1
|
Smith MR, Long EJ, Dhungana A, Dobson KJ, Yang J, Zhang X. Organ systems of a Cambrian euarthropod larva. Nature 2024; 633:120-126. [PMID: 39085610 PMCID: PMC11374701 DOI: 10.1038/s41586-024-07756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The Cambrian radiation of euarthropods can be attributed to an adaptable body plan. Sophisticated brains and specialized feeding appendages, which are elaborations of serially repeated organ systems and jointed appendages, underpin the dominance of Euarthropoda in a broad suite of ecological settings. The origin of the euarthropod body plan from a grade of vermiform taxa with hydrostatic lobopodous appendages ('lobopodian worms')1,2 is founded on data from Burgess Shale-type fossils. However, the compaction associated with such preservation obscures internal anatomy3-6. Phosphatized microfossils provide a complementary three-dimensional perspective on early crown group euarthropods7, but few lobopodians8,9. Here we describe the internal and external anatomy of a three-dimensionally preserved euarthropod larva with lobopods, midgut glands and a sophisticated head. The architecture of the nervous system informs the early configuration of the euarthropod brain and its associated appendages and sensory organs, clarifying homologies across Panarthropoda. The deep evolutionary position of Youti yuanshi gen. et sp. nov. informs the sequence of character acquisition during arthropod evolution, demonstrating a deep origin of sophisticated haemolymph circulatory systems, and illuminating the internal anatomical changes that propelled the rise and diversification of this enduringly successful group.
Collapse
Affiliation(s)
- Martin R Smith
- Department of Earth Sciences, Durham University, Durham, UK.
| | - Emma J Long
- Department of Earth Sciences, Durham University, Durham, UK
- Science Group, Natural History Museum, London, UK
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | | | - Katherine J Dobson
- Department of Earth Sciences, Durham University, Durham, UK
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, UK
| | - Jie Yang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| | - Xiguang Zhang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| |
Collapse
|
2
|
Liu C, Fu D, Wu Y, Zhang X. Cambrian euarthropod Urokodia aequalis sheds light on the origin of Artiopoda body plan. iScience 2024; 27:110443. [PMID: 39148713 PMCID: PMC11325232 DOI: 10.1016/j.isci.2024.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
The origin and evolution of trilobated body plan of the Artiopoda, a group of epibenthic euarthropods from Cambrian Lagerstätten, remain unclear. Here we examine old and new specimens of Urokodia aequalis, one of euarthropods from the Chengjiang biota, revealing new morphological details and revising its taxonomy. Urokodia possesses an elongate body with a five-segmented head, a thorax with 13-15 tergites, and a three-segmented pygidium with well-defined axial region. The ventral morphology includes paired stalked eyes, one fleshy antenna pair, the following homogeneous head and thoracic appendages, each with an annular proximal-element, an articulated stenopodous branch and a lamellar flap, and the pygidial appendages solely consisting of lamellar flaps. Cladistic analyses resolved Urokodia as the basal-most member of the Artiopoda, offering a hypothesis of the initial origin of trilobation in the pygidium. The new data, in conjunction with the presence of the elongated body plan across major lineages of euarthropods, suggest a convergent evolution of this trait.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of the Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China
| | - Dongjing Fu
- State Key Laboratory of the Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China
| | - Yu Wu
- State Key Laboratory of the Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China
| | - Xingliang Zhang
- State Key Laboratory of the Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China
- Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
3
|
Mapalo MA, Wolfe JM, Ortega-Hernández J. Cretaceous amber inclusions illuminate the evolutionary origin of tardigrades. Commun Biol 2024; 7:953. [PMID: 39107512 PMCID: PMC11303527 DOI: 10.1038/s42003-024-06643-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Tardigrades are a diverse phylum of microscopic invertebrates widely known for their extreme survival capabilities. Molecular clocks suggest that tardigrades diverged from other panarthropods before the Cambrian, but their fossil record is extremely sparse. Only the fossil tardigrades Milnesium swolenskyi (Late Cretaceous) and Paradoryphoribius chronocaribbeus (Miocene) have resolved taxonomic positions, restricting the availability of calibration points for estimating for the origin of this phylum. Here, we revise two crown-group tardigrades from Canadian Cretaceous-aged amber using confocal fluorescence microscopy, revealing critical morphological characters that resolve their taxonomic positions. Formal morphological redescription of Beorn leggi reveals that it features Hypsibius-type claws. We also describe Aerobius dactylus gen. et sp. nov. based on its unique combination of claw characters. Phylogenetic analyses indicate that Beo. leggi and Aer. dactylus belong to the eutardigrade superfamily Hypsibioidea, adding a critical fossil calibration point to investigate tardigrade origins. Our molecular clock estimates suggest an early Paleozoic diversification of crown-group Tardigrada and highlight the importance of Beo. leggi as a calibration point that directly impacts estimates of shallow nodes. Our results suggest that independent terrestrialization of eutardigrades and heterotardigrades occurred around the end-Carboniferous and Lower Jurassic, respectively. These estimates also provide minimum ages for convergent acquisition of cryptobiosis.
Collapse
Affiliation(s)
- Marc A Mapalo
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Jin C, Chen H, Mai H, Hou X, Yang X, Zhai D. Discovery of diverse Pectocaris species at the Cambrian series 2 Hongjingshao formation Xiazhuang section (Kunming, SW China) and its ecological, taphonomic, and biostratigraphic implications. PeerJ 2024; 12:e17230. [PMID: 38638159 PMCID: PMC11025544 DOI: 10.7717/peerj.17230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Pectocaris species are intermediate- to large-sized Cambrian bivalved arthropods. Previous studies have documented Pectocaris exclusively from the Cambrian Series 2 Stage 3 Chengjiang biota in Yu'anshan Formation, Chiungchussu Stage in SW China. In this study, we report Pectocaris paraspatiosa sp. nov., and three other previously known Pectocaris from the Xiazhuang section in Kunming, which belongs to the Hongjingshao Formation and is a later phase within Cambrian Stage 3 than the Yu'anshan Formation. The new species can be distinguished from its congeners by the sparsely arranged endopodal endites and the morphologies of the abdomen, telson, and telson processes. We interpret P. paraspatiosa sp. nov. as a filter-feeder and a powerful swimmer adapted to shallow, agitated environments. Comparison among the Pectocaris species reinforces previous views that niche differentiation had been established among the congeneric species based on morphological differentiation. Our study shows the comprehensive occurrences of Pectocaris species outside the Chengjiang biota for the first time. With a review of the shared fossil taxa of Chengjiang and Xiaoshiba biotas, we identify a strong biological connection between the Yu'anshan and Hongjingshao Formations.
