10.1007/s12551-016-0236-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022] Open
Abstract
Protein–DNA interactions can be characterized and quantified using single molecule methods such as optical tweezers, magnetic tweezers, atomic force microscopy, and fluorescence imaging. In this review, we discuss studies that characterize the binding of high-mobility group B (HMGB) architectural proteins to single DNA molecules. We show how these studies are able to extract quantitative information regarding equilibrium binding as well as non-equilibrium binding kinetics. HMGB proteins play critical but poorly understood roles in cellular function. These roles vary from the maintenance of chromatin structure and facilitation of ribosomal RNA transcription (yeast high-mobility group 1 protein) to regulatory and packaging roles (human mitochondrial transcription factor A). We describe how these HMGB proteins bind, bend, bridge, loop and compact DNA to perform these functions. We also describe how single molecule experiments observe multiple rates for dissociation of HMGB proteins from DNA, while only one rate is observed in bulk experiments. The measured single-molecule kinetics reveals a local, microscopic mechanism by which HMGB proteins alter DNA flexibility, along with a second, much slower macroscopic rate that describes the complete dissociation of the protein from DNA.
Collapse
|
15
|
Abstract
Single-molecule FRET (smFRET) and single-molecule colocalization (smCL) assays have allowed us to observe the recombination-activating gene (RAG) complex reaction mechanism in real time. Our smFRET data have revealed distinct bending modes at recombination signal sequence (RSS)-conserved regions before nicking and synapsis. We show that high mobility group box 1 (HMGB1) acts as a cofactor in stabilizing conformational changes at the 12RSS heptamer and increasing RAG1/2 binding affinity for 23RSS. Using smCL analysis, we have quantitatively measured RAG1/2 dwell time on 12RSS, 23RSS, and non-RSS DNA, confirming a strict RSS molecular specificity that was enhanced in the presence of a partner RSS in solution. Our studies also provide single-molecule determination of rate constants that were previously only possible by indirect methods, allowing us to conclude that RAG binding, bending, and synapsis precede catalysis. Our real-time analysis offers insight into the requirements for RSS-RSS pairing, architecture of the synaptic complex, and dynamics of the paired RSS substrates. We show that the synaptic complex is extremely stable and that heptamer regions of the 12RSS and 23RSS substrates in the synaptic complex are closely associated in a stable conformational state, whereas nonamer regions are perpendicular. Our data provide an enhanced and comprehensive mechanistic description of the structural dynamics and associated enzyme kinetics of variable, diversity, and joining [V(D)J] recombination.
Collapse
|
16
|
Abstract
The modular, noncontiguous architecture of the antigen receptor genes necessitates their assembly through V(D)J recombination. This program of DNA breakage and rejoining occurs during early lymphocyte development, and depends on the RAG1 and RAG2 proteins, whose collaborative endonuclease activity targets specific DNA motifs enriched in the antigen receptor loci. This essential gene shuffling reaction requires lymphocytes to traverse several developmental stages wherein DNA breakage is tolerated, while minimizing the expense to overall genome integrity. Thus, RAG activity is subject to stringent temporal and spatial regulation. The RAG proteins themselves also contribute autoregulatory properties that coordinate their DNA cleavage activity with target chromatin structure, cell cycle status, and DNA repair pathways. Even so, lapses in regulatory restriction of RAG activity are apparent in the aberrant V(D)J recombination events that underlie many lymphomas. In this review, we discuss the current understanding of the RAG endonuclease, its widespread binding in the lymphocyte genome, its noncleavage activities that restrain its enzymatic potential, and the growing evidence of its evolution from an ancient transposase.
Collapse
|