Collapse
Affiliation(s)
- Changfei Jin
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Hong Chen
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Xianfeng Yang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Kihm JH, Smith FW, Kim S, Rho HS, Zhang X, Liu J, Park TYS. Cambrian lobopodians shed light on the origin of the tardigrade body plan. Proc Natl Acad Sci U S A 2023; 120:e2211251120. [PMID: 37399417 PMCID: PMC10334802 DOI: 10.1073/pnas.2211251120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/22/2023] [Indexed: 07/05/2023] Open
Abstract
Phylum Tardigrada (water bears), well known for their cryptobiosis, includes small invertebrates with four paired limbs and is divided into two classes: Eutardigrada and Heterotardigrada. The evolutionary origin of Tardigrada is known to lie within the lobopodians, which are extinct soft-bodied worms with lobopodous limbs mostly discovered at sites of exceptionally well-preserved fossils. Contrary to their closest relatives, onychophorans and euarthropods, the origin of morphological characters of tardigrades remains unclear, and detailed comparison with the lobopodians has not been well explored. Here, we present detailed morphological comparison between tardigrades and Cambrian lobopodians, with a phylogenetic analysis encompassing most of the lobopodians and three panarthropod phyla. The results indicate that the ancestral tardigrades likely had a Cambrian lobopodian-like morphology and shared most recent ancestry with the luolishaniids. Internal relationships within Tardigrada indicate that the ancestral tardigrade had a vermiform body shape without segmental plates, but possessed cuticular structures surrounding the mouth opening, and lobopodous legs terminating with claws, but without digits. This finding is in contrast to the long-standing stygarctid-like ancestor hypothesis. The highly compact and miniaturized body plan of tardigrades evolved after the tardigrade lineage diverged from an ancient shared ancestor with the luolishaniids.
Collapse
Affiliation(s)
- Ji-Hoon Kihm
- Division of Earth Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon21990, Korea
| | - Frank W. Smith
- Department of Biology, University of North Florida, Jacksonville, FL32224
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon21990, Korea
| | - Hyun Soo Rho
- East Sea Environment Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology, Uljin, Gyeongsangbuk-do36315, Korea
| | - Xingliang Zhang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an710069, China
| | - Jianni Liu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an710069, China
| | - Tae-Yoon S. Park
- Division of Earth Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon21990, Korea
- Polar Science, University of Science and Technology, Yuseong-gu, Daejeon34113, Korea
| |
Collapse
|
6
|
Jahn H, Hammel JU, Göpel T, Wirkner CS, Mayer G. A multiscale approach reveals elaborate circulatory system and intermittent heartbeat in velvet worms (Onychophora). Commun Biol 2023; 6:468. [PMID: 37117786 PMCID: PMC10147947 DOI: 10.1038/s42003-023-04797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/03/2023] [Indexed: 04/30/2023] Open
Abstract
An antagonistic hemolymph-muscular system is essential for soft-bodied invertebrates. Many ecdysozoans (molting animals) possess neither a heart nor a vascular or circulatory system, whereas most arthropods exhibit a well-developed circulatory system. How did this system evolve and how was it subsequently modified in panarthropod lineages? As the closest relatives of arthropods and tardigrades, onychophorans (velvet worms) represent a key group for addressing this question. We therefore analyzed the entire circulatory system of the peripatopsid Euperipatoides rowelli and discovered a surprisingly elaborate organization. Our findings suggest that the last common ancestor of Onychophora and Arthropoda most likely possessed an open vascular system, a posteriorly closed heart with segmental ostia, a pericardial sinus filled with nephrocytes and an impermeable pericardial septum, whereas the evolutionary origin of plical and pericardial channels is unclear. Our study further revealed an intermittent heartbeat-regular breaks of rhythmic, peristaltic contractions of the heart-in velvet worms, which might stimulate similar investigations in arthropods.
Collapse
Affiliation(s)
- Henry Jahn
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany.
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon at DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Torben Göpel
- Multiscale Biology, Johann-Friedrich-Blumenbach Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA
| | - Christian S Wirkner
- Institut für Allgemeine und Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Universitätsplatz 2, D-18055, Rostock, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| |
Collapse
|
7
|
Li Y, Brinkworth A, Green E, Oyston J, Wills M, Ruta M. Divergent vertebral formulae shape the evolution of axial complexity in mammals. Nat Ecol Evol 2023; 7:367-381. [PMID: 36878987 PMCID: PMC9998275 DOI: 10.1038/s41559-023-01982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/03/2023] [Indexed: 03/08/2023]
Abstract
Complexity, defined as the number of parts and their degree of differentiation, is a poorly explored aspect of macroevolutionary dynamics. The maximum anatomical complexity of organisms has undoubtedly increased through evolutionary time. However, it is unclear whether this increase is a purely diffusive process or whether it is at least partly driven, occurring in parallel in most or many lineages and with increases in the minima as well as the means. Highly differentiated and serially repeated structures, such as vertebrae, are useful systems with which to investigate these patterns. We focus on the serial differentiation of the vertebral column in 1,136 extant mammal species, using two indices that quantify complexity as the numerical richness and proportional distribution of vertebrae across presacral regions and a third expressing the ratio between thoracic and lumbar vertebrae. We address three questions. First, we ask whether the distribution of complexity values in major mammal groups is similar or whether clades have specific signatures associated with their ecology. Second, we ask whether changes in complexity throughout the phylogeny are biased towards increases and whether there is evidence of driven trends. Third, we ask whether evolutionary shifts in complexity depart from a uniform Brownian motion model. Vertebral counts, but not complexity indices, differ significantly between major groups and exhibit greater within-group variation than recognized hitherto. We find strong evidence of a trend towards increasing complexity, where higher values propagate further increases in descendant lineages. Several increases are inferred to have coincided with major ecological or environmental shifts. We find support for multiple-rate models of evolution for all complexity metrics, suggesting that increases in complexity occurred in stepwise shifts, with evidence for widespread episodes of recent rapid divergence. Different subclades evolve more complex vertebral columns in different configurations and probably under different selective pressures and constraints, with widespread convergence on the same formulae. Further work should therefore focus on the ecological relevance of differences in complexity and a more detailed understanding of historical patterns.
Collapse
Affiliation(s)
- Yimeng Li
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.,Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Andrew Brinkworth
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Emily Green
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Lincoln, UK
| | - Jack Oyston
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Matthew Wills
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | - Marcello Ruta
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Lincoln, UK.
| |
Collapse
|
8
|
Abstract
Panarthropoda, the clade comprising the phyla Onychophora, Tardigrada and Euarthropoda, encompasses the largest majority of animal biodiversity. The relationships among the phyla are contested and resolution is key to understanding the evolutionary assembly of panarthropod bodyplans. Molecular phylogenetic analyses generally support monophyly of Onychophora and Euarthropoda to the exclusion of Tardigrada (Lobopodia hypothesis), which is also supported by some analyses of morphological data. However, analyses of morphological data have also been interpreted to support monophyly of Tardigrada and Euarthropoda to the exclusion of Onychophora (Tactopoda hypothesis). Support has also been found for a clade of Onychophora and Tardigrada that excludes Euarthropoda (Protarthropoda hypothesis). Here we show, using a diversity of phylogenetic inference methods, that morphological datasets cannot discriminate statistically between the Lobopodia, Tactopoda and Protarthropoda hypotheses. Since the relationships among the living clades of panarthropod phyla cannot be discriminated based on morphological data, we call into question the accuracy of morphology-based phylogenies of Panarthropoda that include fossil species and the evolutionary hypotheses based upon them.
Collapse
Affiliation(s)
- Ruolin Wu
- Bristol Palaeobiology Group, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK,School of Earth Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK,School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK,School of Earth Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
9
|
Naimark EB. Geochemical and Evolutionary Prerequisites for the Cambrian Skeletal Revolution. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Aria C. The origin and early evolution of arthropods. Biol Rev Camb Philos Soc 2022; 97:1786-1809. [PMID: 35475316 DOI: 10.1111/brv.12864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
The rise of arthropods is a decisive event in the history of life. Likely the first animals to have established themselves on land and in the air, arthropods have pervaded nearly all ecosystems and have become pillars of the planet's ecological networks. Forerunners of this saga, exceptionally well-preserved Palaeozoic fossils recently discovered or re-discovered using new approaches and techniques have elucidated the precocious appearance of extant lineages at the onset of the Cambrian explosion, and pointed to the critical role of the plankton and hard integuments in early arthropod diversification. The notion put forward at the beginning of the century that the acquisition of extant arthropod characters was stepwise and represented by the majority of Cambrian fossil taxa is being rewritten. Although some key traits leading to Euarthropoda are indeed well documented along a diversified phylogenetic stem, this stem led to several speciose and ecologically diverse radiations leaving descendants late into the Palaeozoic, and a large part, if not all of the Cambrian euarthropods can now be placed on either of the two extant lineages: Mandibulata and Chelicerata. These new observations and discoveries have altered our view on the nature and timing of the Cambrian explosion and clarified diagnostic characters at the origin of extant arthropods, but also raised new questions, especially with respect to cephalic plasticity. There is now strong evidence that early arthropods shared a homologous frontalmost appendage, coined here the cheira, which likely evolved into antennules and chelicerae, but other aspects, such as brain and labrum evolution, are still subject to active debate. The early evolution of panarthropods was generally driven by increased mastication and predation efficiency and sophistication, but a wealth of recent studies have also highlighted the prevalent role of suspension-feeding, for which early panarthropods developed their own adaptive feedback through both specialized appendages and the diversification of small, morphologically differentiated larvae. In a context of general integumental differentiation and hardening across Cambrian metazoans, arthrodization of body and limbs notably prompted two diverging strategies of basipod differentiation, which arguably became founding criteria in the divergence of total-groups Mandibulata and Chelicerata. The kinship of trilobites and their relatives remains a source of disagreement, but a recent topological solution, termed the 'deep split', could embed Artiopoda as sister taxa to chelicerates and constitute definitive support for Arachnomorpha. Although Cambrian fossils have been critical to all these findings, data of exceptional quality have also been accumulating from other Palaeozoic Konservat-Lagerstätten, and a better integration of this information promises a much more complete and elaborate picture of early arthropod evolution in the near future. From the broader perspective of a total-evidence approach to the understanding of life's history, and despite persisting systematic debates and new interpretative challenges, various advances based on palaeontological evidence open the prospect of finally using the full potential of the most diverse animal phylum to investigate macroevolutionary patterns and processes.
Collapse
Affiliation(s)
- Cédric Aria
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, P. R. China.,Shaanxi Key Laboratory of Early Life and Environments, Northwest University, Xi'an, 710069, P.R. China
| |
Collapse
|
11
|
Pates S, Wolfe JM, Lerosey-Aubril R, Daley AC, Ortega-Hernández J. New opabiniid diversifies the weirdest wonders of the euarthropod stem group. Proc Biol Sci 2022; 289:20212093. [PMID: 35135344 PMCID: PMC8826304 DOI: 10.1098/rspb.2021.2093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Once considered 'weird wonders' of the Cambrian, the emblematic Burgess Shale animals Anomalocaris and Opabinia are now recognized as lower stem-group euarthropods and have provided crucial data for constraining the polarity of key morphological characters in the group. Anomalocaris and its relatives (radiodonts) had worldwide distribution and survived until at least the Devonian. However, despite intense study, Opabinia remains the only formally described opabiniid to date. Here we reinterpret a fossil from the Wheeler Formation of Utah as a new opabiniid, Utaurora comosa nov. gen. et sp. By visualizing the sample of phylogenetic topologies in treespace, our results fortify support for the position of U. comosa beyond the nodal support traditionally applied. Our phylogenetic evidence expands opabiniids to multiple Cambrian stages. Our results underscore the power of treespace visualization for resolving imperfectly preserved fossils and expanding the known diversity and spatio-temporal ranges within the euarthropod lower stem group.
Collapse
Affiliation(s)
- Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Allison C Daley
- Institute of Earth Sciences, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Baker CM, Buckman-Young RS, Costa CS, Giribet G. Phylogenomic Analysis of Velvet Worms (Onychophora) Uncovers an Evolutionary Radiation in the Neotropics. Mol Biol Evol 2021; 38:5391-5404. [PMID: 34427671 PMCID: PMC8662635 DOI: 10.1093/molbev/msab251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Onychophora ("velvet worms") are charismatic soil invertebrates known for their status as a "living fossil," their phylogenetic affiliation to arthropods, and their distinctive biogeographic patterns. However, several aspects of their internal phylogenetic relationships remain unresolved, limiting our understanding of the group's evolutionary history, particularly with regard to changes in reproductive mode and dispersal ability. To address these gaps, we used RNA sequencing and phylogenomic analysis of transcriptomes to reconstruct the evolutionary relationships and infer divergence times within the phylum. We recovered a fully resolved and well-supported phylogeny for the circum-Antarctic family Peripatopsidae, which retains signals of Gondwanan vicariance and showcases the evolutionary lability of reproductive mode in the family. Within the Neotropical clade of Peripatidae, though, we found that amino acid-translated sequence data masked nearly all phylogenetic signal, resulting in highly unstable and poorly supported relationships. Analyses using nucleotide sequence data were able to resolve many more relationships, though we still saw discordant phylogenetic signal between genes, probably indicative of a rapid, mid-Cretaceous radiation in the group. Finally, we hypothesize that the unique reproductive mode of placentotrophic viviparity found in all Neotropical peripatids may have facilitated the multiple inferred instances of over-water dispersal and establishment on oceanic islands.
Collapse
Affiliation(s)
- Caitlin M Baker
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Rebecca S Buckman-Young
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cristiano S Costa
- Laboratório de Sistemática e Taxonomia de Artrópodes Terrestres, Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
13
|
Abstract
In his famous (if uncharacteristic) burst of lyricism at the end of the Origin Darwin described biodiversity as "endless forms most beautiful and wonderful". It is easy to agree with him when one considers red-lipped batfish or pelagic holothurians. But are they endless, or are there limitations to the variety of forms - and if there are, where do they come from? Can morphological evolution be described by Brownian motion of a gas, slowly diffusing to fill up all the space of possible forms, or does it operate within a certain set of constraints? And if there are constraints, where do they come from? The concept of morphospace is an attempt to map out the products of evolution within a quantitative framework to try to shed light on these questions.
Collapse
|
14
|
Howard RJ, Edgecombe GD, Shi X, Hou X, Ma X. Ancestral morphology of Ecdysozoa constrained by an early Cambrian stem group ecdysozoan. BMC Evol Biol 2020; 20:156. [PMID: 33228518 PMCID: PMC7684930 DOI: 10.1186/s12862-020-01720-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ecdysozoa are the moulting protostomes, including arthropods, tardigrades, and nematodes. Both the molecular and fossil records indicate that Ecdysozoa is an ancient group originating in the terminal Proterozoic, and exceptional fossil biotas show their dominance and diversity at the beginning of the Phanerozoic. However, the nature of the ecdysozoan common ancestor has been difficult to ascertain due to the extreme morphological diversity of extant Ecdysozoa, and the lack of early diverging taxa in ancient fossil biotas. RESULTS Here we re-describe Acosmia maotiania from the early Cambrian Chengjiang Biota of Yunnan Province, China and assign it to stem group Ecdysozoa. Acosmia features a two-part body, with an anterior proboscis bearing a terminal mouth and muscular pharynx, and a posterior annulated trunk with a through gut. Morphological phylogenetic analyses of the protostomes using parsimony, maximum likelihood and Bayesian inference, with coding informed by published experimental decay studies, each placed Acosmia as sister taxon to Cycloneuralia + Panarthropoda-i.e. stem group Ecdysozoa. Ancestral state probabilities were calculated for key ecdysozoan nodes, in order to test characters inferred from fossils to be ancestral for Ecdysozoa. Results support an ancestor of crown group ecdysozoans sharing an annulated vermiform body with a terminal mouth like Acosmia, but also possessing the pharyngeal armature and circumoral structures characteristic of Cambrian cycloneuralians and lobopodians. CONCLUSIONS Acosmia is the first taxon placed in the ecdysozoan stem group and provides a constraint to test hypotheses on the early evolution of Ecdysozoa. Our study suggests acquisition of pharyngeal armature, and therefore a change in feeding strategy (e.g. predation), may have characterised the origin and radiation of crown group ecdysozoans from Acosmia-like ancestors.
Collapse
Affiliation(s)
- Richard J Howard
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, TR10 9TA, UK
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Gregory D Edgecombe
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Xiaomei Shi
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China
| | - Xianguang Hou
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China.
| | - Xiaoya Ma
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, TR10 9TA, UK.
| |
Collapse
|
15
|
Edgecombe GD. Arthropod Origins: Integrating Paleontological and Molecular Evidence. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phylogenomics underpins a stable and mostly well-resolved hypothesis for the interrelationships of extant arthropods. Exceptionally preserved fossils are integrated into this framework by coding their morphological characters, as exemplified by total-evidence dating approaches that treat fossils as dated tips in analyses numerically dominated by molecular data. Cambrian fossils inform on the sequence of character acquisition in the arthropod stem group and in the stems of its main extant clades. The arthropod head problem incorporates unique appendage combinations and remains of the nervous system in fossils into a scheme mostly based on neuroanatomy and Hox expression domains for extant forms. Molecular estimates of arthropod origins in the Cryogenian or Ediacaran predate a coherent picture from the arthropod fossil record, which commences as trace fossils in the earliest Cambrian. Probabilistic morphological clock analysis of trilobites, which exemplify the earliest arthropod body fossils, supports a Cambrian origin, without the need to posit an unfossilized Ediacaran history.
Collapse
Affiliation(s)
- Gregory D. Edgecombe
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| |
Collapse
|
16
|
Wang D, Vannier J, Yang XG, Sun J, Sun YF, Hao WJ, Tang QQ, Liu P, Han J. Cuticular reticulation replicates the pattern of epidermal cells in lowermost Cambrian scalidophoran worms. Proc Biol Sci 2020; 287:20200470. [PMID: 32370674 DOI: 10.1098/rspb.2020.0470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cuticle of ecdysozoans (Panarthropoda, Scalidophora, Nematoida) is secreted by underlying epidermal cells and renewed via ecdysis. We explore here the relationship between epidermis and external cuticular ornament in stem-group scalidophorans from the early Cambrian of China (Kuanchuanpu Formation; ca 535 Ma) that had two types of microscopic polygonal cuticular networks with either straight or microfolded boundaries. Detailed comparisons with modern scalidophorans (priapulids) indicate that these networks faithfully replicate the cell boundaries of the epidermis. This suggests that the cuticle of early scalidophorans formed through the fusion between patches of extracellular material secreted by epidermal cells, as observed in various groups of present-day ecdysozoans, including arthropods. Key genetic, biochemical and mechanical processes associated with ecdysis and cuticle formation seem to have appeared very early (at least not later than 535 Ma) in the evolution of ecdysozoans. Microfolded reticulation is likely to be a mechanical response to absorbing contraction exerted by underlying muscles. The polygonal reticulation in early and extant ecdysozoans is clearly a by-product of the epidermal cell pavement and interacted with the sedimentary environment.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China.,Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | - Jean Vannier
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | - Xiao-Guang Yang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Jie Sun
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Yi-Fei Sun
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Wen-Jing Hao
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Qing-Qin Tang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Ping Liu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Jian Han
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
17
|
Howard RJ, Hou X, Edgecombe GD, Salge T, Shi X, Ma X. A Tube-Dwelling Early Cambrian Lobopodian. Curr Biol 2020; 30:1529-1536.e2. [PMID: 32109391 DOI: 10.1016/j.cub.2020.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/09/2019] [Accepted: 01/24/2020] [Indexed: 01/27/2023]
Abstract
Facivermis yunnanicus [1, 2] is an enigmatic worm-like animal from the early Cambrian Chengjiang Biota of Yunnan Province, China. It is a small (<10 cm) bilaterian with five pairs of spiny anterior arms, an elongated body, and a swollen posterior end. The unusual morphology of Facivermis has prompted a history of diverse taxonomic interpretations, including among annelids [1, 3], lophophorates [4], and pentastomids [5]. However, in other studies, Facivermis is considered to be more similar to lobopodians [2, 6-8]-the fossil grade from which modern panarthropods (arthropods, onychophorans, and tardigrades) are derived. In these studies, Facivermis is thought to be intermediate between cycloneuralian worms and lobopodians. Facivermis has therefore been suggested to represent an early endobenthic-epibenthic panarthropod transition [6] and to provide crucial insights into the origin of paired appendages [2]. However, the systematic affinity of Facivermis was poorly supported in a previous phylogeny [6], partially due to incomplete understanding of its morphology. Therefore, the evolutionary significance of Facivermis remains unresolved. In this study, we re-examine Facivermis from new material and the holotype, leading to the discovery of several new morphological features, such as paired eyes on the head and a dwelling tube. Comprehensive phylogenetic analyses using parsimony, Bayesian inference, and maximum likelihood all support Facivermis as a luolishaniid in a derived position within the onychophoran stem group rather than as a basal panarthropod. In contrast to previous studies, we therefore conclude that Facivermis provides a rare early Cambrian example of secondary loss to accommodate a highly specialized tube-dwelling lifestyle.
Collapse
Affiliation(s)
- Richard J Howard
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9TA, UK; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Xianguang Hou
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Chenggong Campus, Kunming 650500, China.
| | - Gregory D Edgecombe
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Tobias Salge
- Imaging and Analysis Centre, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Xiaomei Shi
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Chenggong Campus, Kunming 650500, China
| | - Xiaoya Ma
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Chenggong Campus, Kunming 650500, China; Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9TA, UK.
| |
Collapse
|
18
|
Zhai D, Williams M, Siveter DJ, Harvey THP, Sansom RS, Gabbott SE, Siveter DJ, Ma X, Zhou R, Liu Y, Hou X. Variation in appendages in early Cambrian bradoriids reveals a wide range of body plans in stem-euarthropods. Commun Biol 2019; 2:329. [PMID: 31508504 PMCID: PMC6722085 DOI: 10.1038/s42003-019-0573-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/02/2019] [Indexed: 11/08/2022] Open
Abstract
Traditionally, the origin and evolution of modern arthropod body plans has been revealed through increasing levels of appendage specialisation exhibited by Cambrian euarthropods. Here we show significant variation in limb morphologies and patterns of limb-tagmosis among three early Cambrian arthropod species conventionally assigned to the Bradoriida. These arthropods are recovered as a monophyletic stem-euarthropod group (and sister taxon to crown-group euarthropods, i.e. Chelicerata, Mandibulata and their extinct relatives), thus implying a radiation of stem-euarthropods where trends towards increasing appendage specialisation were explored convergently with other euarthropod groups. The alternative solution, where bradoriids are polyphyletic, representing several independent origins of a small, bivalved body plan in lineages from diverse regions of the euarthropod and mandibulate stems, is only marginally less parsimonious. The new data reveal a previously unknown disparity of body plans in stem-euarthropods and both solutions support remarkable evolutionary convergence, either of fundamental body plans or appendage specialization patterns.
Collapse
Affiliation(s)
- Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, 650091 Kunming, Yunnan China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650091 Kunming, Yunnan China
| | - Mark Williams
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650091 Kunming, Yunnan China
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH UK
| | - David J. Siveter
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650091 Kunming, Yunnan China
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH UK
| | - Thomas H. P. Harvey
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650091 Kunming, Yunnan China
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH UK
| | - Robert S. Sansom
- School of Earth and Environmental Sciences, University of Manchester, Oxford Road, Oxford, M13 9PT UK
| | - Sarah E. Gabbott
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650091 Kunming, Yunnan China
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH UK
| | - Derek J. Siveter
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650091 Kunming, Yunnan China
- Earth Collections, Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW UK
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3PR UK
| | - Xiaoya Ma
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, 650091 Kunming, Yunnan China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650091 Kunming, Yunnan China
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE UK
| | - Runqing Zhou
- Institute of Geology and Geophysics, Chinese academy of Sciences, 19 Beituchengxi Road, 100029 Beijing, China
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, 650091 Kunming, Yunnan China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650091 Kunming, Yunnan China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, 650091 Kunming, Yunnan China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, 650091 Kunming, Yunnan China
| |
Collapse
|
19
|
Du KS, Ortega-Hernández J, Yang J, Zhang XG. A soft-bodied euarthropod from the early Cambrian Xiaoshiba Lagerstätte of China supports a new clade of basal artiopodans with dorsal ecdysial sutures. Cladistics 2019; 35:269-281. [PMID: 34622993 DOI: 10.1111/cla.12344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2018] [Indexed: 11/28/2022] Open
Abstract
We describe the exceptionally well-preserved non-trilobite artiopodan Zhiwenia coronata gen. et sp. nov. from the Cambrian Stage 3 Xiaoshiba Lagerstätte in Yunnan, China. The exoskeleton consists of a cephalic shield with dorsal sutures expressed as lateral notches that accommodate stalked lateral eyes, an elongate trunk composed of 20 tergites-the first of which is reduced-and a short tailspine with marginal spines. Appendicular data include a pair of multi-segmented antennae, and homonomous biramous trunk limbs consisting of an endopod with at least seven podomeres and a flattened exopod with lamellae. Although the presence of cephalic notches and a reduced first trunk tergite invites comparisons with the petalopleurans Xandarella, Luohiniella and Cindarella, the proportions and exoskeletal tagmosis of Zhiwenia do not closely resemble those of any major group within Trilobitomorpha. Parsimony and Bayesian phylogenetic analyses consistently support Zhiwenia as sister-taxon to the Emu Bay Shale artiopodan Australimicola spriggi, and both of them as closely related to Acanthomeridion from the Chengjiang. This new monophyletic clade, Protosutura nov., occupies a basal phylogenetic position within Artiopoda as sister-group to Trilobitomorpha and Vicissicaudata, illuminates the ancestral organization of these successful euarthropods, and leads to a re-evaluation of the evolution of ecdysial dorsal sutures within the group.
Collapse
Affiliation(s)
- Kun-Sheng Du
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.,MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.,Museum of Comparative Zoology and, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.,MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.,MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| |
Collapse
|
20
|
Yang J, Ortega-Hernández J, Drage HB, Du KS, Zhang XG. Ecdysis in a stem-group euarthropod from the early Cambrian of China. Sci Rep 2019; 9:5709. [PMID: 30952888 PMCID: PMC6450865 DOI: 10.1038/s41598-019-41911-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/20/2019] [Indexed: 11/26/2022] Open
Abstract
Moulting is a fundamental component of the ecdysozoan life cycle, but the fossil record of this strategy is susceptible to preservation biases, making evidence of ecdysis in soft-bodied organisms extremely rare. Here, we report an exceptional specimen of the fuxianhuiid Alacaris mirabilis preserved in the act of moulting from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China. The specimen displays a flattened and wrinkled head shield, inverted overlap of the trunk tergites over the head shield, and duplication of exoskeletal elements including the posterior body margins and telson. We interpret this fossil as a discarded exoskeleton overlying the carcass of an emerging individual. The moulting behaviour of A. mirabilis evokes that of decapods, in which the carapace is separated posteriorly and rotated forward from the body, forming a wide gape for the emerging individual. A. mirabilis illuminates the moult strategy of stem-group Euarthropoda, offers the stratigraphically and phylogenetically earliest direct evidence of ecdysis within total-group Euarthropoda, and represents one of the oldest examples of this growth strategy in the evolution of Ecdysozoa.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Harriet B Drage
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015, Lausanne, Switzerland
| | - Kun-Sheng Du
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.
- MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
21
|
Ortega-Hernández J, Janssen R, Budd GE. The last common ancestor of Ecdysozoa had an adult terminal mouth. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 49:155-158. [PMID: 30458236 DOI: 10.1016/j.asd.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The Ecdysozoa is a major animal clade whose main uniting feature is a distinctive growth strategy that requires the periodical moulting of the external cuticle. The staggering diversity within Ecdysozoa has prompted substantial efforts to reconstruct their origin and early evolution. Based on palaentological and developmental data, we proposed a scenario for the early evolution of the ecdysozoan clade Panarthropoda (Onychophora, Tardigrada, Euarthropoda), and postulated that a terminal mouth is ancestral for this lineage. In light of the accompanying comment by Claus Nielsen, we take this opportunity to clarify the significance of our argumentation for Panarthropoda in the phylogenetic context of Ecdysozoa, and Bilateria more broadly. We conclude that the ancestral ecdysozoan most likely had an adult terminal mouth, and that the last common ancestors of all the phyla that constitute Ecdysozoa almost certainly also had an adult terminal mouth. The occurrence of a ventral-facing mouth in various adult ecdysozoans - particularly panarthropods - is the result of convergence. Despite the paucity of embryological data on fossil taxa, we contemplate the likelihood that a developmentally early ventral mouth opening could be ancestral for Ecdysozoa, and if so, then this would represent a symplesiomorphy of Bilateria as a whole.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK; Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala se 752 36, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala se 752 36, Sweden
| |
Collapse
|
22
|
Ou Q, Mayer G. A Cambrian unarmoured lobopodian, †Lenisambulatrix humboldti gen. et sp. nov., compared with new material of †Diania cactiformis. Sci Rep 2018; 8:13667. [PMID: 30237414 PMCID: PMC6147921 DOI: 10.1038/s41598-018-31499-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022] Open
Abstract
Cambrian marine lobopodians are generally considered as predecessors of modern panarthropods (onychophorans, tardigrades, and arthropods). Hence, further study of their morphological diversity and early radiation may enhance our understanding of the ground pattern and evolutionary history of panarthropods. Here, we report a rare lobopodian species, †Lenisambulatrix humboldti gen. et sp. nov. ("Humboldt lobopodian"), from the early Cambrian Chengjiang Lagerstätte and describe new morphological features of †Diania cactiformis, a coeval armoured lobopodian nicknamed "walking cactus". Both lobopodian species were similar in possessing rather thick, elongate lobopods without terminal claws. However, in contrast to †Diania cactiformis, the body of which was heavily armored with spines, the trunk and limbs of the Humboldt lobopodian were entirely unarmored. Our study augments the morphological diversity of Cambrian lobopodians and presents two evolutionary extremes of cuticular ornamentation: one represented by the Humboldt lobopodian, which was most likely entirely "naked", the other epitomized by †D. cactiformis, which was highly "armoured".
Collapse
Affiliation(s)
- Qiang Ou
- Early Life Evolution Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, 100083, China. .,Department of Zoology, University of Kassel, 34132, Kassel, Germany.
| | - Georg Mayer
- Department of Zoology, University of Kassel, 34132, Kassel, Germany
| |
Collapse
|
23
|
Siveter DJ, Briggs DEG, Siveter DJ, Sutton MD, Legg D. A three-dimensionally preserved lobopodian from the Herefordshire (Silurian) Lagerstätte, UK. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172101. [PMID: 30224988 PMCID: PMC6124121 DOI: 10.1098/rsos.172101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
The Herefordshire (Silurian) Lagerstätte (approx. 430 Myr BP) has yielded, among many exceptionally preserved invertebrates, a wide range of new genera belonging to crown-group Panarthropoda. Here, we increase this panarthropod diversity with the lobopodian Thanahita distos, a new total-group panarthropod genus and species. This new lobopodian preserves at least nine paired, long, slender appendages, the anterior two in the head region and the posterior seven representing trunk lobopods. The body ends in a short post-appendicular extension. Some of the trunk lobopods bear two claws, others a single claw. The body is covered by paired, tuft-like papillae. Thanahita distos joins only seven other known three-dimensionally preserved lobopodian or onychophoran (velvet worm) fossil specimens and is the first lobopodian to be formally described from the Silurian. Phylogenetic analysis recovered it, together with all described Hallucigenia species, in a sister-clade to crown-group panarthropods. Its placement in a redefined Hallucigeniidae, an iconic Cambrian clade, indicates the survival of this clade to Silurian times.
Collapse
Affiliation(s)
- Derek J. Siveter
- Earth Collections, University Museum of Natural History, Oxford OX1 3PW, UK
- Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3AN, UK
| | - Derek E. G. Briggs
- Department of Geology and Geophysics and Yale Peabody Museum of Natural History, Yale University, PO Box 208109, New Haven, CT 06520-8109, USA
| | - David J. Siveter
- School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| | - Mark D. Sutton
- Department of Earth Sciences and Engineering, Imperial College London, London SW7 2BP, UK
| | - David Legg
- School of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
24
|
Yang J, Ortega-Hernández J, Legg DA, Lan T, Hou JB, Zhang XG. Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nat Commun 2018; 9:470. [PMID: 29391458 PMCID: PMC5794847 DOI: 10.1038/s41467-017-02754-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Euarthropods owe their evolutionary and ecological success to the morphological plasticity of their appendages. Although this variability is partly expressed in the specialization of the protopodite for a feeding function in the post-deutocerebral limbs, the origin of the former structure among Cambrian representatives remains uncertain. Here, we describe Alacaris mirabilis gen. et sp. nov. from the early Cambrian Xiaoshiba Lagerstätte in China, which reveals the proximal organization of fuxianhuiid appendages in exceptional detail. Proximally, the post-deutocerebral limbs possess an antero-posteriorly compressed protopodite with robust spines. The protopodite is attached to an endopod with more than a dozen podomeres, and an oval flap-shaped exopod. The gnathal edges of the protopodites form an axial food groove along the ventral side of the body, indicating a predatory/scavenging autecology. A cladistic analysis indicates that the fuxianhuiid protopodite represents the phylogenetically earliest occurrence of substantial proximal differentiation within stem-group Euarthropoda illuminating the origin of gnathobasic feeding.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - David A Legg
- Department of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, China
| | - Jin-Bo Hou
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
25
|
Abstract
The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | - Xiaoya Ma
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
26
|
Giribet G, Edgecombe GD. Current Understanding of Ecdysozoa and its Internal Phylogenetic Relationships. Integr Comp Biol 2017; 57:455-466. [DOI: 10.1093/icb/icx072] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Ortega-Hernández J, Janssen R, Budd GE. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:354-379. [PMID: 27989966 DOI: 10.1016/j.asd.2016.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 05/14/2023]
Abstract
The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| |
Collapse
|
28
|
Chartier M, Löfstrand S, von Balthazar M, Gerber S, Jabbour F, Sauquet H, Schönenberger J. How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales. Proc Biol Sci 2017; 284:20170066. [PMID: 28381623 PMCID: PMC5394665 DOI: 10.1098/rspb.2017.0066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
The staggering diversity of angiosperms and their flowers has fascinated scientists for centuries. However, the quantitative distribution of floral morphological diversity (disparity) among lineages and the relative contribution of functional modules (perianth, androecium and gynoecium) to total floral disparity have rarely been addressed. Focusing on a major angiosperm order (Ericales), we compiled a dataset of 37 floral traits scored for 381 extant species and nine fossils. We conducted morphospace analyses to explore phylogenetic, temporal and functional patterns of disparity. We found that the floral morphospace is organized as a continuous cloud in which most clades occupy distinct regions in a mosaic pattern, that disparity increases with clade size rather than age, and that fossils fall in a narrow portion of the space. Surprisingly, our study also revealed that among functional modules, it is the androecium that contributes most to total floral disparity in Ericales. We discuss our findings in the light of clade history, selective regimes as well as developmental and functional constraints acting on the evolution of the flower and thereby demonstrate that quantitative analyses such as the ones used here are a powerful tool to gain novel insights into the evolution and diversity of flowers.
Collapse
Affiliation(s)
- Marion Chartier
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Stefan Löfstrand
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Sylvain Gerber
- Muséum national d'Histoire naturelle, Institut de Systématique, Évolution, Biodiversité, UMR 7205 ISYEB MNHN/CNRS/UPMC/EPHE, 57 rue Cuvier, CP 39, 75005 Paris, France
| | - Florian Jabbour
- Muséum national d'Histoire naturelle, Institut de Systématique, Évolution, Biodiversité, UMR 7205 ISYEB MNHN/CNRS/UPMC/EPHE, 57 rue Cuvier, CP 39, 75005 Paris, France
| | - Hervé Sauquet
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, 91405 Orsay, France
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| |
Collapse
|
29
|
Caron JB, Aria C. Cambrian suspension-feeding lobopodians and the early radiation of panarthropods. BMC Evol Biol 2017; 17:29. [PMID: 28137244 PMCID: PMC5282736 DOI: 10.1186/s12862-016-0858-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/17/2016] [Indexed: 11/19/2022] Open
Abstract
Background Arthropoda, Tardigrada and Onychophora evolved from lobopodians, a paraphyletic group of disparate Palaeozoic vermiform animals with soft legs. Although the morphological diversity that this group encompasses likely illustrates the importance of niche diversification in the early radiation of panarthropods, the ecology of lobopodians remains poorly characterized. Results Here we describe a new luolishaniid taxon from the middle Cambrian Burgess Shale (Walcott Quarry) in British Columbia, Canada, whose specialized morphology epitomizes the suspension-feeding ecology of this clade, and is convergent with some modern marine animals, such as caprellid crustaceans. This species possesses two long pairs and four shorter pairs of elongate spinose lobopods at the front, each bearing two slender claws, and three pairs of stout lobopods bearing single, strong, hook-like anterior-facing claws at the back. The trunk is remarkably bare, widening rearwards, and, at the front, extends beyond the first pair of lobopods into a small “head” bearing a pair of visual organs and a short proboscis with numerous teeth. Based on a critical reappraisal of character coding in lobopodians and using Bayesian and parsimony-based tree searches, two alternative scenarios for early panarthropod evolution are retrieved. In both cases, hallucigeniids and luolishaniids are found to be extinct radiative stem group panarthropods, in contrast to previous analyses supporting a position of hallucigeniids as part of total-group Onychophora. Our Bayesian topology finds luolishaniids and hallucigeniids to form two successive clades at the base of Panarthropoda. Disparity analyses suggest that luolishaniids, hallucigeniids and total-group Onychophora each occupy a distinct region of morphospace. Conclusions Hallucigeniids and luolishaniids were comparably diverse and successful, representing two major lobopodian clades in the early Palaeozoic, and both evolved body plans adapted to different forms of suspension feeding. A Bayesian approach to cladistics supports the view that a semi-sessile, suspension-feeding lifestyle characterized the origin and rise of Panarthropoda from cycloneuralian body plans. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0858-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Bernard Caron
- Department of Natural History (Palaeobiology Section), Royal Ontario Museum, Toronto, Ontario, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada. .,Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Cédric Aria
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Abstract
The present-day distribution of velvet worms corresponds neatly to the ancient supercontinent Gondwana - except for a puzzling outpost in southeast Asia. Jaw-dropping new fossil material now establishes when and how peripatid onychophorans reached this isolated spot.
Collapse
|
31
|
Oliveira I, Bai M, Jahn H, Gross V, Martin C, Hammel J, Zhang W, Mayer G. Earliest Onychophoran in Amber Reveals Gondwanan Migration Patterns. Curr Biol 2016; 26:2594-2601. [DOI: 10.1016/j.cub.2016.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 10/20/2022]
|
32
|
Garwood RJ, Edgecombe GD, Charbonnier S, Chabard D, Sotty D, Giribet G. Carboniferous Onychophora from Montceau-les-Mines, France, and onychophoran terrestrialization. INVERTEBRATE BIOLOGY : A QUARTERLY JOURNAL OF THE AMERICAN MICROSCOPICAL SOCIETY AND THE DIVISION OF INVERTEBRATE ZOOLOGY/ASZ 2016; 135:179-190. [PMID: 27708504 PMCID: PMC5042098 DOI: 10.1111/ivb.12130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The geological age of the onychophoran crown-group, and when the group came onto land, have been sources of debate. Although stem-group Onychophora have been identified from as early as the Cambrian, the sparse record of terrestrial taxa from before the Cretaceous is subject to contradictory interpretations. A Late Carboniferous species from the Mazon Creek biota of the USA, Helenodora inopinata, originally interpreted as a crown-group onychophoran, has recently been allied to early Cambrian stem-group taxa. Here we describe a fossil species from the Late Carboniferous Montceau-les-Mines Lagerstätte, France, informally referred to as an onychophoran for more than 30 years. The onychophoran affinities of Antennipatus montceauensis gen. nov., sp. nov. are indicated by the form of the trunk plicae and the shape and spacing of their papillae, details of antennal annuli, and the presence of putative slime papillae. The poor preservation of several key systematic characters for extant Onychophora, however, prohibits the precise placement of the Carboniferous fossil in the stem or crown of the two extant families, or the onychophoran stem-group as a whole. Nevertheless, A. montceauensis is the most compelling candidate to date for a terrestrial Paleozoic onychophoran.
Collapse
Affiliation(s)
- Russell J. Garwood
- School of Earth, Atmospheric and Environmental SciencesThe University of ManchesterManchesterM13 9PLUK
- Department of Earth SciencesThe Natural History MuseumLondonSW7 5BDUK
| | | | - Sylvain Charbonnier
- Département Histoire de la TerreMuséum national d'Histoire naturelle, ParisF‐75005ParisFrance
| | | | - Daniel Sotty
- Muséum d'Histoire naturelle d'AutunF‐71400AutunFrance
| | - Gonzalo Giribet
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts02138USA
- Department of Life SciencesThe Natural History MuseumLondonSW7 5BDUK
| |
Collapse
|
33
|
Zhang XG, Smith MR, Yang J, Hou JB. Onychophoran-like musculature in a phosphatized Cambrian lobopodian. Biol Lett 2016; 12:20160492. [PMID: 27677816 PMCID: PMC5046927 DOI: 10.1098/rsbl.2016.0492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
The restricted, exclusively terrestrial distribution of modern Onychophora contrasts strikingly with the rich diversity of onychophoran-like fossils preserved in marine Cambrian Lagerstätten The transition from these early forebears to the modern onychophoran body plan is poorly constrained, in part owing to the absence of fossils preserving details of the soft anatomy. Here, we report muscle tissue in a new early Cambrian (Stage 3) lobopodian, Tritonychus phanerosarkus gen. et sp. nov., preserved in the Orsten fashion by three-dimensional replication in phosphate. This first report of Palaeozoic onychophoran musculature establishes peripheral musculature as a characteristic of the ancestral panarthropod, but documents an unexpected muscular configuration. Phylogenetic analysis reconstructs T. phanerosarkus as one of a few members of the main onychophoran lineage-which was as rare and as cryptic in the Cambrian period as it is today.
Collapse
Affiliation(s)
- Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Martin R Smith
- Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
| | - Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jin-Bo Hou
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
34
|
Jiao DG, Yang J, Zhang XG. A superarmoured lobopodian from the Cambrian Stage 4 of southern China. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Affiliation(s)
- Javier Ortega-Hernández
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EQ, UK.
| |
Collapse
|
36
|
Yang J, Ortega-Hernández J, Lan T, Hou JB, Zhang XG. A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China. Sci Rep 2016; 6:27709. [PMID: 27283406 PMCID: PMC4901283 DOI: 10.1038/srep27709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/24/2016] [Indexed: 11/08/2022] Open
Abstract
Bivalved euarthropods represent a conspicuous component of exceptionally-preserved fossil biotas throughout the Lower Palaeozoic. However, most of these taxa are known from isolated valves, and thus there is a limited understanding of their morphological organization and palaeoecology in the context of early animal-dominated communities. The bivalved euarthropod Clypecaris serrata sp. nov., recovered from the Cambrian (Stage 3) Hongjingshao Formation in Kunming, southern China, is characterized by having a robust first pair of raptorial appendages that bear well-developed ventral-facing spines, paired dorsal spines on the trunk, and posteriorly oriented serrations on the anteroventral margins of both valves. The raptorial limbs of C. serrata were adapted for grasping prey employing a descending stroke for transporting it close the mouth, whereas the backwards-facing marginal serrations of the bivalved carapace may have helped to secure the food items during feeding. The new taxon offers novel insights on the morphology of the enigmatic genus Clypecaris, and indicates that the possession of paired dorsal spines is a diagnostic trait of the Family Clypecarididae within upper stem-group Euarthropoda. C. serrata evinces functional adaptations for an active predatory lifestyle within the context of Cambrian bivalved euarthropods, and contributes towards the better understanding of feeding diversity in early ecosystems.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China
| | | | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, China
| | - Jin-bo Hou
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China
| | - Xi-guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China
| |
Collapse
|
37
|
Yang J, Ortega-Hernández J, Butterfield NJ, Liu Y, Boyan GS, Hou JB, Lan T, Zhang XG. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. Proc Natl Acad Sci U S A 2016; 113:2988-93. [PMID: 26933218 PMCID: PMC4801254 DOI: 10.1073/pnas.1522434113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.
Collapse
Affiliation(s)
- Jie Yang
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
| | | | - Nicholas J Butterfield
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Yu Liu
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China; Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany; GeoBio-Center Ludwig-Maximilians-Universität, Munich 80333, Germany
| | - George S Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Jin-Bo Hou
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, China
| | - Xi-Guang Zhang
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China;
| |
Collapse
|
38
|
Ortega-Hernández J, Budd GE. The nature of non-appendicular anterior paired projections in Palaeozoic total-group Euarthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:185-199. [PMID: 26802876 DOI: 10.1016/j.asd.2016.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 05/14/2023]
Abstract
Recent studies have clarified the segmental organization of appendicular and exoskeletal structures in the anterior region of Cambrian stem-group Euarthropoda, and thus led to better understanding of the deep evolutionary origins of the head region in this successful animal group. However, there are aspects of the anterior organization of Palaeozoic euarthropods that remain problematic, such as the morphological identity and significance of minute limb-like projections on the anterior region in stem and crown-group representatives. Here, we draw attention to topological and morphological similarities between the frontal filaments of extant Crustacea and the embryonic frontal processes of Onychophora, and distinctive anterior paired projections observed in several extinct total-group Euarthropoda. Anterior paired projections are redescribed in temporally and phylogenetically distant fossil taxa, including the gilled lobopodians Kerygmachela kierkegaardi and Pambdelurion whittingtoni, the bivalved stem-euarthropod Canadaspis perfecta, the larval pycnogonid Cambropycnogon klausmuelleri, and the mandibulate Tanazios dokeron. Developmental data supporting the homology of the 'primary antennae' of Onychophora, the 'frontal appendages' of lower-stem Euarthropoda, and the hypostome/labrum complex of Deuteropoda, argue against the morphological identity of the anterior paired projections of extant and extinct panarthropods as a pair of pre-ocular appendages. Instead, we regard the paired projections of fossil total-group euarthropods as non-appendicular evaginations with a likely protocerebral segmental association, and a possible sensorial function. The widespread occurrence of pre-ocular paired projections among extant and extinct taxa suggests their potential homology as fundamentally ancestral features of the anterior body organization in Panarthropoda. Non-appendicular paired projections with a sensorial function may reflect a critical--yet previously overlooked--component of the panarthropod ground pattern.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EQ, UK.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Norbyvägen 22, Uppsala SE 752 36, Sweden
| |
Collapse
|
39
|
Murdock DJE, Gabbott SE, Purnell MA. The impact of taphonomic data on phylogenetic resolution: Helenodora inopinata (Carboniferous, Mazon Creek Lagerstätte) and the onychophoran stem lineage. BMC Evol Biol 2016; 16:19. [PMID: 26801389 PMCID: PMC4722706 DOI: 10.1186/s12862-016-0582-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/06/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The origin of the body plan of modern velvet worms (Onychophora) lies in the extinct lobopodians of the Palaeozoic. Helenodora inopinata, from the Mazon Creek Lagerstätte of Illinois (Francis Creek Shale, Carbondale Formation, Middle Pennsylvanian), has been proposed as an intermediate between the "weird wonders" of the Cambrian seas and modern terrestrial predatory onychophorans. The type material of H. inopinata, however, leaves much of the crucial anatomy unknown. RESULTS Here we present a redescription of this taxon based on more complete material, including new details of the head and posterior portion of the trunk, informed by the results of experimental decay of extant onychophorans. H. inopinata is indeed best resolved as a stem-onychophoran, but lacks several key features of modern velvet worms including, crucially, those that would suggest a terrestrial mode of life. CONCLUSIONS The presence of H. inopinata in the Carboniferous demonstrates the survival of a Cambrian marine morphotype, and a likely post-Carboniferous origin of crown-Onychophora. Our analysis also demonstrates that taphonomically informed tests of character interpretations have the potential to improve phylogenetic resolution.
Collapse
Affiliation(s)
- Duncan J E Murdock
- Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Sarah E Gabbott
- Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Mark A Purnell
- Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
40
|
Chipman AD. An embryological perspective on the early arthropod fossil record. BMC Evol Biol 2015; 15:285. [PMID: 26678148 PMCID: PMC4683962 DOI: 10.1186/s12862-015-0566-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of the early evolution of the arthropod body plan has recently improved significantly through advances in phylogeny and developmental biology and through new interpretations of the fossil record. However, there has been limited effort to synthesize data from these different sources. Bringing an embryological perspective into the fossil record is a useful way to integrate knowledge from different disciplines into a single coherent view of arthropod evolution. RESULTS I have used current knowledge on the development of extant arthropods, together with published descriptions of fossils, to reconstruct the germband stages of a series of key taxa leading from the arthropod lower stem group to crown group taxa. These reconstruction highlight the main evolutionary transitions that have occurred during early arthropod evolution, provide new insights into the types of mechanisms that could have been active and suggest new questions and research directions. CONCLUSIONS The reconstructions suggest several novel homology hypotheses - e.g. the lower stem group head shield and head capsules in the crown group are all hypothesized to derive from the embryonic head lobes. The homology of anterior segments in different groups is resolved consistently. The transition between "lower-stem" and "upper-stem" arthropods is highlighted as a major transition with a concentration of novelties and innovations, suggesting a gap in the fossil record. A close relationship between chelicerates and megacheirans is supported by the embryonic reconstructions, and I suggest that the depth of the mandibulate-chelicerate split should be reexamined.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel. .,The Department of Paleobiology, The Smithsonian Museum of Natural History, Washington, DC, USA.
| |
Collapse
|
41
|
Powell R, Mariscal C. Convergent evolution as natural experiment: the tape of life reconsidered. Interface Focus 2015; 5:20150040. [PMID: 26640647 DOI: 10.1098/rsfs.2015.0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stephen Jay Gould argued that replaying the 'tape of life' would result in radically different evolutionary outcomes. Recently, biologists and philosophers of science have paid increasing attention to the theoretical importance of convergent evolution-the independent origination of similar biological forms and functions-which many interpret as evidence against Gould's thesis. In this paper, we examine the evidentiary relevance of convergent evolution for the radical contingency debate. We show that under the right conditions, episodes of convergent evolution can constitute valid natural experiments that support inferences regarding the deep counterfactual stability of macroevolutionary outcomes. However, we argue that proponents of convergence have problematically lumped causally heterogeneous phenomena into a single evidentiary basket, in effect treating all convergent events as if they are of equivalent theoretical import. As a result, the 'critique from convergent evolution' fails to engage with key claims of the radical contingency thesis. To remedy this, we develop ways to break down the heterogeneous set of convergent events based on the nature of the generalizations they support. Adopting this more nuanced approach to convergent evolution allows us to differentiate iterated evolutionary outcomes that are probably common among alternative evolutionary histories and subject to law-like generalizations, from those that do little to undermine and may even support, the Gouldian view of life.
Collapse
Affiliation(s)
- Russell Powell
- Department of Philosophy , Boston University , Boston, MA 02215 , USA
| | - Carlos Mariscal
- Department of Biochemistry and Philosophy , Dalhousie University , Halifax, Nova Scotia , Canada B3H 4R2
| |
Collapse
|